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Abstract In this study, the imprinted aniline–formalde-

hyde was used as an adsorbent for removal of Iridium and

Palladium ions from aqueous solutions through batch

equilibrium. The sorbent was characterized by fourier

transform infrared spectroscopy. The influence of pH,

equilibrium time, temperature and initial concentration of

metal ions on adsorbed amount of both ions were investi-

gated. The maximum adsorption capacity in initial con-

centration of 100 mg/L was found to be 12.5 mg/g at pH

7.0 and 14.3 mg/g at pH 8.0 for Iridium and Palladium,

respectively. In addition, the best desorption of the metal

ions from resin was obtained by 0.5 mol/L nitric acid as

eluting agent. The profile of both ions uptake on this sor-

bent reflects good accessibility of the chelating sites in the

imprinted aniline–formaldehyde. Langmuir, Freundlich,

Temkin and Redlich–Peterson isotherm models were

applied to analyze the experimental data. Moreover,

Langmuir linear method was used to obtain the isotherm

parameters. However, Langmuir type II achieved the

highest coefficient which led to the best fit for the palla-

dium and the best fit for Iridium obtained from linear

Redlich–Peterson. However, the thermodynamic parame-

ters (DG�, DH�, and DS�) were also determined using the

equilibrium constant values obtained at different tempera-

tures. The results showed that the adsorption for Iridium

and Palladium ions was spontaneous nature and endother-

mic. Moreover, the method was applied for the determi-

nation of both ions from tap water samples.

Keywords Adsorption isotherms � Error analysis �
Kinetic studies

Introduction

Palladium is a rare and lustrous silvery white metal and

was discovered in 1803 by William Hyde Wollaston. Pal-

ladium, platinum, rhodium, ruthenium, Iridium and

osmium form a group of elements referred to as the plati-

num group metals (PGMs). They have similar chemical

properties, but palladium has less melting point and dense.

Moreover, the unique properties of palladium and other

platinum group metals account for their widespread usage.

A quarter of all goods manufactured today either contains

PGMs or have a significant part in their manufacturing

process played by PGMs (Lide and Frederikse 1995).

Moreover, Palladium is found in many electronics such as

computers, mobile phones, multi-layer ceramic capacitors,

component plating and low voltage electrical contacts.

Palladium is also used in dentistry, medicine, hydrogen

purification, chemical applications and groundwater treat-

ment. It plays a key role in the technology used for fuel

cells, which combine hydrogen and oxygen to produce

electricity, heat and water (Anand 1997; Eagleson 1988;

Kenneth Brady 2011).

Iridium is a very hard, brittle and silvery white transition

metal of the Platinum family, whereas Iridium is the sec-

ond densest element and one of the most corrosion-
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resistant metal even at the temperatures as high as

2,000 �C. The most important Iridium compounds are the

salts and acids which are formed by chlorine, though

Iridium also forms a number of organometallic compounds

used in industrial catalysis and in research. Iridium metal is

employed when high corrosion resistance at high temper-

atures is needed (Lide and Frederikse 1995; Anand 1997;

Eagleson 1988).

The literature review of the previous studies of the

research shows the determination of Ir, and Pd are the most

developed among PGE determination techniques. A num-

ber of highly sensitive and powerful techniques are avail-

able such as inductively coupled plasma mass spectrometry

(ICP-MS), isotope dilution mass spectrometry (IDMS),

stripping voltammetry (SV), neutron activation analysis

(NAA), electrothermal (graphite furnace) atomic absorp-

tion spectrometry (ETAAS) and inductively coupled

plasma atomic emission spectrometry (ICP-AES) (Amut

et al. 2010). The last two methods can only be applied to

environmental samples in combination with pre-concen-

tration. Together with ICP-MS and NAA, SV is the most

sensitive technique for measuring PGE. The determination

of Pd is known to be highly sophisticated. The determi-

nation of Pd by ICP-MS is strongly hampered by numerous

interferences, making an accurate analysis without tedious

manipulations such as matrix separation or/and mathe-

matical correction procedures impossible (Zereini and Alt

1999; Krachler et al. 1998).

In fact, XRF techniques are commonly used for noble

metal determinations in industrial applications (Beary and

Paulsen1995). Ion-imprinted polymers are prepared by the

copolymerization of functional and cross-linking mono-

mers in presence of toxic target inorganic species (the

imprint ion) which act as ionic templates. The functional

groups are held in position by the highly cross-linked

polymeric structure. Subsequent leaching of imprint ion

reveals binding sites that are complimentary in size and

shape to the imprint ion (Booking 2007). Ion imprinting

polymers (IIPs) have outstanding advantages such as pre-

determined selectivity in addition to being simple and

convenient to prepare. Hence, IIPs are currently being

explored for their catalytic applications, stationary phases

in chromatographic and flow-injection columns, membrane

separations and developing sensors (Prasada Rao et al.

2004). Although the bases of the ion imprinting polymer

technique were explained a few years ago, the technique is

still applied for heavy metal extraction (Bruno et al. 2006;

Ivanka et al. 2009; He et al. 2006; Liu et al. 2005; Li et al.

2007a, b). Molecular imprinting is a method that enables

the formation of tailor-made recognition materials by

copolymerizing suitable monomers in the presence of a

desired print molecule (Yilmaz et al. 2002; Kugimiya et al.

1998; Jin and Ho 2005; Su et al. 2008; Li et al. 2007a, b;

Pap and Horvai 2004; Lei and Tan 2002; Amut et al. 2010;

Kubo et al. 2004; Kandimalla 2004; Andersson 2000;

Asanuma et al. 2001; Cirillo et al. 2010; Matsui et al. 2004;

Shiigi et al. 2003; Caro et al. 2006; Zhang et al. 2009;

Pichon 2007). Recently, there are some reports on the

application of imprinted technique for separation and

enrichment of heavy metal ions (Birlik et al. 2007; Baghel

et al. 2007). Among present ion-imprinted technologies,

imprinting a matrix with binding sites situated at the sur-

face has many advantages including the following: the sites

are more accessible, mass transfer is faster and the binding

kinetics is faster (Yang et al. 2005). The sol–gel process

can be described as the creation of an oxide network by

progressive poly-condensation reactions of molecular pre-

cursors in a liquid medium. The surface ion-imprinted

technique in combination with sol–gel process can easily

synthesize a high cross-linking and better thermal stability

and chemical stability material; on the other hand, the

specific chemical functional groups inducted into the net-

work structure can improve selectivity and specificity to

template. Thus, this technology provides a new platform to

prepare high-performance ion-imprinted polymers (Li et al.

2007a, b; Elena et al. 2005).Our new imprinted polymer

and method have several advantages (I) simple operation

(II) less time for polymer synthesis (III) rapid phase sep-

aration (IV) high selectivity by the polymer memory effect

toward the metal ion interaction (V) lower cost (VI) the

capability to combine with different detection techniques.

Materials and methods

Aniline, formaldehyde, hydrochloric acid, sulfuric acid,

nitric acid, sodium hydroxide, acetic acid, sodium acetate,

sodium dihydrogen phosphate, disodiumhydrogen phos-

phate, acetone, ethanol and other materials are used in the

experiments which are the Merck’s products (Darmstadt,

Germany). Moreover, all the solutions were prepared in

deionized water using analytical grade reagents.

The stock solution (100 mg/L) of Ir(III) and Palladium

were prepared by dissolving appropriate amounts of Ir(Cl)3

in deionized water and Palladium bar with purity of

99.9 %; hydrochloric acid and nitric acid (Merckt Com-

pany) and deionized water were used for the preparation of

metal solution, and 0.1 M acetic acid–acetate buffer

(pH = 3–6.5) and 0.01 M phosphate buffer (pH = 6.5–9)

were used to adjust the pH of the solutions, wherever it was

suitable. Moreover, Iridium and Palladium concentrations

of the samples were measured by inductively coupled

plasma atomic emission spectroscopy (ICP-AES).

The pH measurements were made with a Metrohm

model 744 pH meter (Zofingen, Switzerland). Infrared

spectra were recorded on a Jasco Fourier transform infrared
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spectrometer (FT-IR-410, Jasco Inc., Easton, Maryland) by

the potassium bromide pellet method.

Synthesis of aniline-formaldehyde polymer

Synthesis of AFC

Commercial grade aniline (C6H5NH2) for synthesizing

polymers was purified by distilling over KOH pellets at

180 �C. Moreover, boiling point AFC (Aniline Formalde-

hyde Condensate) was synthesized by reacting formalde-

hyde (37 %) with aniline as described in the literature

(Albino Kumar et al. 2007).

Besides, Ir(Cl)3 and Pd (elementary palladium metal)

were used as the source of Iridium and Palladium. In a

100-mL reaction vessel, 5 mL of 37 % formaldehyde was

added to a mixture of 9.3 g of aniline and 3 mL of 37 %

HCl. Condensation was carried at 100 �C for 2 h. Then, the

temperature was decreased to 60 �C and the mixture was

neutralized with 4 mL of 30 % NaOH, resulting in an

insoluble liquid resin. After that, the resin was washed with

warm water three times and separated from the aqueous

layer. The resin was kept at 80 �C under a reduced pressure

of 10 k Pa for 1 h to remove any unreacted aniline and/or

formaldehyde.

MIP preparation

The chemical polymerization of aniline was performed as

described in the literature (Kagaya et al. 2006; Karatepe

et al. 2002; Sombra et al. 2001). However, in this work,

Ammonium peroxide sulfate was used as the oxidizing

agent. In a 150-mL reaction vessel, AFC was dissolved in

optimum amount of 1 M HCl aqueous solution with vari-

ous ratios. Then, 100 ppm of Ir(III) as a 20 mL liquid

solution was added drop wise to the solution as a template;

the same procedure was used for palladium. Then, 0.5 mL

Fig. 1 FT-IR spectrum of IIP,

IIP loaded Iridium and IIP

loaded Palladium
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of aniline was added to the solution as a cross-linker with

vigorous stirring. After polymerization for 1 h at 25 �C, a

dark polymer powder was obtained. The MIP was kept in

the water bath at 0 �C for 2 h. The powder was washed

with 0.5 M HNO3 to obtain MIP. The non-imprinted

polymer (NIP) was prepared as the same protocol in the

absence of the template ion.

The FT-IR spectra of IIP, Iridium and Palladium

adsorbed onto IIP are shown in Fig. 1. As can be seen from

Fig. 1, in all spectra, the adsorption band around

3,410 cm-1 reveals the stretching vibration of N–H group

bonded with O–H group; 1,460 and 1,630 reveals stretch-

ing vibration of the (C = C) aromatic; 2,920 and 2,850

(C–H); and 1,041 (C–N).
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Polymer through the amine groups was connected to the

ion. The bands observed in the ion-imprinted aniline–form-

aldehyde at 3,410 and 1,630 cm-1 can be assigned to (NH2)

and aromatic ring shift to down for ion-imprinted aniline–

formaldehyde loaded both ions and confirm the formation of

ion-imprinted aniline–formaldehyde-Ir(III) complexes and

also aniline–formaldehyde–Palladium complexes.

Results and discussion

Effect of initial pH on metal sorption

As the formation of metal ion complex and maximal effi-

ciency for a given separation can be established by opti-

mization of the pH, the parameter of pH is one of the most

important factor affecting the adsorption of metal ions

(Chen and Wang 2007). The effect of pH on the adsorption

of Iridium and Palladium was studied individually by

various pH values at the 0.3 lg mL-1 metal concentration.

Their pH values were adjusted in range 4–9 with 0.01 M

acetate or phosphate buffer solutions. Moreover, 0.1 g of

resin was added to each solution and the mixture was

shaken for 5 h. The results demonstrated in Fig. 2 which

show the maximum adsorption capacity occurred at pH 7.0

for Iridium with maximum recovery 72 % and at pH 8.0 for

Palladium with maximum recovery of 56 %. The degree of

metal desorption with different eluting agents after Iridium

and Palladium adsorption at optimum pH value was

determined in batch experiments. Nitric acid at 0.5 M

provided the best recovery for Ir with 88 % and for Pd with

75 % efficiencies.

Optimization of sorption time of Iridium and Palladium

Optimum sorption time of Iridium and Palladium ions

obtained with this procedure that ion-imprinted aniline–

formaldehyde (0.05 g) was shaken in parallel with two

solutions (25 mL) with concentrations 0.3 mg/L of Iridium

and Palladium ions for different times (10, 30, 45, 90, 180,

240 and 300 min) under optimum pH. After filtration of the

sorbent, the concentrations of Iridium and Palladium ions

in solution were determined with ICP-AES using the rec-

ommended batch method; however, less than 10 min

shaking was required to reach the 11 % and 5.1 % sorption

for Iridium and Palladium, respectively. The profile of

Iridium and Palladium uptake on this sorbent reflects good

accessibility of the chelating sites in the ion-imprinted

aniline-formaldehyde.

Total sorption capacity

The 0.05 g of ion-imprinted aniline–formaldehyde resin

beads were stirred for 4 h with 25 mL solution containing

with 10–100 mg/L of Iridium and Palladium at the opti-

mum pH and different temperatures of 20, 30 and 40 �C,

respectively. The concentrations of metal ions in the

supernatant liquid were estimated before and after the

sorption by ICP. The sorption capacities of the resin for

the ions were ascertained from the difference between the

metal ions’ concentrations in solution before and after the

sorption. Fig. 3 indicates the effect of initial concentration

of the Ir and Pd in the solution and the temperature during

capacity sorption of Iridium and Palladium by ion-

imprinted aniline–formaldehyde resin. The maximum

adsorption capacity in initial concentration of 100 mg/L

was found to be at 12.5 and 14.3 mg/g for Iridium and

Palladium at the optimum pH and 40 �C.

Adsorption isotherm modeling and error analysis

The analysis of the isotherm data by fitting them to different

isotherm models is an important step to find the suitable

model which can be used for designing the adsorption sys-

tems. In this study, equilibrium data were analyzed by using

the Langmuir (1916), Freundlich (1906), Redlich–Peterson

Table 1 Isotherms and their linear forms (with linear transformations of the Langmuir isotherm)

Isotherm Linear form Plot

Model Equation

Langmuir-1 qe ¼ qmKaCe

1þKeCe

Ce

qe
¼ 1

qm
Ce þ 1

qmKa

Ce

qe
vs:Ce

Langmuir-2 1
qe
¼ 1

qmKa

1
Ce
þ 1

qm

1
qe

vs: 1
Ce

Langmuir-3 qe ¼ qm � 1
Ka

qe

Ce
qevs: qe

Ce

Langmuir-4 qe

Ce
¼ qmKa � kaqe

qe

Ce
vs:qe

Freundlich qe¼KFC
1=n
e

log qeð Þ ¼ log KFð Þ þ 1=nlog Ceð Þ lnðqeÞvs: lnðCeÞ

Temkin qe ¼ RT
b

lnðACeÞ qe ¼ B ln Aþ b ln Ce qevs: ln Ce

Redlich–Peterson qe ¼ ACe

1þBC
g
e

lnðA Ce

qe
� 1Þ ¼ g lnðCeÞ þ lnðBÞ lnðA Ce

qe
� 1Þvs:lnðCeÞ
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(1959) and Temkin method (Ho and McKay 2000) which are

the four most common isotherms of linear modeling

(Table 1). However, the applied error functions which

describe the distribution of a metal ion between a solid and a

liquid phase and have been extensively used in the literature

to model the uptake of various adsorbents (Mohanty et al.

2005; Mor et al. 2007; Das et al. 2002; Chandra and Garg

1992; Ho 2004). The constants of isotherm models can be

evaluated from the intercepts and the slopes of their linear and

nonlinear plots after bills from errors as defined in Table 2.

For optimization, an error function for fitting of the isotherm

equation on experimental equilibrium data is required (Ho

Table 2 Isotherms’ parameters from best error function

Isotherm model Method Parameters Ir (20C) Ir (30C) Ir (40C) Pd (20C) Pd (30C) Pd (40C)

Langmuir-1 Linear R2 0.875 0.945 0.904 0.915 0.814 0.908

qm(mg/g) 13.92245 12.755 16.386 14.263 18.414 18.458

Ka(L/mg) 0.025 0.034 0.030 0.027 0.021 0.027

RL 0.802 0.749 0.768 0.787 0.830 0.787

Langmuir-2 Linear R2 0.936 0.788 0.892 0.966 0.974 0.984

qm(mg/g) 9.756 8.881 11.467 12.012 13.454 17.322

Ka(L/mg) 0.054 0.088 0.070 0.040 0.039 0.032

RL 0.651 0.531 0.589 0.716 0.721 0.760

Langmuir-3 Linear R2 0.689 0.618 0.677 0.780 0.674 0.890

qm(mg/g) 10.900 9.651 12.815 12.168 14.399 16.356

Ka(L/mg) 0.044 0.076 0.058 0.040 0.035 0.036

RL 0.6928 0.568 0.635 0.716 0.741 0.736

Langmuir-4 Linear R2 0.689 0.617 0.677 0.780 0.673 0.890

qm(mg/g) 12.901 11.394 15.091 13.807 17.489 18.072

Ka(L/mg) 0.031 0.048 0.039 0.030 0.024 0.029

RL 0.764 0.677 0.720 0.767 0.807 0.774

Langmuir Nonlinear R2 0.923 0.931 0.923 0.937 0.906 0.928

qm(mg/g) 15.831 13.265 17.485 14.855 25.175 18.864

Ka(L/mg) 0.0183 0.029 0.025 0.024 0.011 0.026

RL 0.845 0.775 0.800 0.806 0.901 0.794

Freundlich Linear R2 0.964 0.946 0.962 0.961 0.965 0.958

n 1.957 2.320 2.093 1.931 1.822 1.824

Kf[(mg/g)(L/mg)]1/n 0.981 1.385 1.427 1.024 1.024 1.187

Freundlich Nonlinear R2 0.958 0.976 0.959 0.963 0.947 0.956

n 1.795 2.109 1.944 1.908 1.564 1.871

Kf[(mg/g)(L/mg)]1/n 0.823 1.182 1.248 1.003 0.725 1.251

Temkin Linear R2 0.787 0.860 0.827 0.824 0.735 0.822

A(L/g) 1.0004 1.0004 1.0003 1.0004 1.0003 1.0003

B(J/mol) 1.907 1.972 2.429 2.033 2.315 2.622

Temkin Nonlinear R2 0.894 0.915 0.904 0.929 0.863 0.929

A(L/g) 0.286 0.415 0.354 0.296 0.248 0.297

B(J/mol) 2.878 2.582 3.375 3.030 3.727 3.918

Redlich–Peterson Linear R2 0.961 0.966 0.967 0.954 0.946 0.941

A(dm3/g) 7.331 8.879 10.138 9.729 9.389 7.856

B(dm3/mg)g 6.78536 5.890 6.474 8.966 8.862 6.046

g 0.509 0.586 0.541 0.492 0.454 0.467

Redlich–Peterson Nonlinear R2 0.957 0.975 0.959 0.963 0.946 0.956

A(dm3/g) 7.331 8.879 10.138 9.729 9.389 7.854

B(dm3/mg)g 8.366 7.001 7.638 9.169 12.333 5.710

g 0.454 0.539 0.496 0.486 0.368 0.483

Error function is the sum of square of the average squares of the errors (ERAV)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1 ðyexp � ycalÞ2

q
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et al. 2002; Rengaraj et al. 2007; Azam et al. 2010; Alihos-

seini et al.2010; Kailas et al. 2009). Moreover, ERRSQ,

HYBRID, MPSD, ARE, EABS and ERAV (Gimbert et al.

2008) error functions were examined, and in each case, the

isotherm coefficients were determined by minimization of

error function in linear and nonlinear forms and also from the

best error functions of isotherms parameters based on

Tables 2 and 3.

Analogs to the Langmuir isotherm are important for the

description of the binding sites for the drugs and enzyme

catalysis. Simple linear regression will result in different

parameter estimations (Kinniburgh 1986; Longhinotti et al.

1998). In addition, Langmuir types I, II, III and IV are used

as more popular linear forms. The palladium obtained from

Langmuir Type II (Table 2) is found as the best fit, because

the correlation coefficient (R2) from the result of fitted

equation has the best error distribution (Kinniburgh 1986).

In this isotherm, qmax is the maximum adsorption capacity

corresponding to complete monolayer coverage on the

surface (mg/g), and KL is the Langmuir constant (L/mg).

The essential characteristics of the Langmuir equation can

be expressed in terms of a dimensionless constant separa-

tion factor or equilibrium, RL, defined as (Kagaya et al.

2006; Ahalya et al. 2005):

RL ¼ 1= 1þ Ka � C0ð Þ ð1Þ

where Ka is the Langmuir constant and Co is the initial

concentration of the metal ions. The RL value indicates the

shape of the isotherm (Mckay et al. 1982) which between 0

and 1 indicate favorable absorption. From our study,

Table 2 shows the values of RL are in the range of 0–1 at

optimum pH which confirms the favorable uptake of the

palladium and Iridium.

Freundlich isotherm is an empirical equation employed

to the described heterogeneous systems without lateral

interactions, where KF and 1/n are the Freundlich

constants’ characteristics of the system, indicating the

maximum adsorption capacity and adsorption intensity,

respectively, which are related to the affinity or binding

strength (Davis et al. 2003).

Temkin isotherm model was chosen to evaluate the

adsorption potentials of the adsorbent. The Temkin equa-

tion suggests a linear decrease of sorption energy as the

degree of completion of the sorptional centers. In the linear

form of Temkin equation (Table 1), B = RT/b and b is the

Temkin constant related to heat of sorption (J/mol). More-

over, A, R and T are the Temkin isotherm constant (L/g), the

gas constant (8.314 J/mol K) and the absolute temperature

(K), respectively.

Redlich–Peterson isotherm contains three constants (A, B,

and g) and incorporates the features of the Langmuir and the

Freundlich isotherms (Redlich and Peterson 1959). However,

Iridium was obtained as the best fit in this work due to

Redlich–Peterson model (Table2). The experimental data on

the effect of an initial concentration of Iridium and Palladium

on the ion-imprinted aniline–formaldehyde of the test med-

ium were fitted to the isotherm models. Moreover, the

graphical representations of these models are presented in

Fig. 4, and all the constants are given in Table 2.

Adsorption thermodynamics

To study the nature of adsorption, the thermodynamic

parameters for adsorption process, such as standard Gibbs,

free energy change (D Go), the standard enthalpy change

(D Ho) and the entropy change’s standard (D So) were

calculated with the following equations:

DG ¼ �RTLnðKÞ ¼ DH � TDS ð2Þ

LnðKÞ ¼ �DG

RT
¼ DS

R
� DH

RT
ð3Þ

Table 3 Thermodynamic parameters for the adsorption of Iridium and Palladium onto ion-imprinted aniline-formaldehyde at different

temperatures

Thermodynamic parameters Quantity

C0 (mg/L) 10 20 40 60 80 100

DG� (KJ/mol) Iridium T = 20 �C -14.5 -13.6 -12.1 -12.0 -12.0 -11.4

T = 30 �C -15.9 -13.8 -13.1 -12.6 -12.3 -11.8

T = 40 �C -16.6 -14.9 -14.3 -13.2 -13.4 -12.9

DG� (KJ/mol) Palladium T = 20 �C -14.4 -14.0 -12.6 -12.4 -11.8 -11.7

T = 30 �C -15.2 -14.6 -13.3 -12.7 -12.6 -12.8

T = 40 �C -15.2 -14.6 -13.3 -12.7 -12.6 -12.8

DH� (KJ/mol) Iridium 15.8 5.8 19.8 6.2 8.3 9.9

DH� (KJ/mol) Palladium 6.9 10.7 20.0 2.6 10.2 12.7

DS� (J/mol K) Iridium 103.9 65.7 109.0 62.1 68.8 72.5

DS� (J/mol K) Palladium 72.7 84.0 110.3 50.9 75.3 83.5
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K ¼ XS

XL

ð4Þ

K ¼
MS

W
ML

MW

¼ qw

MS

W
ML

m

¼ qw � m
W

MS

ML

¼ qw � m
W

MS

m
ML

m

¼ qw � m
W

C0�Ce

Ce

¼ qw

qe

Ce

ð5Þ

where K is the equilibrium constant, XS is the mass

fraction of cation in solid phase, XL is the mass fraction of

cation in liquid phase, MS is the mass of cation in solid

phase, ML is the mass of cation in liquid phase, W is the

mass of adsorbent, m is the volume of water in solution,

qW is the density of water, C0 is the initial concentration

of cation and Ce is the equilibrium concentration of cat-

ion. Additionally, the enthalpy change and entropy change

values are calculated from the slope and intercept of the

plot of ln (K) versus (1/T) (Fig. 5).

The thermodynamic parameters (DG�, DH� and DS�) of

plots were used to compute the values (Table 3). More-

over, the experiments were carried out at 20, 30 and 40 �C.

Due to the positive value of DH�, the adsorption process of
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Fig. 4 Isotherms for the adsorption of Iridium and Palladium onto resin at various temperatures
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Iridium and Palladium on ion-imprinted aniline–formal-

dehyde is endothermic. The Gibb’s free energy value for

all the systems is negative, and decrease in the value of

DG� with increase in temperature shows the reaction

occurs spontaneously, and it would be easier to occur at

high temperature. It was reported that DGo values up to

-20 kJ/mol are consistent with electrostatic interaction

between sorption sites and the metal ion (physical

adsorption), while DG� values more negative than -40 kJ/

mol involve charge sharing or transfer from the solid-phase

surface to the metal ion to form a coordinate bond

(chemical adsorption) (Horsfall et al. 2004). The DG�
values were obtained in this study for the Ir3? and Pd2?

ions are less than -17 kJ/mol which indicates physical

adsorption was the predominant mechanism in the sorption

process (Abdel Ghani and Elchaghaby 2007). The positive

value of DS� suggests random growth at the solid/solution

interface occurs in the internal structure of the adsorption

of Iridium and Palladium onto ion-imprinted aniline–

formaldehyde.

Effect of ion-imprinted and non-ion-imprinted

on sorption of Iridium and Palladium

The sorption comparison of Iridium and Palladium on ion-

imprinted aniline–formaldehyde and non-ion-imprinted

aniline–formaldehyde was investigated (with each ion’s

concentration of 10 mg/L). The extraction percentage

(E %) and the distribution ratio (D) was calculated from

the following equations:

Q ¼ C0 � Ceð ÞV=W ð6Þ
E ¼ C0 � Ceð Þ =C0 ð7Þ
D ¼ Q =Ce ð8Þ

where Q represents the adsorption capacity (mg/g), C0 and

Ce represent the initial and equilibrium concentration of

both ions (lg/mL), W is the mass sorbent (g), V is the

volume of metal ion solution (L), E % is the extraction

percentage and D is the distribution ratio (mL/g). The

results in Table 4 show that the percentages of Iridium and

Palladium sorption by ion-imprinted aniline-formaldehyde

are 32.5 and 30.3 % higher than the non-ion-imprinted

aniline–formaldehyde.

Analysis of real samples

Ion-imprinted aniline-formaldehyde resin was used to pre-

concentrate and determine Iridium and Palladium ions in

tap water (Tehran). The pH of water sample was adjusted

to optimize. Moreover, solid-phase extraction with ion-

imprinted aniline-formaldehyde coupled with ICP-AES

was applied for the determination of the Iridium and Pal-

ladium in water samples. None of the both ions were

detected in the water samples (Table 5).
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Fig. 5 Plot of ln K versus 1/T for the adsorption of Iridium and

Palladium onto resin

Table 4 Ion effects imprinted

on sorption
Method Amount of

adsorbed

Iridium

(mg/L)

Amount of

adsorbed

Palladium

(mg/L)

Extraction

percentage

Iridium

Extraction

percentage

Palladium

Distribution

ratio Iridium

Distribution

ratio

Palladium

Ion

imprinted

3.72 3.93 37.2 39.3 0.19 0.20

Non-ion

imprinted

2.51 2.74 25.1 27.4 0.13 0.14
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Conclusion

A new ion-imprinted chelating sorbent is prepared by

polymerizing the aniline–formaldehyde. The synthesis of

the resin is simple and economical, and the resin has a good

potential for tracing Iridium and Palladium from large

volumes of samples. It also presents the advantage of high

adsorption capacity, good reusability and high chemical

stability. In addition, the sorption of the both ions from

aqueous solutions was applied and shown in batch tech-

niques. The different isotherms such as Freundlich, Lang-

muir, Temkin and Redlich–Peterson were examined to

correlate with the experimental results by comparing the-

oretical plots of each isotherm with the experimental data

for the adsorption of iridium and palladium ions on resin at

293�K. However,due to all results of these methods, the

Langmuir Type II was found as the most fitted analytical

data for palladium, whereas Redlich-Peterson was fitted for

Iridium with maximum coefficient. Finally, with regard to

the results of this study, it was concluded that pre-con-

centration by this sorbent combined with ICP-AES can be

applied to trace Iridium and Palladium in water with sat-

isfactory results.
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