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Abstract This paper revises the response of freshwater

ostracods to different environmental conditions and

anthropogenic impacts, with a worldwide overview of the

potential use of these microcrustaceans as bioindicators

and several examples of applications in different scenarios.

The development of either a single species or an ostracod

assemblage is influenced by physical–chemical properties

of waters (salinity, temperature, pH, dissolved oxygen),

hydraulic conditions, bottom grain sizes or sedimentation

rates. In addition to population and community changes,

morphological and geochemical changes can also be

detected in the ostracod carapace, which serves as a tracer

of the water quality. All these features permit to delimit the

spatial effects of urban sewages, mining effluents, agri-

cultural wastes, watershed deforestation or road building.

These data are the basis for the palaeoenvironmental

reconstruction of cores, with an interesting application to

archaeology. In addition, favourable results of recently

developed bioassays, coupled with an important variability

of local assemblages under changing conditions in both

waters and sediments, suggest that these microcrustaceans

may included between the most promising sentinels groups

in freshwater areas. These microcrustaceans show high

sensitivity to pesticides, herbicides, heavy metal pollution

and oil inputs.

Keywords Anthropogenic impact � Biotechnology �
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Introduction

Numerous papers have analyzed the importance of fresh-

water ecosystems as an essential part of human cultures.

Although they occupy only about 1 % of the Earth’s sur-

face, both lotic and lentic environments are central to the

society. Nevertheless, they are being subjected to unprec-

edented levels of human disturbance with variable inci-

dence on waters, sediments and biota (Saunders et al.

2002).

Different groups of organisms have been proposed as

bioindicators and/or biomonitors (see Rinderhagen et al.

2000 for distinction) to test these changes. Among the

macrofaunal organisms, fishes (Lu et al. 2009), mussels
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(Angelo et al. 2007), gastropods (Piyatiratitivorakul and

Boonchamoi 2008) or plants (Akguc et al. 2010) are usu-

ally used for this purpose. In addition, several meiofaunal

groups are also included as sentinels of human-induced

changes in these freshwater environments, such as diatoms

(Rimet and Bouchez 2011) or nematodes (Zhu et al. 2001).

In this last category, different studies have demonstrated

the importance of some microcrustaceans (e.g. ostracods)

as keystone species on production and community metab-

olism of micro- or mesocosm freshwater beds, playing an

interesting role in determining the structure of these sys-

tems (Lawrence et al. 2002). In these microenvironments,

ostracods compete with oligochaetes and amphipods for

food sources (Modig et al. 2000) and all these groups are

predated by fishes or gastropods.

This review attempts to analyse the potential of ostracods

as environmental tracers in recent freshwater ecosystems. As

ostracods occur in every aquatic environment, they can be

applied as bioindicators when other groups cannot be used

(e.g., groundwaters, stagnant and temporary waters). Results

can be applied to both evaluations of biotic changes pro-

duced by anthropogenic activities or palaeoecological/

archaeological interpretations using sediment cores.

Freshwater ostracods and environmental parameters

Correlation between different environmental variables and

ostracod species has been demonstrated in numerous field

investigations. A brief review is given below.

Water and ostracods

Salinity

Salinity is considered a major factor regulating aquatic

community structure in freshwater environments, espe-

cially in hydrologically closed lakes and wetlands,

although there are no simple relationships between ostra-

cod faunas and this variable. Some euryhaline species are

found in limnic waters but they can inhabit even hypersa-

line environments, whereas others (Ilyocypris bradyii,

Candona candida, Fabaeformiscandona levanderi, F.

protzi, Herpetocypris reptans) are limited to salinities

down to 6 % (see Fig. 1).

Temperature

Seasonal or depth-water differences of temperature may

explain important changes on both ostracod density and

diversity. Low temperatures seem to favour the develop-

ment of some species, e.g., Candona neglecta or Darwin-

ula stevensoni (Martens and Tudorancea 1991;

Külköylüoglu and Yilmaz 2006), while other species (Is-

ocypris beauchampi, Cyprideis torosa, Cyclocypris ovum)

increase their abundances with higher temperatures (Ri-

eradevall and Roca 1995). A third group (e.g., Cytherissa

lacustris, Heterocypris incongruens) presents a relatively

broad tolerance to temperature changes (Danielopol et al.

1990; Külköylüoglu 2004).

Oxygen-dissolved concentrations

Some species (e.g., Darwinula stevensoni) are very sensi-

tive to oxygen depletion, whereas others that live in shal-

low muddy ponds may tolerate low oxygen concentrations

for short time periods (e.g. Candona candida, Paracypri-

deis fennica, Cypria opthalmica or Heterocypris incon-

gruens) and a third group (e.g., Heterocypris sorbyana,

Candona neglecta) is tolerant to hypoxic conditions (e.g.,

Dole-Olivier et al. 2000; Meisch 2000; Altinsacli and

Griffiths 2001).

Temporal anoxic conditions cause usually marked falls

in ostracod assemblage diversity levels (Rieradevall and

Roca 1995). The time delay in responding to these low

oxygen levels has been estimated at less than 1 month

(Martin-Rubio et al. 2005).

pH

Most freshwater ostracods prefer alkaline or slightly acidic

waters, although some species can tolerate a wide range of

pH from 4.6 to 13 (Fig. 1) and others were found even in

highly acidic waters (e.g. Fryer 1993). In general, ostracod

species are absent at a pH \5, because calcium uptake for

carapace calcification is difficult in acid waters (Griffiths

and Holmes 2000; Boomer et al. 2006).

Nutrient levels

Some ostracod species are very sensitive to high concen-

trations of several pollutants. Phosphates cause high dis-

turbances in some species of Herpetocypris, whereas the

amount of nitrates affect remarkably to Candona neglecta

(Milhau et al. 1997). Some species (e.g. Ilyocypris inermis)

are absent in disturbed sites with high nutrient levels (Pieri

et al. 2012).

Depth water

Although it is very difficult to obtain a statistical correla-

tion between depth and either ostracod diversity or the

abundance of individual species, some general patterns

have been established in stable freshwater environments

(e.g., Fig. 2). Some species (Limnocythere inopinata,

Darwinula stevensoni, Ilyocypris echinata) are typical of
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the benthos of shallow areas, whereas Candona angulata,

C. candida, Cryptocandona reducta, Cypria ophthalmica,

Cyclocypris ovum, Cytherissa lacustris, Potamocypris

smaragdina or Limnocythere sancti-patricii can be also

present in the deeper benthos ([40 m deep) (Griffiths et al.

2002; Li et al. 2010).

Depth water is clearly linked to climatic changes in

some areas. In temporal lakes, swimming species are

dominant during wet, deep-water periods, whereas bur-

rowing species characterize the dry, shallow-water periods

and scarce individuals are found if lakes dry out completely

(Curry 2003).

Hydraulic conditions

Ostracods avoid generally high water velocities by moving

inside sediments or vegetation, although they may be

abundant in interstitial habitats of rapidly flowing streams

(Creuzé des Chatelliers and Marmonier 1993). Moreover,

some species present significant positive correlation with

water turbidity (Yilmaz and Külköylüoglu 2006).

In addition, the thanatocoenosis distribution may be

indicative of the seasonal hydrodynamic conditions.

Isolated valves of freshwater species (e.g. Cytherissa la-

custris, Lineocypris sp.) are transported even 2 km sea-

ward during high flows, whereas only marine species

were found during low flows in the same area (Ruiz et al.

1998).

Species traits and habitat utilization

Long life spans, late maturity, low fecundity and low

migratory ability, medium size and geometric carapace

shape are species traits of ostracods living in interstitial and

hypogean habitats. In permanent flowing and standing

surface waters, the abundant epigean species have long life

spans, various body forms, large size and some of them

give parental care. On the contrary, in temporary ponds and

stagnant waters, most of the species have short life spans,

high migratory ability, high tolerance desiccation and are

spherical or cylindrical shape in temporary ponds and

stagnant waters (Marmonier et al. 1994).

The outline of ostracods carapace can provide valuable

information on the stability/instability of the environment.

Species of Candoninae have triangular, trapezoidal or

elongate valves with accurate posterior margin in stable

Fig. 1 Life physico-chemical conditions of twenty selected freshwater species ([100 papers revised from 1969 to 2011)
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environments, whereas Cypria species with a sub-circular

outline characterizes unstable environments (Pipik and

Bodergat 2005).

Sediments and ostracods

Grain size

The influence of this factor is variable on the ostracod

assemblages. In some lakes, the ostracod survival rates

decreased with decreasing particle size (Donahue and

Irvine 2003), whereas the effect of grain size distribution is

likely to be insignificant on ostracod populations of some

freshwater ponds and river biofacies (Ikeya and Hanai

1982). Some species (e.g., Limnocythere inopinata, L.

sanctipatricii, Leucocythere mirabilis, Ilyocypris bradyii)

usually occurs in fine-grained sediments (Lambert 1997),

in contrast with the high abundances of these microcrus-

taceans found in coarse facies of some karstic lakes and

alpine streams (e.g. Suren 1992). In addition, both this

parameter and salinity changes may have a remarkable

effect on the ornamentation pattern of selected species in

other areas (Fig. 3: Cyprideis torosa).

Sedimentation rates

In some lakes subjected to a increasing deforestation

around them, these crustaceans are very sensitive to high

sedimentation ratios derived from the rapid erosion, with

reduction in species richness up to 40 % in the shallowest

areas. In these lakes, ostracods are more affected than

diatoms by sedimentation (Cohen et al. 1993). This

decrease has been also observed on estuarine environ-

ments, coinciding with increased sedimentation rates as a

result of land modifications (Hayward et al. 2004).

The ostracod carapace as environmental tracer

Ornamentation

Surface external ornamentation has been also applied in

environmental studies. Cytherissa lacustris, Limnocythere

inopinata or Cyprideis torosa show smooth, punctuated,

reticulated or noded carapaces (Fig. 4) depending on

salinity range (Vesper 1975; Zhai et al. 2010) and have

rounded pores in freshwater environments, whereas irreg-

ular pores are present mainly in oligohaline to hypersaline

waters. Rosenfeld and Vesper (1977) proposed a graphic

diagram to calculate palaeosalinities based on percentages

of round, elongate and irregular sieve pores of this species,

which have been used in the palaeoenvironmental recon-

struction of sediment cores (Gliozzi and Mazzini 1998).

Nevertheless, Keyser (2005) thinks the noding problem in

C. torosa is mainly an osmotic control one, because the

noded specimens are found in low salinity waters but also

in low calcium content. According to this author, ecophe-

notypism in ostracod species is probably the result of a

multifactorial system.

Influence of temperature cannot be omitted. The most

reticulated carapaces are also the richest in Mg (Fig. 3;

Carbonel and Tölderer-Farmer 1988).

Fig. 2 Distribution of the main groups of species of ostracods related to water depth and sediment type in Lake Huinaymarca, Bolivia (modified

from Mourguiart et al. 1986)
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Geochemistry

Trace elements and stable isotope geochemistry of fossil

carapaces can provide very useful palaeoenvironmental

informations (e.g. Jin et al. 2011). In a freshwater species,

the phosphorus content (in % or ppm) of the carapace may

be similar in the same environment and can change

between different geographical localities, being indicative

of changing geochemical conditions (e.g. Bodergat 1979).

In addition, it is important to indicate the position of the

analysis in the ostracod carapace, because the percentages

of an element change between internal or external zones of

the same carapace (Carbonel and Tölderer-Farmer 1988).

According to Rio et al. (1997), antero-posterior differences

are evident and variations between inner and outer parts of

the shell are less frequent. If the elements associated with

mineral inclusions have a rather homogeneous distribution,

those involved in biological pathway (P, Na, S, Mg, Ca)

have a heterogeneous distribution.

Environmental applications

Industrial/mining wastes and urban effluents

Wastes derived from different pollution sources provoke

important changes on both ostracod density and diversity.

In heavily organic-polluted waters close to urban or

industrial concentrations, ostracods are usually very scarce

and can even disappear (Poquet et al. 2008). These effects

diminish generally downstream in some rivers, with the

Fig. 3 Influence of the

granulometry (edaphic support)

on the ornamentation of

Cyprideis torosa. Specimens

have been collected from the

South of Spain (Alicante

province), Southwest of France

(Camargue, Bouches-du Rhône)

and Northwest of France

(Noirmoutier Island) (modified

from Bodergat 1983)

Fig. 4 Different types of ecophenotypic ornamentation on Cyprideis

torosa (modified from Bodergat 1983)
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presence of different ostracod assemblages along a gradient

from high pollution towards the final ‘‘recovery’’ zone

(Fig. 5; Mezquita et al. 1999a, b).

Mining activities produce similar effects on the ostracod

assemblages, with a rapid decline of species found near the

point of treated polluted underground waters (Van der

Merwe 2003). Nevertheless, a part of this pollution may be

eliminated by some ostracod species, such as Herpetocy-

pris chevreuxi (Onderikova 1993).

Agricultural wastes

The widespread and massive use of fertilizers, pesticides

and herbicides causes a decrease in ostracod richness

(Rossi et al. 2003), although some species are resistant to

pesticides or organic pollution (Lim and Wong 1986).

Tolerant taxa are dominant in lowland springs with high

nitric nitrogen contents ([800 lM) derived from a diffuse

pollution of agricultural origin (Rosetti et al. 2004),

whereas important increase of phosphate contents has been

related to the absence of living specimens in the upper

sediments of some lakes (Wünnemann et al. 2006).

Influence of other human activities

Other anthropogenic activities have also an important

influence on the ostracod species richness. Watershed

deforestation and road building, together with municipal

and industrial discharges, result in sediment inundation of

lacustrine habitats and decreasing ostracod diversities (up

to 30 %) at the high-disturbance sites (Alin et al. 1999).

The impact of catchment land uses is also detected. In

several small streams, few individuals and taxa occupied

the hyporheic zones of streams draining hill-country

catchments under pasture, which leads to hill-slope

slumping, channel narrowing, an increasing erosive forces

in the stream channel and reduces the habitable hyporheic

zone (Boulton et al. 1997).

Palaeoenvironmental applications

Palaeoenvironmental trends

Numerous studies have been focused on palaeoenviron-

mental reconstructions based on a multivariate analysis

(stratigraphic units, mineralogical data, macro- and

microfaunal assemblages, isotopic trends) of cores col-

lected in freshwater environments, including the ostracod

analysis (De Deccker and Forester 1988; Lord et al. 2011).

Autoecological stratigraphic analysis of ostracod assem-

blages is especially interesting in lakes where the persis-

tence of local populations is often threatened by

disturbance and changes in both water availability and

quality. In sub-recent studies carried out on sediment cores

(e.g. Ramdani et al. 2001), changes in the ostracod

assemblages or population age structure have been related

to the introduction of new predators (Fig. 6a), construction

of a freshwater drainage channel (Fig. 6b), or increase of

the water management for agriculture (Fig. 6c).

On the other hand, alternances of both brackish/marine

or freshwater associations allowed the recognition of

salinity variations that could be related to Pleistocene sea-

level changes (Gliozzi and Mazzini 1998), salinity and

lake-level variations (Holmes et al. 2007) or palaeogeo-

graphical reconstructions (Ruiz et al. 2004). These

assemblage changes, together with isotopic studies applied

to ostracod carapaces, are very useful to reconstruct cli-

matic changes (warm/cold phases), depth-water variations

or hydrological/hydrochemical conditions (e.g. Anadón

and Gabàs 2009).

Some morphological features (size, shape) of ostracod

species have been used to reconstruct palaeoenvironmental

conditions. Occurrence of large sized and geometric

ostracod carapaces indicates a stable environment and the

presence of different morphologies permits to attest rift

Fig. 5 Impact of industrial effluents on the ostracod populations of

Magre River (Eastern Spain), with transformed average density

values calculated for seven monthly field samplings (January 1995–

July 1995). The scales of abundance indicate 10 ln(x ? 1), where x is

the mean number of individuals per m2 (modified from Mezquita et al.

Mezquita et al. 1999a, b)
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activities, without any variations of the sedimentology

(Hugueney et al. 1999).

Nevertheless, Holmes (1996) indicated a number of

problems related to: (1) methods used for extraction of

ostracod shells from sediment and their subsequent

cleaning; (2) post-mortem diagenesis and alteration of the

shell; (3) complications with the calcification mechanism;

(4) spatial and temporal variability in shell composition;

Fig. 6 CASSARINA Project.

Evolution of ostracod

assemblages and

palaeoenvironmental

reconstructions of three cores

collected in three North African

wetland lakes (modified from

Ramdani et al. 2001). Bars

represent the number of

individuals in 10 cm3 sediment

Int. J. Environ. Sci. Technol. (2013) 10:1115–1128 1121
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(5) the ecological tolerances of individual species;

and (6) the relationships between shell chemistry and

palaeohydrology.

Palaeoclimatic reconstructions

Lacustrine ostracods can be used as palaeoclimatic tracer

(mainly for Quaternary). Isotopic analyses (18O and 13C) of

ostracod carapaces can help to the understanding of

regional events (Bahr et al. 2006; Mischke 2010) or pos-

sible exchanges between lakes and seas (Roy et al. 2011).

These studies can be used in combination with protein

dating by amino-acid racemization to provide valuable

information on palaeotemperatures.

Environmental archaeology

These previous applications are very useful in archaeology,

with a usual collection of ostracods together with plant

remains, fragments of molluscs, foraminifera, bones, pollen

and/or spores (Centre for Archaeology Guidelines 2002;

Bates et al. 2008). Griffiths et al. (1993) provide a useful

summary of sampling, preparation and identification

techniques.

The shell chemistry and isotopic composition can be

used even to reconstruct the climatic variations related to

different periods of old cultures (e.g. Maya; Escobar et al.

2010). Changes from marine to freshwater ostracod

assemblages permit to infer the end of activity in old har-

bour channels (Mazzini et al. 2011), whereas some ratios

(Mg/Ca, Sr/Ca) have been utilised for understanding the

evolution of prehistoric civilizations (Fig. 7: Hohokam

culture, Arizona; Palacios Fest, 1997).

Laboratory studies: an additional promising approach

In numerous laboratory studies, freshwater ostracods

present hopeful perspectives as biomonitors of stress con-

ditions, giving information about the environmental state

by means of the correlation between the presence/disap-

pearance of some species, the total abundance or the

population dynamics and the pollutant levels.

Herbicides and pesticides

Several experiments have analyzed the effects of variable

doses of either herbicides or pesticides on different ostra-

cod species (Fig. 8). These short studies (24–96 h of

exposure time to toxins, in most cases) indicate that these

microcrustaceans are excellent bioindicators, with a sen-

sibility higher or similar to copepods, amphipods, cladoc-

erans, crayfishes or prawns (Australian and New Zealand

Environmental and Conservation Council 2000). Low

doses of herbicides (e.g., dioxin) or pesticides (e.g., DDT,

mexacarbate) cause an initial accumulation in the soft parts

(Matsumura 1977), whereas increasing concentrations of

other pesticides provoke intoxication, immobilisation or

even mortality in the populations of Heterocypris incon-

gruens, Cypretta spp., Eucypris sp. or Cypridopsis spp. (see

Table 1 for a review).

Heavy metals

A ‘‘culture/maintenance-free’’ microbiotest (6-day Ostra-

codtoxkit FTM; Chial and Persoone 2002a) has utilized the

freshwater species Heterocypris incongruens (Table 2),

indicating that the ostracod mortality in Zn-polluted soils

was a result of the (non-soluble) toxicants bound to the

solid-phase particles, rather than of those that had dissolved

in the water phase (Chial and Persoone 2003). More

recently, this test is used as part of a battery of bioassays to

Fig. 7 Trace element palaeoenvironmental reconstruction of Hoho-

kam canals history (Phoenix Basin Hohokam Canals, Arizona) based

on ostracod shell chemistry of Limnocythere staplini (modified from

Palacios-Fest 1997)
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characterize the toxicity of fluvial sediments (e.g., Wang

et al. 2009).

An additional bioassay test applied to Cypris subglobosa

to measure the toxicity of 36 metals and 12 reference

toxicants reveals that osmium was found to be the most

toxic in the test while boron, the least toxic (Khangarot and

Das 2009). Increasing concentrations of Cu and higher

acidity in waters increase the mortality on populations of

this species (Khangarot and Ray 1987). This metal and Cd

were included between the most toxical to Stenocypris

major in other toxicological studies (Shuhaimi-Othman

et al. 2011).

In these polluted waters, some freshwater species (i.e.

Chrissia halyi) may survive, being the excretion a tolerance

mechanisms for survival (Prasuna 1994). The efficiency of

this mechanism decreases if the nominal concentration of

lead in water increases (Prasuna et al. 1996). Consequently,

it is necessary to analyse the relation between the metal

contents of both waters and sediments and the ostracod

abundance and diversity.

Oil contamination

The application of this 6-day OstracodtoxkitTM microbio-

test to oil-contaminated sediments shows that Heterocypris

incongruens is more sensitive than the amphipod Hyalella

azteca to contaminated sediments collected 6 and 21 weeks

after oil was applied to the experimental plot. In addition,

the precision of this ostracod test becomes higher or similar

to that of the Hyatella test (Blaise et al. 2000; Chial et al.

2003a). In these time-related experiments, it is interesting

to contrast the ostracod–amphipod results with other solid-

phase bioassays such a Microtox� or ASPA, which use the

luminescent marine bacterium Vibrio fischeri and the uni-

cellular freshwater chlorophyte Pseudokirchneriella sub-

capitata as test organisms, respectively (Blaise and Ménard

1998).

More recently, other species (e.g. Stenocypris hislopi,

Cypretta seurati; Tamura et al. 2011) have been used in

acute lethality tests of biodegradable lubricants. The lon-

gevity of C. seurati, physically more active, was strongly

C

A

D

BFig. 8 Impact of the

organochlorine pesticide

Endosulfan (a, b), the broad-

spectrum insecticide Rotenone

(c) and two combined

insecticides (d: Chlorphyrifos/

Lindane) on the ostracod

populations. a, b Effect of

endosulfan on total

numbers ? SE of ostracods in

microcosms of Eucypris sp. and

Cypretta sp. 10 weeks after

initial application in

southwestern Victoria, Australia

(modified from Barry and

Logan 1998). c Mean relative

abundances (%) of zooplankton

collected in sweep-nets at five

treatment levels in 18 orchard

ponds in the Motueka region,

New Zealand (modified from

Blakely et al. 2005). d Changes

in number of ostracod taxa

expressed as the geometric

means of the numbers counted

by treatment level of Ostracoda

(modified from Cuppen et al.

2002)
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Table 1 Effects of pesticides (P) and herbicides (H) on the ostracod populations

Name Formula Type Ostracod

species

Time

study

(h)

Toxic dose

(lg/l)

Effect Reference

Cadmium

chloride

CdCl2 P Cypridopsis

sp.

96 190 Mortality Fennikoh et al.

(1978)

DDT C14H9Cl5 P Heterocypris

incongruens

24 0.04–1.74 Accumulation Matsumura (1977)

Heterocypris

incongruens

24–48 100–5,000 Mortality Khudairi and Ruber

(1974)

Dioxin (2,3,7,8-

TCDD)

C12H4Cl4O2 P Heterocypris

incongruens

24 0.002–0.2 Accumulation Matsumura (1977)

Diquat C12H12N2 H N.d. 48 19–46,600 Two copepods were the

most sensitive and an

ostracod and a

cyclopoid copepod the

least

Australian and New

Zealand

Environmental and

Conservation

Council (2000)

Endosulfan C12H4Cl4O2 P N.d. 48–96 0.9 Most sensitive were

copepods and ostracods

Australian and New

Zealand

Environmental and

Conservation

Council (2000)

Cypretta sp.;

Eucypris sp.

1680 0–50 Elimination of the total

population at high

concentrations

(10–50 lg/l)

Barry and Logan

(1998)

Endrin C12H8Cl6O P N.d. 48–96 0.5–74 Ostracods and prawns as

the most sensitive

groups

Australian and New

Zealand

Environmental and

Conservation

Council (2000)

Formaldehyde CH2O P Cypridopsis

sp.

1–96 236–4,760 Intoxication Bills et al. (1977a)

Lindane C6H6Cl6 P Heterocypris

incongruens

24 2.07–6.9 Accumulation Matsumura (1977)

N.d. 48–96 3.2–1,100 High to moderate

toxicity. Ostracods

were the most sensitive

group.

Australian and New

Zealand

Environmental and

Conservation

Council (2000)

Malachite green C23H5N2 P Cypridopsis

sp.

6–96 2,490–8,570 Mortality Bills et al. (1977b)

Malathion C10H19O6PS2 P N.d. 48–96 1.4–6.2 Inmobilisation. The most

sensitive groups were

cladocerans, ostracods

and copepods

Mayer and Ellersieck

(1986)

Mexacarbate C12H18N2O2 P Heterocypris

incongruens

24 3.71–5.4 Accumulation Matsumura (1977)

Molinate C9H17NOS H N.d. 48–96 180–33,200 Ostracods and

cladocerans were more

sensitive than

crayfishes and praws

Australian and New

Zealand

Environmental and

Conservation

Council (2000)

Trifluralin C13H16F3N3O4 H N.d. 48–96 37–2,200 Inmobilisation Australian and New

Zealand

Environmental and

Conservation

Council (2000)
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affected by water pollution, with increasing adverse effects

if the oleic acid used contains Cu.

Conclusion

Freshwater ostracods are excellent bioindicators of the

surrounding physical–chemical conditions, with a remark-

able response to variable salinities, water depth, tempera-

ture ranges, or pH. The ostracod carapace reflects faithfully

these variations, with an interesting correlation between the

water properties and both the external ornamentation and

geochemical composition. Moreover, oxygen depletion,

high sedimentation ratios or vigorous bottom current

velocities are unfavourable factors for the development of

these microcrustaceans.

The application of this dataset is very useful in palae-

oclimatic reconstructions and archaeology, where the

ostracod contributions are used together with additional

sedimentological, geochemical or dating analyses.

Finally, in recently developed microcosm experiments,

these microcrustaceans showed similar or higher sensibility

Table 2 Contrasts of the Ostracodtox kitTM miocrobiotest with other well-known microbiotests under different experimentally induced

pollution

Test Contrast Effects Reference

Hatching time, size of the cups of the

multiwell test plates, feeding of the rest

organisms prior to the test, amount of

supplemental algal food, volume of

sediment and duration of the test

Hyalella azteca (amphipod) solid-

phase test

Test protocol for a 6-day assay in 12-cup

multiwell plates with ten organisms per cup

and three replicates. Calibrated sand as

reference sediment. Mortality and growth

of the ostracods determined after 6 days

incubation at 25 �C in darkness

Chial and

Persoone

(2002a)

Oil pollution Statistical confidence intervals

(95 %)

Development of new procedures: selection of

a validity threshold for amount of substrate

(300 lL), number of replicates (6),

mortality (20 %) and good health of the test

organisms (600 lm)

Chial and

Persoone

(2002b)

‘‘Culture/maintenance-free’’ direct contact Hyalella azteca (amphipod)-

Thamnocephalus platyurus

(crustacean)-Raphidocelis

subcapitata (microalgae)

Complementary (nonredundant) information

provided by the four tests

Chial and

Persoone

(2002c)

‘‘Direct contact’’ toxicity determination Springtail Folsomia candida Ostracod test species sensitive as or, in

several samples, even more sensitive than

the springtails. Ostracod mortality as result

of the (non-soluble) toxicants bound to the

solid-phase particles

Chial and

Persoone

(2003)

‘‘Culture/maintenance-free’’ direct contact Hyalella azteca (amphipod)-

Midge larva Chrironomus

riparius

Sensitivity quite similar between the three

organisms

Chial et al.

(2003a)

Oil pollution Hyalella azteca (amphipod) solid-

phase test

Six weeks: Higher mortality of Ostracods.

Fifteen weeks: sediments still toxic to

ostracods but not to Hyalella. Lower

variation coefficients between replicas of

the ostracod results

Chial et al.

(2003b)

Table 1 continued

Name Formula Type Ostracod

species

Time

study

(h)

Toxic dose

(lg/l)

Effect Reference

3-

Trifluoromethyl-

4-nitrophenol

C7H4F3NO3 P Cypridopsis

sp.

1–96 19,000–117,000 Inmobilisation Hansen and Kawatski

(1976)

Triflumuron C15H10ClF3N2O3 P Cypridopsis

sp.

336–504 6 Lower abundance Ali and Lord (1980)
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to herbicides, pesticides, oil spills or heavy metal pollution

than other traditional groups (like copepods, amphipods,

bacteria), which are used to test anthropogenic impacts.
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Carbonel P, Tölderer-Farmer M (1988) The ostracod carapace as a

hydrochemical source of information at water/sediment inter-

face. In: Hanai T, Ikeya N, Ishizaki K (eds) Evolutionary biology

of Ostracoda. Kodansha Ltd., Tokyo

Centre for archaeology guidelines (2002) Environmental archaeology:

a guide to the theory and practice of methods, for sampling and

recovery to post-excavation. English Heritage, London

Chial B, Persoone G (2002a) Cyst-based toxicity test XII—develop-

ment of a short chronic sediment toxicity test with the ostracod

crustacean Heterocypris incongruens: selection of test parame-

ters. Environ Toxicol 17:520–527

Chial B, Persoone G (2002b) Cyst-based toxicity test XIII-develop-

ment of a short chronic sediment toxicity with the ostracod

crustacean Heterocypris incongruens: methodology and preci-

sion. Environ Toxicol 17:528–532

Chial B, Persoone G (2002c) Cyst-based toxicity test XIV—

application of the ostracod solid-phase microbiotest for toxicity

monitoring of river sediments in Flanders (Belgium). Environ

Toxicol 17:533–537

Chial B, Persoone G (2003) Cyst-based toxicity test XV—application

of ostracod solid-phase microbiotest for toxicity monitoring of

contaminated soils. Environ Toxicol 18:347–352

Chial B, Persoone G, Blaise C (2003a) Cyst-based toxicity tests XVI-

sensitivity comparison of the solid phase Heterocypris incon-

gruens microbiotest with the Hyalella azteca and Chironomus

riparius contact assays on freshwater sediments from Peninsula

Harbour (Ontario, Canada). Chemosphere 52:95–101

Chial BZ, Persoone G, Blaise C (2003b) Cyst-based toxicity tests.

XVIII. Application of ostracodtoxkit microbiotest in a bioreme-

diation project of oil-contaminated sediments: sensitivity com-

parison with Hyalella azteca solid-phase assay. Environ Toxicol

18:279–283

Cohen AS, Bills R, Cocquyt CZ, Calion AG (1993) The impact of

sediment pollution on biodiversity in Lake Tanganyka. Conserv

Biol 7:667–677
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