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Abstract Modification of conventional rapid sand filter

into granular activated carbon–sand dual media filter has

become increasingly attractive to drinking water producers

in many Chinese urban regions. In this study, a pilot-scale

dual media filter was constructed to monitor its perfor-

mance. The operational results indicated that the dual

media filter performed well both on nitrification and on

reduction of chemical oxygen demand. Microbial com-

munity structures at different sampling sites were also

compared using 16S ribosomal ribonucleic acid gene clone

library analysis to identify the spatial heterogeneity the

filter. Clone library analysis illustrated the difference of

microbial community structure and an increase of micro-

bial diversity along the filter depth. Moreover, potential

pathogens from genera Chromobacterium and Sphingo-

monas were detected in the filter samples, which deserved

further serious consideration in downstream treatment such

as disinfection. These findings also provided an illustration

of the utility of molecular techniques to discover microbial

community change and potential pathogens in the drinking

water biofilters.
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Introduction

In China, the predominant type of drinking water treatment

processes is still the conventional treatment process (coag-

ulation–flocculation, sedimentation, rapid sand filtration,

and disinfection), which cannot remove the ammonia and

organic matter effectively. Due to the deterioration of sur-

face water quality, modification of conventional treatment

process is under consideration by drinking water producers

in many regions. However, with the rapid industrialization

and urbanization, there is no space available for many water

treatment works in China to introduce external advanced

treatment units. Because biofiltration is an effective way to

remove organic and nitrogen pollutants in drinking water, it

seems a good option to retrofit a sand filter to a granular

activated carbon (GAC)–sand dual media filter. In a GAC–

sand dual media filter, organic matter and ammonium could

be effectively removed by the GAC, while the sand could

minimize the turbidity in the filter effluent (Emelko et al.

2006; Kim and Kang 2008; Wiesner et al. 1987). However, in

China, the performance of the GAC–sand dual media filter

has not been investigated in detail, which constrains the

potential application of this promising technology. Identifi-

cation of microbial structure could aid in the knowledge of

the processes occurring in drinking water biofilters. The

culture-dependent methods have found many applications in

identification of microorganisms in drinking water biofilters

(Cunliffe 1991; Moll et al. 1998; Norton and LeChevallier

2000). To circumvent some limitations associated with cul-

turing techniques, few investigations using molecular tech-

niques have recently been conducted to obtain information

regarding the composition of microbial communities in

drinking water biofilters (Li et al. 2010).

The creation of biological activated carbon (BAC) and

composition of microbial community colonizing GAC are
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important to the biodegradation capacity of these systems

(Niemi et al. 2009). However, the information about

microbial structure in BAC filter is still very limited.

Microbial communities in natural aquatic habitats are

very sensitive to environmental perturbations (Paerl et al.

2003). Microbial community composition might be related

to many environmental factors, including dissolved oxygen

(DO) (De Wever et al. 2005), nutrients (Lindstrom 2000),

and organic matter (Crump et al. 2003). In drinking water

biofilter, ammonia, organic matter, and DO are gradually

consumed by the microorganisms in the biofilm along the

filter layer depth. However, little is known about the spatial

heterogeneity of microbial structures in drinking water

biofilter. Only a recent work has shown the spatial variation

in nitrifying bacterial community in laboratory-scale BAC

filters (Yapsakli et al. 2010).

In the current study, a pilot-scale GAC–sand dual media

filter used for drinking water treatment was constructed to

evaluate its performance in reduction of organic matter and

nitrogen compounds. 16S ribosomal ribonucleic acid

(rRNA) gene clone library analysis was applied to elucidate

spatial heterogeneity of microbial community structures

along the filter depth in the biofilter. Moreover, although the

threats of human pathogens in drinking water distribution

systems have been reviewed in detail (Berry et al. 2006;

Brettar and Höfle 2008), information on the existence of

pathogens in the drinking water biofilter is very scant. The

composition of microbial community in biofilter is impor-

tant as a possible source of water contamination in the dis-

tribution system (Niemi et al. 2009). Therefore, the presence

of potential pathogens was also investigated in this study,

which might affect downstream treatment such as disinfec-

tion. Pilot-scale GAC–sand dual media filter was operated

and water samples were monitored from December 2010 to

June 2011 in Dongguan City, China. Molecular analysis was

carried out between June and August in 2011 at College of

Environmental Sciences and Engineering, Peking Univer-

sity, China.

Materials and methods

Experimental setup

The filtration column was a Plexiglas cylinder (4 m length

and 300 mm diameter), equipped with sampling ports for

water, GAC, and sand (Fig. 1). Specifications of the filter are

summarized in Table 1. The pilot filter was fed with settled

water from the Dongguan Treatment Plant in down-flow

mode with a hydraulic loading of 8 m/h. During this study,

the pH values, oxygen concentrations, and temperatures of

the settled water ranged between 7.2 and 7.5, 5.0 and 7.9 mg

O2/L, and 10 and 30 �C, respectively. The pilot filter was

backwashed every 3 days using non-chlorinated water (the

effluent of full-scale rapid sand filter in the treatment plant).

Before this study, the filters had been operated for about

4 months allowing for the maturation of biomass.

Analyses of water quality

For physicochemical analysis, triplicate water samples

were collected from the influent and effluent of the pilot

filter. Chemical oxygen demand (CODMn, Mn stands for

the permanganate), ammonium (NH4
?-N), and nitrite

(NO2
--N) were determined according to were determined

according to the standard methods described by China

Environmental Protection Agency (2002). DO and tem-

perature were measured using a HACH HQ30d system,

while pH was measured using a Hach HQ11d system.

Clone library analysis

GAC or sand samples for clone library analyses were col-

lected on day 102. The samples from 0.2, 0.4, 0.8, and 1.2 m

depth below the surface of the GAC layer were referred to as

Fig. 1 Schematic of the pilot-scale GAC–sand dual media filter

Table 1 Specifications of the pilot-scale GAC–sand dual media filter

Characteristics GAC Sand Gravel

Depth (mm) 1,000 400 300

Effective size (mm) 1.01 0.68

Uniformity coefficient 1.54 1.61
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Sample A, Sample B, Sample C, and Sample D, respectively.

DNA of each sample was extracted using the UltraClean

DNA extraction kit (Mobio Laboratories). Bacterial 16S

rRNA genes were amplified using primers 27F (50-GAG-

TTTGATCMTGGCTCAG-30) and 1492R (50-GGTTACC

TTGTTACGACTT-30). PCR conditions were as previously

described (Huang et al. 2011; Zhang et al. 2011). The PCR

products were cloned into pGEM-T-easy Vector (Takara

Corp, Japan). The white colonies were verified by PCR with

primers M13 F (50-TGTAAAACGACGGCCAGT-30) and

M13 R (50-AACAGCTATGACCATG-30). Clones were

sequenced at SinoGenoMax Co., Ltd. (Beijing).

Sequences identified as chimeras by Mallard software were

excluded from further analyses (Ashelford et al. 2006). Clones

sharing C97 % identity were considered one operational

taxonomic unit (OTU) using distance-based OTU and rich-

ness program (DOTUR) (Schloss and Handelsman 2005).

Shannon diversity index was also calculated (Schloss and

Handelsman 2005). Taxonomic identities of the sequences

was obtained using the Ribosomal Database Project (RDP) II

analysis tool ‘‘classifier’’ (Wang et al. 2007). The 16S rRNA

sequences obtained in this study were submitted to GenBank

under accession numbers JN389523–JN389586 (library with

Sample A), JN389587–JN389652 (library with Sample B),

JN389653–JN389715 (library with Sample C), and

JN389716–JN389780 (library with Sample D).

Results and discussion

Reduction of organic matter and nitrogen pollutants

in the pilot-scale filter

The pilot-scale GAC–sand dual media filter was continu-

ously operated for nearly 160 days. The influent and effluent

CODMn concentrations in the bioreactor are presented with

respect to time (Fig. 2). In the whole experimental period, an

effective reduction of CODMn in the pilot-scale filter was

observed. Effective removal of CODMn and other types of

organic matter in the GAC–sand dual media filter was noted

elsewhere (Zhang et al. 2004). Moreover, a recent investi-

gation on full-scale bioreactors has also proven that the

removal efficiency of organic matter was much higher in the

GAC–sand dual media filter than in the sand filter (Kim and

Kang 2008). Table 2 illustrates the effective reduction of

CODMn in the GAC layer, especially in the top 0.4-m GAC

layer, while the reduction in the sand layer was negligible.

Removal of most of the natural organic matter usually

occurred at the top of the biofilters (Wang et al. 1995), which

might be attributed to the decrease of attached biomass as

filter depth increased (Wang et al. 1995; Yu et al. 2002).

Previous works on performance of BAC filters usually

centered on organic carbon removal, however, effective

ammonia reduction could also occur in these biofilters

(Yapsakli et al. 2010). Figures 3 and 4 represent the

influent and effluent ammonia and nitrite concentrations in

the pilot-scale GAC–sand dual media filter, respectively. A

high ammonia removal was observed during the whole

experimental period although the influent ammonia con-

centrations varied greatly. Moreover, the effluent nitrite

concentrations always remained very low, usually below

the detection limit. The high ammonia removal by the

GAC–sand dual media filter has also been noted elsewhere

(Zhang et al. 2004). Table 2 illustrates the significant

ammonia and nitrite reduction in GAC layer (especially in

the top 0.4-m GAC layer), in contrast to the negligible

reduction in sand layer. Therefore, the reduction of both

organic matter and nitrogen pollutants mainly occurred in

the top 0.4-m GAC layer, which was also in accordance

with the profile of DO consumption along the filter depth.

Identification of microbial community structures

Decrease of biomass and activity of attached microorgan-

isms along the filter depth in the drinking water biofilters

have been well documented (Wang et al. 1995; Yu et al.
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Fig. 2 Influent and effluent CODMn concentrations in the GAC–sand

dual media filter

Table 2 Changes of organic and nitrogen pollutants, and DO along

the filter depth (on day 102)

Filter depth

(m)a
CODMn

(mg/L)

Ammonia

(mg/L)

Nitrite

(mg/L)

DO

(mg/L)

GAC layer

0 1.17 0.77 0.248 5.86

0.2 1.05 0.44 0.124 3.87

0.4 0.75 0.06 0.020 2.42

1.0 0.64 0.04 \0.001 1.80

Sand layer

1.2 0.64 0.03 \0.001 1.68

1.4 0.64 0.03 \0.001 1.64

a Below the surface of the GAC layer
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2002). However, little is known about the community

structures and their spatial changes inside the drinking water

biofilters. In this study, 16S rRNA gene clone library analysis

was applied to elucidate spatial heterogeneity of microbial

community structures. For each clone library, 63–66 clones

were randomly selected. Figure 5 illustrates the changes of

bacterial groups along the depth in the pilot filter. Alpha-

proteobacteria, Betaproteobacteria, Acidobacteria, Ac-

tinobacteria, and Planctomycetes were shared among all

four samples. The major bacterial groups (with at least five

sequences) in Sample A were Nitrospirae (31 sequences) and

Alphaproteobacteria (21 sequences). However, Sample B

were mainly composed of Alphaproteobacteria (37

sequences), Acidobacteria (8 sequences), Betaproteobacte-

ria (6 sequences), and Bacteroidetes (5 sequences). Inter-

estingly, Alphaproteobacteria, Acidobacteria, and Betaproteo-

bacteria were also the largest three bacterial groups in Sample

C and Sample D. Therefore, Sample B, Sample C and Sample

D had similar major bacterial groups.

OTUs and Shannon diversity index were both deter-

mined at 3 % sequence difference level by DOTUR pro-

gram (Table 3). Table 3 shows that 23, 30, 41, and 43

OTUs were obtained in four bacterial libraries constructed

with Sample A, Sample B, Sample C, and Sample D,

respectively. Bacterial composition in drinking water bio-

filters varied with nutrient and DO levels (Niemi et al.

2009). The addition of phosphorus could significantly

affect the microbial structure in the BAC filters (Li et al.

2010). In this study, the change of Shannon index illus-

trates an increase of microbial diversity along the filter

depth. This might be attributed to the reduction of pollu-

tants and DO along the filter depth.

The compositions of community structure in BAC filter

and sand filter are still poorly understood. A recent work

showed that 68 % of the isolated bacterial strains from a

BAC filter were Betaproteobacteria and 25 % to Alpha-

proteobacteria (Magic-Knezev et al. 2009). Niemi et al.

(2009) also found the dominance of isolates belonging to

Betaproteobacteria in a BAC filter in a pilot plant. Clone

library analysis also indicated that Betaproteobacteria was

the dominant bacterial group in the bench-scale BAC fil-

ter, operated for perchlorate and nitrate removal from

contaminated groundwater, while Alphaproteobacteria

was a minor bacterial group (Li et al. 2010). However, in

this study, Alphaproteobacteria were largest bacterial

group in Sample B, Sample C and Sample D, and the

second largest in Sample A. In contrast, Betaproteobac-

teria was much less abundant. The differences in the

community structure composition were likely dependent

on feed water.

Nitrospirae was the largest bacterial group in Sample A,

but with a very low abundance in Sample B and Sample C,

and no detection in Sample D. This was mainly responsible

for the distinct difference of between Sample A and the

other three samples. The dominance of Nitrospirae in

Sample A suggested the strong nitrification process at the

top of the filter (0.2 m depth below the surface of the GAC

layer). However, nitrification process could become

increasingly weak along the filter depth with the rapid

consumption of ammonia and nitrite. The very low abun-

dance of Nitrospirae in Sample B might be attributed to the

weak nitrification process in this region (0.4 m depth below

the surface of the GAC layer). Although the processes

occurring in drinking water biofilters are well-understood,

the information about the changes of nitrifier community

structure in drinking water biofilters is very few. Yapsakli

et al. (2010) showed the abundance of ammonia-oxidizing

bacteria (AOB) decreased along the filter depth using real-

time PCR technique.

As the second largest bacterial group in Sample B,

Sample C, and Sample D (with 8–11 sequences), Acido-

bacteria was detected in Sample A with a very low

abundance (with only one sequence). This also contributed

greatly to the distinct difference of between Sample A and

the other three samples. Acidobacteria was usually
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?-N concentrations in the GAC–sand
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abundant in soils (Griffiths et al. 2011; Sudini et al. 2011).

However, little information exists on its presence in

drinking water biofilters. Very low abundance of Acido-

bacteria was found in the BAC filter treating groundwater

(Li et al. 2010).

Potential microbiological risks

The threats of human pathogens or opportunistic pathogens

from many genera in drinking water distribution systems

have been well documented (Berry et al. 2006; Brettar and

Höfle 2008). However, pathogenic microorganisms in the

drinking water biofilters have yielded little attention,

although they are a possible source of water contamination

in the distribution system. A large number of Sphingo-

monas species were detected in Sample C (7 sequences)

and Sample D (6 sequences). Genus Sphingomonas is

associated with a great variety of infections, and its

infections caused by contaminated water sources have been

reported (Toh et al. 2011). Therefore, the abundance of

Sphingomonas species might pose a potential microbial

risk in water supply.

One Chromobacterium species was detected in Sample

A. Some members belonging to genus Chromobacterium

are known or potential pathogens in mammals (Durán

et al. 2010; Han et al. 2008). These organisms have been

linked to many types of diseases, and there have been

numerous reports of infection by these organisms in

humans, some of which have led to fatalities (Baldi et al.

2010; Durán et al. 2010). Chromobacterium species were

present in a pilot-scale microfiltration plant for drinking

water treatment (Kwon et al. 2011). However, to the

authors’ knowledge, this is the first report concerning the

existence of genus Chromobacterium in the drinking water

filter. The hygienic significance of the presence of Chro-

mobacterium species in the biofilter should be fully

considered.

Conclusion

The pilot-scale GAC–sand dual media filter could effec-

tively remove organic matter and nitrogen pollutants. The

reductions mainly occurred at the top of the filter. 16S

rRNA gene clone library analysis illustrated a difference in

microbial community structure, with increased microbial

diversity occurring with filter depth. Alphaproteobacteria

was one of the largest bacterial groups in all sampling sites,

while phylum Nitrospirae predominated only in the 0.2 m

depth. Two kinds of potential pathogens were detected in

the filter, which implied potential microbiological risk in

water supply. Further investigation on inactivation of

potential pathogens by disinfection processes might be of

practical importance for drinking water safety.
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Table 3 OTUs and Shannon index (calculated at 0.03 difference

level) of four clone libraries

Library No. of clones No. of OTUs Shannon index

Sample A 64 23 2.3

Sample B 66 30 2.8

Sample C 63 41 3.5

Sample D 65 43 3.6
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