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Abstract The enzyme urease drives the hydrolysis of

urea leading to the release of ammonium ions and bicar-

bonate; in the presence of calcium, the rise in pH leads to

increased calcium carbonate saturation and the subsequent

precipitation of calcite. Although such alkalinizing ureol-

ysis is widespread in nature, most studies have focussed on

bacteria (i.e. indigenous communities or urease-active

Sporosarcina pasteurii) for calcite precipitation technolo-

gies. In this study, urease-active jack bean meal (from the

legume Canavalia ensiformis) was used to drive calcite

precipitation. The rates of ureolysis (kurea), determined

from measured NH4
?, enabled a direct comparison to

microbial ureolysis rates reported in literature. It is also

demonstrated that a simple single reaction model approach

can simulate calcite precipitation very effectively (3–6 %

normalised root-mean-square deviation). To investigate the

reduction of permeability in porous media, jack bean meal

(0.5 g L-1) and solutions (400 mM urea and CaCl2) were

simultaneously pumped into a borosilicate bead column.

One-dimensional magnetic resonance profiling techniques

were used, non-invasively, for the first time to quantify the

porosity changes following calcite precipitation. In addi-

tion, two-dimensional slice selective magnetic resonance

images (resolution of *0.5 9 1.0 mm) revealed that the

exact location of calcite deposition was within the first

10 mm of the column. Column sacrifice and acid digestion

also confirmed that 91.5 % of calcite was located within

the first 14 mm of the column. These results have impor-

tant implications for the design of future calcite precipi-

tation technologies and present a possible alternative to the

well known bacterial approaches.

Keywords Urease � CaCO3 � Jack bean meal � Canavalia

ensiformis � Ureolysis

Introduction

Calcite precipitation technologies (CPT) have a wide range

of current and potential applications, including solid-phase

capture and remediation of problematic trace metals and

radionuclides (Curti 1999; Warren et al. 2001; Fujita et al.

2004; 2010), remediation of cracked concrete (Whiffin

et al. 2007; De Muynck et al. 2008; Ghosh et al. 2009),

durability of concrete structures (Ramachandran et al.

2001; De Muynck et al. 2010; Achal et al. 2011), treatment

of urea from wastewaters (Hammes et al. 2003), carbon

sequestration (White et al. 2003; Druckenmiller et al. 2006;

Cunningham et al. 2009; Mitchell et al. 2010), soil

improvement (Whiffin 2004) and sealing porosity or rock
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fractures (Ferris et al. 1996; Cunningham et al. 2009;

Cuthbert et al. 2012; Tobler et al. 2012).

Biological CPT can be carried out by ureolysis using

extracted urease enzymes or urease producing microor-

ganisms. During ureolysis, the urease enzyme hydrolyses

urea forming bicarbonate and ammonia (Eq. 1). The fur-

ther hydrolysis of ammonia to ammonium (Eq. 2) leads to

an increase in pH and a shift in the bicarbonate equilibrium

(Eq. 3), subsequently leading to the precipitation of cal-

cium and carbonate as calcite (Eq. 4) (Cunningham et al.

2009).

NH2CONH2þ 2H2O ! 2NH3þHCO�3 þHþ ð1Þ

2NH3þ 2H2O $ 2NHþ4 þ 2OHþ ð2Þ

HCO�3 þHþ þ 2OH� $ CO2�
3 þ 2H2O ð3Þ

Ca2þ þCO2�
3 $ CaCO3 ð4Þ

Using a first-order kinetic law, Ferris et al. (2004)

showed that the ureolysis rate constant can be calculated

from experimental measurements of NH4
? (Eq. 5), where

[NH4
?]t is NH4

? concentration produced over time, [urea]0

is the initial urea concentration and kurea is the ureolysis

rate constant (day-1):

½NHþ4 �t ¼ 2½urea�0ð1� e�kurea tÞ ð5Þ

Although factors such as temperature, pH and substrate

concentration are known to influence the activity of urease

(Krajewska 2009a, b), this first-order kinetic rate (kurea) has

been successfully applied to a range of experimental

microbial ureolysis data (Table 1). For microbial ureolysis,

the kurea has been shown to increase with increasing

biomass concentrations [measured by optical density (OD)]

of Sporosarcina pasteurii (previously known as Bacillus

pasteurii) (Tobler et al. 2011). Temperature is also known

to affect ureolysis rates for S. pasteurii, with kurea

increasing from 0.09 at 10 �C to 0.91 at 20 �C (Ferris

et al. 2004). Research by Tobler et al. (2011) also found

that the ureolytic activity of an uncharacterised indigenous

microbial consortium (from Birmingham, UK

groundwater) was much lower than S. pasteurii, for the

same biomass concentrations (as determined by OD), with

kurea = 0.04 for the indigenous community compared to

0.13 for S. pasteurii.

The urease enzyme is widespread in nature and is

found in plants, bacteria, fungi, mammals and soils.

Although the structure differs slightly, its function

remains the same (Krajewska 2009a). The specific

activity of an enzyme can be calculated but depends on

the purity of the enzyme and experimental conditions

(i.e. pH, temperature and substrate concentrations). The

activity of purified urease enzyme from Canavalia ens-

iformis (Jack Bean) is reported as 2,700–3,500 units

(lmol urea hydrolysed/min per mg of protein), with an

optimal pH of 7.0–7.5 (Krajewska 2009a). The activity

of urease enzyme from S. pasteurii is similar to the

value of jack bean urease at 2,500 units, with an optimal

pH of 8.0 (Krajewska 2009a).

There are challenges to the successful development

and optimisation of CPT for sealing porosity or rock

fractures. For example, using an indigenous bacterial

community for CPT requires enriching the biomass by

adding organic nutrients such as molasses (Tobler et al.

2011). Depending on the nutrient added, environmental

problems such as eutrophication or pollution of ground-

water may occur. When injecting ureolytic bacteria (i.e.

S. pasteurii) adding nutrients will not be necessary

(Tobler et al. 2011). However, research by Cuthbert

et al. (2012) has found that ureolysis is limited by the

eventual encapsulation of ureolytic bacteria and biofilm

by calcite. This would mean that for sealing large voids

(i.e. porous media or rock fractures) additional injections

of ureolytic bacteria would be required. Bioclogging is

an issue for CPT because it causes problems for further

injections of the cementing substrates and because

blocking by organic material is not stable as it will

degrade over time. Research by Nemati et al. (2005)

found that the plugging of porous media by biomass was

a factor when using ureolytic bacteria.

Urease-active jack bean meal (JBM) is a non-haz-

ardous, general laboratory chemical containing unpurified

urease enzyme, using JBM could reduce some of the

problems associated with microbial CPT (i.e. bioclog-

ging, nutrient pollution) and reduce costs (i.e. biotech-

nology, nutrient costs). Research has also shown that a

purified urease enzyme can tolerate higher urea and

calcium concentrations than ureolytic bacteria; therefore,

potentially higher volumes of calcite can be produced

(Nemati and Voordouw 2003; Nemati et al. 2005). The

objectives of this work are: (1) to validate the use of

urease-active JBM for CPT and to compare the rate of

ureolysis (kurea) against bacterial CPT rates reported in

the literature and (2) to determine the efficiency of

urease-active JBM to reduce the porosity and perme-

ability of porous material measured by magnetic reso-

nance imaging (MRI). This research was conducted at

the University of Birmingham and the University of

Cambridge, from April 2010 to February 2011.

Materials and methods

Batch urease-active jack bean meal experiments

The kinetics of calcite (CaCO3) formation was investi-

gated using different concentrations of urease-active
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JBM. A solution of 400 mM Ca2? and 200 mM urea

was prepared from CaCl2�2H2O (ACS reagent, Sigma-

Aldrich), urea salts (AnalaR, BDH) and high purity

water (MQ water C 18 MX cm-1). A known weight of

JBM (Fisher Scientific) was added to triplicate flasks

containing 250 mL of solution (400 mM Ca2?; 200 mM

urea) to give final concentrations of 0, 0.125, 0.25 and

0.5 g L-1. The flasks were stored in the dark on an

orbital shaker (100 rpm) at 10 �C. At known time points

(0–335 h), the flasks contents were analysed for changes

in solution chemistry. The pH of the solution was

measured (VWR; 662–1,759 probe) and a subsample of

solution (1 mL) was filtered (50 kDa, Millipore, 20 min,

4,500 g) to remove the active urease enzyme (*545 kDa

in size) and analysed for Ca2? and NH4
? using cation

chromatography (Dionex; ICS–1100).

Jack bean meal characterisation

The elemental composition of the JBM was determined

(wt % of each element) using X-ray fluorescence (XRF;

Bruker S8). An accurately weighed mass (0.2 g) of

powdered sample was prepared in a pellet using Hoe-

chst wax and analysed using an Rh X-ray source in a

helium atmosphere. The protein content of JBM dis-

solved in MQ water was determined using the Bi-

cinchoninic Acid Kit assay for proteins at absorbance

maximum 562 nm according to the manufacturer’s

instructions. The loss-on-ignition (LOI) method was

used to determine organic matter content. A portion of

accurately weighed JBM (*1 g) was placed in a

ceramic boat and heated to 450 �C for 4 h. The material

was allowed to cool in a desiccator and reweighed to

determine % organic matter.

Jack bean meal urease activity

The activity (lmol of urea/min per mg of protein) of the

dissolved urease released from JBM was assayed. Qua-

druplicate solutions containing 200 mM urea at pH 7

(phosphate saline bioreagent buffer, Sigma-Aldrich) were

reacted with 5 g L-1 JBM at room temperature. At the set

time point of 5 min, the solutions were filtered (50 kDa;

Millipore) to remove the active urease and the liberated

NH4
? was analysed by cation chromatography (Dionex,

ICS-1100).

Blocking of porous material by urease-active JBM

Investigations into the blocking of porous media were

conducted at room temperature using a column (perspex;

69 9 37 mm i.d) containing borosilicate beads (100 lm;

Ballotini�). The column was fully packed (74.2 cm3)

with borosilicate beads and deionised water using a

tapping motion to dislodge air bubbles; the packing

porosity was determined gravimetrically to be 0.385.

Etched caps were used to aid fluid distribution within the

column and covered with a nylon mesh to contain the

beads and allow the solutions to flow freely. Two solu-

tions, JBM solution (0.5 g L-1) and cementing solution

Table 1 Experimental Jack bean meal and reported microbial ureolysis rates (kurea)

Sample OD600nm Urea (mM) Ca2? (mM) Temp (�C) kurea (d-1) Reference

NGW bacteria incubated in high nutrients

(1.0 g L-1 molasses)

0.03 250 50 20 0.04 (Tobler et al. 2011)

AGW with S. pasteurii 0.03 250 200 20 0.13 (Tobler et al. 2011)

AGW with S. pasteurii 0.07 250 200 20 2.29 (Tobler et al. 2011)

AGW with S. pasteurii 0.05 33–333 20 30 0.996 ± 0.016 (Dupraz et al. 2009)

NGW bacterial incubated in high nutrients

(molasses)

n/d 50 n/d *12 0.016 – 0.057 (Fujita et al. 2008)

AGW with S. pasteurii 0.07 6 0.63 10 0.09 (Ferris et al. 2004)

AGW with S. pasteurii 0.07 6 0.63 15 0.18 (Ferris et al. 2004)

AGW with S. pasteurii 0.07 6 0.63 20 0.91 (Ferris et al. 2004)

Jack bean meal (0.5 g L-1) – 200 400 10 0.27 This study

Jack bean meal (0.25 g L-1) – 200 400 10 0.15 This study

Jack bean meal (0.125 g L-1) – 200 400 10 0.05 This study

n/d no data, AGW artificial groundwater, NGW natural groundwater
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(400 mM urea; 400 mM Ca2?), were prepared in

deionised water. The two solutions were pumped at a

constant flow rate using a dual syringe pump

(30 ± 0.3 mL h-1; ISCO Model 260D) and mixed prior

to the column inlet using an araldite nozzle. After

mixing, the final concentration of solution pumped

through the column was 200 mM Ca2?, 200 mM urea

and 0.25 g L-1 JBM. The column was run for 65 h and

changes in the head gradient across the column were

measured over time. Changes in the permeability of the

porous media were calculated using the Darcy’s

equation.

Magnetic resonance imaging techniques

Magnetic resonance imaging (MRI) has recently been

used to determine changes in hydrodynamic dispersion in

porous media by biologically mediated precipitation

(Fridjonsson et al. 2011). MRI measurements were per-

formed on a horizontal–bore magnet (Bruker; AV 85)

with a magnetic field strength of 2 T and a birdcage

radiofrequency coil with a diameter of 60 mm. For

hydrogen nuclei (1H), the resonant frequency is

85.18 MHz. A standard 1D spin echo profiling pulse

sequence and 2D spin echo imaging pulse sequence

(Callaghan 1993) were used for the acquisitions. 1D

profiles were acquired over two scans along the length of

the sample in the z-(axial) direction with 128 pixels for a

field of view of 120 mm, giving a spatial resolution of

934 lm. The echo time (TE) was 4.34 ms and the rep-

etition time (TR) was 30 s. The 2D images were

acquired over four scans in the x–z plane with

256 9 128 pixels for a field of view of 120 mm in both

directions. The slice thickness used was 5 mm. The echo

time (TE) was 2.49 ms and the repetition time (TR) was

15 s. Spin–lattice (T1) relaxation losses were corrected

for through the sufficiently long repetition times. Spin–

spin (T2) relaxation losses were determined to be negli-

gible at less than 2 %.

To fully quantify the nuclear magnetic resonance

imaging (NMRI) signal intensity, a calibration phantom

was constructed by mixing deionised water with heavy

water (D2O, Aldrich 99 %) such that the volumetric

water fraction was 0.3 (Stevenson et al. 2007). This was

then used to calculate a calibration factor so that the raw

magnetic resonance data could be expressed as a volu-

metric liquid fraction. Corresponding 1D profile and 2D

images, as described before, were acquired for the

phantom and hence corrected. Porosity profiles and

images, as described before, were obtained by dividing

the profiles and images by that of the suitably corrected

calibration phantom.

Precipitate characterisation

A sample of precipitate was recovered from the batch

flasks and analysed by X-ray powder diffraction (XRD;

Bruker D8 Advanced X-ray diffractometer; 10�–60�;

20 min; step 0.02 h; count time 0.48 s; Cu Ka radiation).

After 65 h, the column was sacrificed and the content

was separated into 14 similar length sections. A small

sample (Bmicro spatula) of column beads was mounted

onto stubs, gold-coated and imaged using an environ-

mental scanning electron microscope (ESEM) with

energy dispersive X-ray (EDX) under high vacuum mode

(FEI Philips FEG ESEM XL30; Detector 15 kV). The

remaining portions were digested with 2 M HCl and the

dissolved Ca2? was analysed by cation chromatography.

The measured calcium content (mg) was multiplied by

the ratio 2.5 (CaCO3 mw 100.09/Ca mw 40.08) to

determine the mass of CaCO3 (mg) in each segment of

the column (Table 2).

Results and discussion

Urease-active jack bean meal batch experiments

The changes in batch solution concentrations of Ca2? and

NH4
? for experiments using urease-active JBM

Table 2 The amount of calcite formed in porous flow column as

determined by calcium analysis after acid digestion

Column Segment Length

(mm)

CaCO3

(mg)

% of total

CaCO3

Inlet filter 0 18.7 2.6

Inlet 0 –5.1 417.8 57.3

1 5.1–9.1 153.0 21.0

2 9.1–13.6 77.2 10.6

3 13.6–18.3 19.6 2.7

4 18.3–23.6 11.5 1.6

5 23.6–28.9 4.5 0.6

6 28.9–32.8 4.1 0.6

7 32.8–37.7 4.0 0.5

8 37.7–41.1 2.4 0.3

9 41.1–46.5 3.6 0.5

10 46.5–50.6 2.5 0.3

11 50.6–57.0 3.4 0.5

12 57.0–63.0 2.4 0.3

Outlet 63.0–69.0 2.8 0.4

Outlet

filter

69.0 1.7 0.2
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concentrations of 0, 0.125, 0.25 and 0.5 g L-1 are shown

in Fig. 1. At 0 g L-1, there were no significant changes

in solution chemistry and no calcite was formed (Fig. 1a).

In the flasks containing 0.125 g L-1 and 0.25 g L-1 JBM,

the Ca2? concentration in solution decreased from

200 mM to 106.67 mM and \7 mM after 335 h, respec-

tively (Fig. 1b, c). In the 0.5 g L-1 JBM flask, the

decrease in Ca2? was more rapid, to \5 mM after 192 h

(Fig. 1d).

Since some background NH4
? was present at the start of

the experiments, Eq. 5 was modified as follows:

½NHþ4 �t ¼ ½NHþ4 �0 þ 2½urea�0ð1� e�kurea tÞ ð6Þ

where [NH4
?]0 is the initial concentration of ammonium.

Eq. 6 was then fitted to the experimental NH4
? data giving

values for kurea of 0.05, 0.15 and 0.27 day-1, for the 0.125,

0.25 and 0.5 g L-1 JBM experiments, respectively (Fig. 1

b–d). Assuming that all the carbonate produced by

ureolysis immediately precipitates to calcium carbonate,

reactions 1–4 can be summarised using the following

single reaction:

NH2CONH2þ 2H2OþCaCI2 !urease
2NHþ4 þCaCO3ðs)þ 2CI� ð7Þ

Since, from Eq. 7, for every 2 M of ammonium produced

1 M of calcium ions should be removed, from Eq. 5, an

expression for the amount of calcium remaining in solution

can be derived, as follows:

½Ca2þ�t = [Ca2þ�0 � ½urea]0ð1� e�kurea tÞ ð8Þ

This equation was fitted to the experimental data as

shown in Fig. 1 b, d. Model fits were good (3–6 %

normalised root-mean-square deviation) and the overall

mass balances were within \10 %. If kurea values are

optimised against the ammonium data alone using Eq. 6

and then these are used to predict the calcium

concentrations using Eq. 8, the resulting model fit to the

observed calcium data is only slightly reduced with

normalised root-mean-square deviations of 4–7 %. This

confirms that the single reaction model may be adequate in

such cases for simulating carbonate precipitation, as

previously suggested by (Van Paassen 2009; Cuthbert

et al. 2012).

The pH data obtained confirmed the process of ure-

olysis (Fig. 2a) (Stocks-Fischer et al. 1999; Achal and

Pan 2011). Initially at 0.5 h, the pH was above 8.5 for

all of the JBM concentrations (0.125, 0.25 and 0.5 g

L-1). This can be explained as ureolysis leads to an

Fig. 1 Time series showing changes in solution Ca2? (square) and

NH4
? (diamond) for urease-active JBM concentrations of 0 (a), 0.125

(b), 0.25 (c) and 0.5 g L-1 (d). Model fits (dashed line) are shown on

graphs a–c. Error bars are ±1 standard deviation (n = 3), where not

shown these were within the dimension of the symbols
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increase in pH and a shift in the bicarbonate equilibrium

(Eq. 3). The pH decreased as carbonates precipitated

with calcium to form calcite (Eq. 4). As shown in the

data for 0.5 g L-1, once the calcium is depleted to

\5 mM after 168 h the carbonate concentration in

solution increases and the pH rises.

The rate of ureolysis (kurea) can be compared between

reported literature rates of ureolytic microorganisms (i.e.

Sporosarcina pasteurii), nutrient-fed indigenous bacteria

and JBM (Table 1). For example, by linear interpolation

(Fig. 2b), a JBM concentration of 0.24 g L-1 is required to

obtain a kurea equivalent to 0.13 day-1 reported by Tobler

et al. (2011) derived using S. pasteurii (0.03 OD;

*7.2 9 105 cells mL-1) and only 0.07 g L-1 is required

to obtain a kurea equivalent to 0.04 day-1 derived using

indigenous groundwater bacteria (0.03 OD) sampled from

Birmingham, UK.

Jack bean meal characterisation

The JBM was characterised so that if applied to the envi-

ronment for engineering CPT the groundwater quality can

be maintained. The elemental composition of JBM showed

that it contained various non-carbon elements (4.12 % K,

0.83 % P, 0.51 % S, 0.49 % Ca), chloride ([0.12 %) and

trace metals (Mg, Fe, Si, Zn and Cu). The JBM also con-

tained a high organic matter content of *95 % (this

organic content may range from complex cellulose, to

proteins and simple sugars) and a protein content of

8.44 ± 0.2 %. The urease activity for JBM was calculated

Fig. 2 Showing a the pH data for the 0.125 (triangle), 0.25

(diamond) and 0.5 g L-1 (square) urease-active JBM batch experi-

ments. Also showing b the linear relationship between kurea and

urease concentration (g L-1). Error bars are ±1 standard deviation

(n = 3), where not shown these were within the dimension of the

symbols

Fig. 3 Column dimensions and

orientation a for JBM blocking

experiments and 1D magnetic

resonance profiles b depicting

the porosity along the column at

time zero (straight line) and

after 65 h (dashed lines)
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as only 3.13 ± 0.16 lM units. This value is much lower

than purified JBM urease at 2,700–3,500 units; however, as

jack beans only contain 0.07–0.14 % urease/dry mass

(Krajewska 2009a), this lower value obtained is within the

expected range.

Blocking of porous media by calcite

1D and 2D MRI images were acquired to determine the

formation of calcium calcite precipitate in situ. The aver-

age initial porosity along the length of the column was

determined to be 0.323 ± 5.76 9 10-3 where the error is

one standard deviation calculated from the signal area of

the D2O/H2O phantom (Fig. 3b). The 2D x–z porosity

images were acquired from the centre of the column with a

resolution of 467 9 934 lm (Fig. 4). This shows that the

precipitate blocked the initial 10 mm of the column,

reducing the local porosity in the inlet to

0.25 ± 5.76 9 10-3. In addition, after 64 h of treatment

with cementing fluids (Ca2? and urea), the porosity across

the remaining length (69 mm) of the column was

0.313 ± 5.76 9 10-3 and is approximately the same as the

initial average porosity values. The pore space was deter-

mined gravimetrically to have decreased by 2.08 %, which

is in reasonable agreement with the nuclear MRI mea-

surements which yield a 3.16 % reduction. However,

despite this relatively modest reduction in overall porosity,

Fig. 4 2D MRI depicting the porosity changes due to the formation

of calcite precipitate along the central x–z plane of the column,

showing (a) at time zero and (b) after 65 h

Fig. 5 SEM images showing

calcite formed in the porous

flow column. Showing

a indented calcite from bead

cementing (arrowed) b and

c calcite formed on glass beads

(circled) and d individual

calcite crystal
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permeability was seen to reduce significantly from 9.99 to

0.175 Darcy.

Precipitate characterisation and column distribution

X-ray powder diffraction (XRD) patterns were obtained

for precipitate from the batch experiments. The XRD

pattern matched calcite (JCPDS database; Pattern number

01-071-3699). As reported by MRI data, examination of

calcite distribution by digestion (Table 2) also confirmed

that the majority of the calcite (666.7 mg; 91.5 %) was

located within the first 0–14 mm of the column and only

42.9 mg (8.5 %) of the calcite was in the remaining

column length (14–69.0 mm). The blocking of the first

14 mm of the column confirmed that calcite was nucle-

ated at this initial location. This initial nucleated calcite

probably acted as a site of additional crystal growth

(Mitchell and Ferris 2006) and as a site for urease

sorption and spatially focused hydrolysis. Urease sorption

to minerals such as clays and calcium phosphates is well

known, and this can be manipulated by changing the

solution chemistry (Gianfreda et al. 1992; Marzadori

et al. 1998). Blocking of the inlet was also observed by

Tobler et al. (2012) when using parallel continuous

injections of s. Pasteurii and cementing fluid. When a

staged injection method was used (repeated injections of

s. Pasteurii, followed by cementing fluid), a more

homogenous distribution of calcite precipitation was

observed within the column and a greater porosity

reduction (Tobler et al. 2012). The SEM images from a

flow column (Fig. 5a) show a glass bead and calcite

precipitation as confirmed by EDX analysis, the crater

indentations (arrowed) show calcite compaction formed

around borosilicate beads. Calcite formation was also

observed on the surfaces of borosilicate beads (Fig. 5 b,

c) and as individual calcite crystals (Fig. 5d).

Conclusion

The calculated kurea of urease JBM enables a direct

comparison with microbial calcite precipitation rates

reported in the literature and the modelling of JBM

demonstrates that a single reaction works well for the

conditions studied, thus reducing the need for complex

saturation dependent or nucleation models. MR imaging

was successfully applied to image the blocking of porous

material using JBM with a spatial resolution of

*0.5 9 1.0 mm. This offers an attractive non-invasive

technique to quantify the spatial distribution of calcite

precipitation in a range of porous media. The possibility

of using NMR logging tools to quantify calcite precipi-

tation in real geological formations will be explored in

future. Research presented here shows that at reasonable

flow rates of 30 mL h-1 the majority of the calcite

precipitation (91.5 %) occurred at the initial column

section 0–14 mm. This was most likely due to the initial

nucleated calcite acting as a site of additional crystal

growth and as a site for urease sorption and spatially

focused hydrolysis. Blocking the initial section of a

fracture or porous media would be undesirable for some

engineering applications such as sealing porosity or rock

fractures; however, it might be appropriate for the

durability of concrete structures and soil improvement. A

more homogenous distribution of calcite blocking may

be obtained by adjusting the solution chemistry or by

used staged injections. These results have important

implications for future engineering designs and with

controlled absorption, this urease-active JBM, depending

on the application, could be a good alternative to the

more well known bacterial approaches.
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