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Abstract Urban areas are the main sources of greenhouse

gas (GHG) emissions. Previous studies have identified the

effectiveness of better urban design on mitigating climate

change and land-use patterns in cities as important factors

in reducing GHG by local governments. However, studies

documenting the link between land-use and GHG emis-

sions are scant. Therefore, this study explores the driving

forces of land-use change and GHG emission increments in

urban areas and investigates their correlations. The study

area, Xinzhuang, is a satellite city of Taipei that has rapidly

urbanized in the past few decades. Twenty-one potential

variables were selected to determine the driving forces of

land-use change and GHG emission increments by bino-

mial logistic regression based on the investigation data of

national land use in 1996 and 2007. The correlation of

land-use change and GHG increments was examined by

Spearman rank-order analysis. Results of logistic regres-

sion analysis identified that population and its increasing

density rate are main driving forces on both land-use

change and GHG increments. The Spearman rank corre-

lation matrix indicates that fluctuating urbanization level is

significantly correlated with the increase of total GHG

emissions, the emissions of residence, commerce, and

transportation sectors in neighborhoods; and the emissions

of residence and transportation sectors seem closely con-

nected to current urbanization level. The findings suggest

that relationships among land-use, urbanization, and GHG

emissions in urban areas vary greatly according to resi-

dence and transportation characteristics. Land-based miti-

gation may provide the most viable mechanism for

reducing GHG emissions through residence and transpor-

tation sectors.

Keywords Binominal logistic regression � Driving force

analysis � Greenhouse gas inventory � Land-use

classification � Spearman rank-order correlation

Introduction

Greenhouse gas footprints in cities have received recent

attention because several studies have demonstrated that

better urban design could reduce carbon emissions more

than alternative fuels, vehicles, and electricity generation

(Hillman and Ramaswami 2010; Marshall 2008). Smart

growth for urban areas with good public transport systems

could reduce the number of miles traveled per vehicle, thus

reducing GHG emissions (Chatterjee 2009; Hoornweg

et al. 2011). Cities are considered the optimum scale for

integrating policy development and action on mitigating

climate change (Hoornweg et al. 2011; Ramaswami et al.

2008). Land-use patterns and urbanization in cities affect

resident lifestyles, and thus, GHG emissions (Stone 2009).

Therefore, enhanced understanding of the determinants of
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land-use change in urban areas is necessary to assess the

effect of urbanization on the environment and to manage

GHG emissions in cities.

Land-use change patterns result from complex interactions

between humans and the physical environment and are con-

tinually changing; therefore, the logistic regression method is

widely used to determine the driving forces of land-use change

from potential impact factors (Lin et al. 2008; Styers et al.

2010; Verburg et al. 2004; Wyman and Stein 2010). Wyman

and Stein (2010) used the binomial logistic model to assess

deforestation drivers from social survey and land-cover

change data within an protected area in Belize. Their results

presented a basis for numerous hypotheses on the processes

driving land-use change within the study area.

Land-use data from satellite images are often retrieved

and compared for different periods (Cetin 2009; Lin et al.

2008; Verburg et al. 2004). For presenting the change of

land-use type, a certain area or image grids are often

adopted as analysis scales, such as 500 m 9 500 m (Ver-

burg et al. 2004). However, the land-use policy and the

data of potential driving factors for land-use change are

established based on administrative jurisdiction. The

neighborhood-scale for quantifying change of land-use is

also commonly used in driving forces analysis (Lee et al.

2009). Several studies have grouped neighborhoods into

complete landscape structure units and used the indices of

landscape ecology to quantify characteristics, structure,

and layouts of spatial configurations (Lee et al. 2009; Lin

et al. 2008; Verburg et al. 2004).

Implementing programs of reducing GHG emissions

should begin with a good understanding of emission sources.

GHG inventories for local authorities often identify emis-

sions by source and report them in per capita terms (Hoo-

rnweg et al. 2011; Ramaswami et al. 2008). Local GHG

emission accounting is typically limited by data availability.

If urban GHG inventories follow a procedure similar to the

Intergovernmental Panel on Climate Change (IPCC) meth-

odology for national inventories (IPCC 2006), the direct

emission from Scope 1 of local inventories can mesh with

national inventories. By identifying sectors with high emis-

sion rates, including urban material production, local juris-

dictions can determine where best to mitigate emissions and

link to national policies for sectors (Hoornweg et al. 2011).

The IPCC proposed an agreement to inventory urban GHG

emissions to establish a common standard, and suggested that

urban GHG inventories include (1) out-of-boundary emis-

sions from electricity generation and district heating con-

sumed in cities, (2) emissions from aviation and marine

vessels carrying passengers or freight away from cities, and

(3) out-of-boundary emissions from waste generated in cities

(UNEP/UN-HABITAT/World Bank 2010). In Taiwan, the

national inventory has been established and is updated reg-

ularly (Liu et al. 2012), whereas county-scale GHG emission

inventories are only established for some municipalities.

Both national and county-scale inventories follow IPCC

guidelines (2006); however, some data are currently

unavailable for the county scale.

Although several studies mentioned the driving forces

and follow-up effects of land-use change and recent liter-

ature identified city-scale GHG emission footprints, studies

exploring the difference between the driving forces of land-

use change and GHG emission increments are scant. Nei-

ther the correlation of changing urbanization levels nor

GHG increments have been discussed. This study deter-

mines the drivers of land-use change and GHG increase in

urban areas by neighborhood scale and explores the cor-

relations between them.

Materials and methods

Study site

The study area of Xinzhuang, situated within New Taipei

City, is a typical urbanized satellite city of the Taiwan

capital, Taipei (Fig. 1). Xinzhuang covers an area of

approximately 20 km2 and is located within a flat plain. Its

average precipitation is approximately 2,400 mm annually.

Xinzhuang has one national scale and several county scale

industrial parks. Currently, nearly 4,000 factories are

operating in this city, and more than 6,000 factories were in

operation during the most prosperous period. The popula-

tion density of Xinzhuang reached 20,444 people per

square kilometer in 2011, from 15,621 people per square

kilometer in 1991, with an overall increase of 30.9 % in the

past two decades. This rapid urbanization has resulted in

rising energy consumption in Xinzhuang. To save energy

and achieve emission reduction targets, Xinzhuang has

adopted a series of mitigation measures and polices.

Recently, it became the pilot city of the ‘‘low-carbon

homelands’’ of New Taipei City, making Xinzhuang a

particularly interesting case for the correlation analysis of

GHG emissions and land-use change for urban areas. Most

of the land in Xinzhuang was agrarian in the 1970s, but it

has transformed into an industrial and commercial district,

following the abandonment of factories in the 1990s.

Xinzhuang comprises 71 neighborhoods, which are the

basic units of city administration in Taiwan and are often

used as analytical units in addressing environmental con-

cerns. Neighborhoods are also used as analytical units in

this study.

Land-use change analysis

Several assumptions were used in determining change

patterns: (1) land-use change in each neighborhood is

1276 Int. J. Environ. Sci. Technol. (2013) 10:1275–1286

123



independent; each neighborhood has a complete landscape

structure, (2) each neighborhood is composed of patches,

corridors, and matrices (Forman 1995), and (3) land-use

change in neighborhoods is considered in changing

urbanization levels.

Land-use data

Land-use data were obtained from the National Land

Surveying and Mapping Center, Taiwan (Taiwan: National

Land Surveying and Mapping Center 2011) and clipped

into the neighborhood scale of the study area. The Center

conducted the first nationwide land-use investigation dur-

ing 1993–1995 using a field survey. The second investi-

gation was conducted during 2006–2008 based on

non-cloud aerial photographs and SPOT-5 satellite images.

For consistency with other statistical data, the temporal

scales of these two land-use data sets were defined as 1996

and 2007. Land-use types of built-up land (including resi-

dence and industry/commerce areas), public use land

(including government organizations, hospitals, schools),

and recreational land were retrieved to represent the urban

land cover and land-use type.

Classification of urbanization levels

To quantify changes to land-use patterns, landscape indices

were calculated using Patch Analyst 4.0 for ArcGIS 9.3

(Patch Analyst Manual 1999; Paudel and Yuan 2012).

Seven landscape indices—patch density (PD), mean shape

index (MSI), mean patch fractal dimension (MPFD), edge

density (ED), road density (RD), built-up density (BD), and

green land (GL)—were used to present land-use compo-

sition and configuration at the landscape level in each

neighborhood. Table 1 provides a summary of adopted

indices.

The results of patch analysis for 71 neighborhoods of the

study area in 1996 and 2007 were used to classify urban-

ization levels of neighborhoods by cluster analysis. Cluster

analysis encompasses different algorithms and methods for

grouping similar objects into respective categories (Owen

et al. 2006). In this study, the Euclidean distance (Eq. 1)

was used as the dissimilarity indices coefficient, and the

Ward method was used to minimize the error increase in

sum of squares (variance) resulting from clustering.

SS ¼
Xp

i¼1

Xm

j¼1

xij � �xi

� �2 ð1Þ

where SS is the squared Euclidean distance, xij is the value

of index i in neighborhood j, xi is the average of index i of

all neighborhoods, p is the number of indices, and m is the

number of neighborhoods.

Driving forces of land-use change

For determining the driving force of land-use change, 21

potential variables were selected based on socioeconomic

conditions, spatial policies, and natural features in the

study area (see Table 2).

Logistic regression is widely used to analyze the driving

forces of land-use change (Lin et al. 2008; Verburg et al.

2004). The logistic model quantifies predictor effect in a

log odds ratio using maximum likelihood estimation (Eq.

2). Stepwise logistic regression was used to estimate the

coefficients of the defined model (Eq. 3). The dependent

variable is a binary (presence or absence) event, which

means that the statistical model is a binomial logistic

Fig. 1 Study site
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model with two choices: convert each neighborhood into a

land-use change occurrence (1) or not (0). Using the

results, the following regression through odds ratio analysis

can be specified:

Pðy ¼ 1 1 and� use changed; y ¼ 0j j1 and

� use unchangedÞ

¼ ef ðxÞ

1þ ef ðxÞ ð2Þ

f ðxÞ ¼ b0 þ b1X1 þ b2X2 þ � � � bkXk ð3Þ

where Xi is the variables of driving force, bi is the coeffi-

cients to be estimated, and k is the number of variables.

Statistical significance tests for the overall model

(Omnibus and Hosmer–Lemeshow tests) and the variables

(Cox–Snell R2 & Nagelkerke R2 tests) are applied to

present the relationship between the models and data sets.

GHG emissions inventory

The sectoral GHG emissions inventory of Xinzhuang in

1996 and 2007 was estimated using the emission-factor

method, according to the framework of C40 and ICLEI

Global Protocol for Community-scale Greenhouse Gas

Emissions (C40/ICLEI/WRI 2012; see Table S1 in the

Supplementary Material). The values of emission factors

used in this study refer to local data suggested in the

Management Table of GHG Emission Factors V. 6.0 by the

Taiwan: EPA (Environmental Protection Administration)

(2011); most of the emission factors were extracted from

the IPCC manual (2006). The three dominant GHGs (CO2,

CH4, N2O) that account for more than 97 % of GHG

emissions in Taiwan (Liou 2011) are inventoried and

reported collectively as carbon dioxide equivalents (CO2e).

No city-scale data are available for the three remaining

halocarbon GHGs (HFCs, PFCs, and SF6). Inventory data

were classified into residential, commercial, industrial,

Table 1 Land-use classification indicators used in this study

Landscape structure Indicators Definition Note

Patch Patch density, PD PD = NP

A
NP: patch numbers

A: area of a selected neighborhood

Mean shape index, MSI

MSI ¼

Pm
i¼1

Pn

j¼i

pij

2
ffiffiffiffiffiffiffi
p�aij
p

ni

aij: area of jth patch in classification i

pij: perimeter of jth patch in classification i

Mean patch fractal

dimension, MPFD
MPFD ¼

Pn

j¼1

2lnpij
lnaij

� �

ni

ni: patch numbers of classification i

pij: perimeter of jth patch in classification i

aij: area of jth patch in classification i

Edge density, ED

ED ¼

Pm
k¼1

eik

A

eik: total edge length between classification i and c

lassification k

A: area of a selected neighborhood

Corridor Road density, RD RD ¼ RL

A
RL: total length of main roads

A: area of a selected neighborhood

Matrix Build-up density, BD BD ¼ Barea

A
Barea: total area of build-ups

A: area of a selected neighborhood

Green land, GL

Table 2 Potential driving force variables of land-use change

Variables Description

Socioeconomic

variables

X1 Population in 1996

X2 Population in 2007

X3 Population density in 1996

X4 Population density in 2007

X5 The increase rate from X3 to X4

X6 Industry and commerce areas in 1996

X7 Industry and commerce areas in 2007

X8 The increase rate from X6 to X7

X9 The decrease rate of agrarian areas

X10 Road density

X11 Distance to the nearest highway

entrance

X12 Distance to the nearest downtown area

X13 Distance to the nearest railway station

X14 Distance to nearest metropolitan

transportation station

Spatial

variables

X15 Within urban planning areas

X16 Within 800 m service area of

metropolitan transportation system

X17 Having at least one elementary school

X18 Having at least one park

X19 Having at least one industrial park

X20 School density

Natural variable X21 Elevation
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transportation, agriculture, waste, and forest carbon sink

sectors. The inventory scopes included three parts: Scope

1, direct emission from fuel combustion in each sector;

Scope 2, indirect emission from electricity use in each

sector; Scope 3, emission from waste treatment outside the

study area. Scopes 1 and 2 emissions are determined in the

Xinzhuang boundary. The activity data for residential,

commercial, and industrial sectors were collected using a

top-down approach, relying on data aggregated by national

agencies. In the transportation sector, a bottom-up

approach was used based on the local statistics of traffic

volume and vehicle kilometers traveled. For the solid waste

treatment sector, the actual quantity of municipal solid

waste was used to estimate the GHG emission. Local sta-

tistics of the livestock industry were extracted to calculate

the emissions. For exploring the correlation of GHG

emission and land-use change, the GHG inventory of each

sector was allocated to each neighborhood based on pop-

ulation, residential area, floor area of industry and com-

merce, number of factories and commercial stores,

agricultural area, road length, and green land area.

Correlation between land-use change and GHG

emission increments

The binomial logistic regression model and the variables

used for determining driving forces of land-use change (21

variables, see Table 2) were also used to explore similar

driving forces of increasing GHG emissions. The Spear-

man rank-order correlation method was used to investigate

the increment relevance of GHG emissions and land-use

change in each neighborhood (Styers et al. 2010).

Results and discussion

Land-use change

Classification of urbanization levels

According to the results of Patch analysis and cluster

analysis, the 71 neighborhoods were classified into four

urbanization levels based on the landscape indices: low,

medium, medium–high, and high. Table 3 shows the

comparison of indices average for each urbanization level

and overall average for all neighborhoods.

Urban areas typically have more build-up, higher road

density, and less green land than do rural areas. In the

urbanizing process, economic development leads to a high

demand for land. Consequently, build-up patches increase

separately and rapidly. As economic development contin-

ues, build-ups connect and grow into a huge patch,

resulting in smaller patch numbers. How patches gather in

a selected area can be determined by discussing the PD,

MPFD, and ED. In a low-developed area, PD is low,

MPFD is trivial, and ED tends to be high. In contrast, in

urbanized areas, PD, MPFD, and ED considerably differ

from the low-developed area. However, a mature urban

area may have low PD caused by patch gathering. Figure 2

shows the urbanization levels in Xinzhuang established by

the land-use classification indicators, and shows that

Xinzhuang developed from the northern and southern

regions during this decade.

The upgrade of urbanization levels from 1997 to 2006

was classified into three patterns for follow-up discussion

of the relation to GHG emissions. Urbanization levels

Table 3 Mean value of index at each urbanization level compared to the overall average index

Urbanization level Landscape index

PD MSI MPFD ED BD RD GL

Low mean 93.46 1.52 1.48 0.077 0.244 0.011 340610.5

Above/below average - ? - - - - ?

Medium Mean 151.36 1.52 1.56 0.065 0.616 0.015 12882.58

Above/below average - ? ? - ? - -

Medium–high Mean 404.37 1.5 1.61 0.111 0.629 0.029 584.54

Above/below average ? - ? ? ? ? -

High Mean 268.25 1.51 1.51 0.087 0.694 0.028 190.24

Above/below average ? - - ? ? ? -

Overall average 229.36 1.51 1.54 0.085 0.545 0.021 88566.97

Overall average means the average index in all neighborhoods in 1996 and 2007

‘‘?’’ stands for a value above the overall average and ‘‘-’’ is below the overall average

PD patch density, MSI mean shape index, MPFD mean patch fractal dimension, ED edge density, BD build-up density, RD road density, and GL

green land
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changing from lower to higher in this decade were classi-

fied into Change I (23 of 71 neighborhoods), which con-

tains two situations: Change I-1 (from low to medium,

medium–high, or high; 10 of 23 neighborhoods) and

Change I-2 (from medium to medium–high or high; 13 of

23 neighborhoods), as shown in Fig. 3.

Driving forces of land-use change

To analyze the driving forces behind land-use change, the

regression model that comprises nine of 21 potential vari-

ables is statistically significant, as determined by the

Omnibus test. The Cox–Snell R2 test is 0.394 and the

prediction rate is 81.7 %, which suggests good model fit-

ting results. Based on the results in Table 4, four variables

explain the change of urbanization levels, X1 (population

in 1996), X3 (population density in 1996), X5 (population

increase rate), and X14 (distance to the nearest metro sta-

tion). Among the socioeconomic factors, population has a

major influence on the urbanization process. Population

dynamics determine social flexibility, that is, people attract

more people and significantly contribute to urbanization.

Geographically, the main residential areas are located in

the northern and southern parts of Xinzhuang. X14, the

Fig. 2 Land-use investigation

results in Xinzhuang, 1996 and

2007. This figure shows the

land-use levels in Xinzhuang

classified into four urbanization

levels (low, medium, medium–

high, and high) by the land-use

classification indicators in 1996

and 2007. Xinzhuang developed

in the northern and southern

regions during the decade

Fig. 3 Land-use change types

in Xinzhuang from 1996 to

2007. If urbanization levels

have changed from lower to

higher in the decade, these cases

belong to Change I. Meanwhile,

Change I includes two

situations: Change I-1 (from

low to medium, medium–high,

or high) and Change I-2 (from

medium to medium–high or

high)
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distance to the nearest metro station, is indicated as a major

driving force of land-use change, because accessibility and

urban expansion have a strong correlation.

GHG emissions inventory

Sector-emission analysis

Table 5 shows the GHG emission inventory of each sector

in 1996 and 2007 in Xinzhuang including the waste treat-

ment emissions outside the study area (Scope 3). The

average emission was 10.69 ton-CO2e/capita in 1996 and

14.49 ton-CO2e/capita in 2007 (increasing 35.62 %).

Compared to the average emission of Taiwan in 2007,

12.08 ton-CO2e/capita, the GHG emission of per capita in

the study site is high. In the comparative study by Hoo-

rnweg et al. (2011), 14.49 ton-CO2e/capita in 2007 for

Xinzhuang is also higher than most cities in developing

countries, such as Shanghai in China (11.7 ton-CO2e/capita

in 2006). Emissions from the industrial sector in 1996 and

2007 contributed nearly 70 % to the total emission, fol-

lowed by residence, transportation, and commerce sectors.

The emissions contributed by agriculture and forestry

sectors are relatively low. Compared to the variation rate of

sectors during the decade, all sectors have a positive

emission increase, excluding agriculture and forestry sec-

tors. Emission from the transportation sector increased

274 % and the residence sector increased 80 %, probably

because emission from transportation increases with eco-

nomic growth. An emission increase from the residence

sector in the study site may be because of rapid population

growth of 13 % (from 350,000 to 390,000), increased

electricity use per household, and the increased emission

factor of electricity [from 0.531 kg-CO2e/kWh to

0.637 kg-CO2e/kWh, Taiwan: Bureau of Energy (2012)].

In the waste treatment sector, GHG emission decreased

64 % in the decade because landfill treatment was replaced

by incineration and because of a highly efficient resource

reduction of municipal solid waste in Taiwan. This Scope 3

emission contributed to the total GHG emission from 5 %

in 1996 to 1 % in 2007 and confirms the viewpoints of

Hoornweg et al. (2011) of a strong correlation between

Table 4 Binomial logistic coefficients between land use and determinable driving force variables

Driving force variable Coefficient (B) SE Wald p value Exp (B)

X1 3.903 1.715 5.18 0.023* 49.575

X2 -4.042 2.268 3.177 0.075 0.018

X3 22.666 0.975 7.483 0.006** 0.07

X5 2.508 1.223 4.206 0.040* 12.277

X6 -1.128 0.76 2.205 0.138 0.324

X8 0.487 0.367 1.762 0.184 1.628

X13 0.853 0.494 2.978 0.084 2.347

X14 21.237 0.483 6.561 0.010* 0.29

X17 0.869 0.704 1.523 0.217 2.385

Constant 21.796 0.609 8.687 0.003** 0.166

Likelihood-ratio tests for the overall model Omnibus test (v2) = 35.548 p = 0.000 (\0.05)

Hosmer–Lemeshow = 13.905 p = 0.084 ([0.05)

Likelihood-ratio tests for the variables Cox-Snell R2 = 0.394 Prediction rate: 81.7 %

Nagelkerke R2 = 0.546

X1 is population in 1996, X2 is population in 2007, X3 means population density in 1996, X5 means the population increase rate from 1996 to

2007, X6 is industry and commerce areas in 1996, X8 means the increase rate of industry and commerce areas from 1996 to 2007, X13 is distance

to the nearest railway station, X14 means distance to the nearest monorail station and X17 is enrichment with at least one elementary school

Bold values indicate the driving force variables that are significantly correlated to the change of urbanization levels

* Significance level of 5 % (p B 0.05)

** Significance level of 1 % (p B 0.01)

Table 5 GHG emission for sectors

Sector 1996

(t-CO2e/year)

2007

(t-CO2e/year)

Variation

Residence 333,129.51 601,918.15 80.69

Industry 2,792,732.63 4,044,157.62 44.81

Commerce 205,058.61 319,487.78 55.80

Transportation 194,825.68 728,107.53 273.72

Agriculture/Forestry 1800.93 969.21 -46.18

Waste treatment 179,560.64 64,088.27 -64.31

Carbon sink 2,554.42 2,392.59 -6.34

Total emissions 3,704,553.56 5,756,335.95 55.39

Per capita emission 10.69 14.49 35.62
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high GHG emission rates and solid waste generation. The

carbon sink decreased slightly in the agriculture/forestry

sector in the decade because of a small area of cultivated

land that changed to build-up. The emission scope of each

sector and the proportion of each scope in each sector are

listed in Table 6.

According to Ramaswami et al. (2008), including

essential urban materials (e.g., food, water, fuel, and con-

crete) enables cities to report separately the GHG impact

associated with the direct end-use of energy by cities and

the influence of extra-boundary activities that produce key

urban materials. Such inclusion can also initiate city-scale

GHG mitigation policies such as green concrete and urban

transportation allocation procedures. Although only the

waste treatment emissions in Scope 3 were considered in

this study, the finding regarding the rapid increases of GHG

emissions from residential and transportation sectors

reveals the importance of investigating further the emis-

sions caused by producing key urban materials and spatial

allocating space for trans-boundary vehicle distances in the

entire study area.

This study conducted the GHG emission inventory by

following the community-based GHG emissions frame-

work proposed by C40/ICLEI/WRI (2012). This frame-

work, the Global Protocol for Community-Scale GHG

(GPC), provides a standardized approach for helping cities

quantify their GHG emissions to manage and reduce their

GHG impacts. The GPC involves adopting the scope

framework to delineate the distinction between direct and

indirect emissions by emphasizing the relationship between

city and national inventories. Regional transportation sys-

tems, waste disposal, and exchanges of goods and services

are examples of activities that may be shared between

cities and are included in the Scope 3 categories of GPC

Table 6 CO2 emissions inventory of Xinzhuang in 1996 and 2007

GPC No IPCC class Scope GHG emissions sources CO2 e(1996)

ton/year (%)*

(%)** CO2 e(2007)

ton/year (%)*

(%)**

I. Stationary units

I.1 Residential buildings 9.0 10.4

I.1.1 1A4b 1 Direct emissions 76,727(23) 90,435(15)

I.1.2 2 Energy indirect emissions 256,402 (77) 511,483 (85)

I.2 Commercial/institutional facilities 5.5 5.5

I.2.1 1A4a 1 Direct emissions 25,462 (12) 67,791 (21)

I.2.2 2 Energy indirect emissions 179,597 (88) 251,696 (79)

I.4 Industrial Energy Use 75.3 69.7

I.4.1 1A2 ? 1A5 ? 1A4c 1 Direct emissions 1,565,819 (56) 1,721,799 (43)

I.4.2 2 Energy indirect emissions 1,226,914 (44) 2,322,358 (57)

II. Mobile units 5.3 12.5

II.1 On-road transportation

II.1.1 1A3b 1 Direct emissions 194,826 728,108

III. Waste 4.8 1.9

III.1 Solid waste disposal

III.1.3 3 Indirect emissions from community wastes

deposited in landfills located outside the

community boundary

51,988 8,329

III.4 Incineration and open burning

III.4.2 3 Indirect emissions from incineration and open

burning of wastes outside the community

boundary

127,573 55,759

V. Agriculture, forestry, and land use (AFOLU) 0.049 0.017

V.1 3 1 Direct emissions from AFOLU 1,801 969

GPC 2012 EXPANDED (tCO2e) 3,707,109 100.0 5,806,157 100.0

Scope1 1,864,635 50.3 2,609,102 45.0

Scope 2 1,662,913 44.9 3,085,537 53.1

Scope 3 179,561 4.8 111,518 1.9

* Scope percentages in the same IPCC class

** Percentages in GPC 2012 EXPANDED
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2012 EXPANDED, based on full consumption-based and

production-based accounting. This approach is closely with

the demand-centered, hybrid life-cycle methodology for

the city-scale GHG inventory used in Ramaswami et al.

(2008). Erickson and Lazarus (2012) discussed the GPC

and suggested that removing industry from community-

scale inventories could provide a greater focus on the GHG

emission sources over which local governments wield

unique and direct influence.

Neighborhood-emission analysis

Table 7 shows the GHG emissions of area, road length, and

per capita, which were converted from the results of sector-

emission analysis of GHG, land-use data, and population in

the study area. The area emission (in per m2) of the

industrial sector was the highest and nearly ten times

higher than the other sectors. Neighborhood-emission can

be derived by multiplying these unit emissions by the area

of each land-use type and population in each neighborhood.

The neighborhood-emission shows that the total GHG

emission is closely correlated to industrial sector emission

rather than the urbanization level.

Correlation between land-use change and GHG

emission increments

Driving forces of GHG emission increments

Similarly, the 21 potential drivers of land-use change were

applied into the analysis of driving forces behind GHG

emission change using binomial logistic analysis. Table 8

shows three significant variables of the 21 in the GHG

driving force analysis. The Omnibus test (v2) is 29.724 and

the p value is 0.000 (\0.05), which indicates that at least

one variable can explain the increase in GHG emissions.

The Hosmer–Lemeshow test also shows good model fit

results. The Cox–Snell R2 of 0.342 and the Nagelkerke R2

of 0.456 suggest a significant low to medium correlation

among the variables. Consequently, X1 (population in

1996), X5 (increased density rate from 1996 to 2007), and

X8 (increased rate of industrial and commercial areas from

1996 to 2007) account for the driving forces behind GHG

increments in the binomial logistic regression analysis.

High population areas in 1996 resulted in high population

density, and both have a significant positive effect on GHG

emissions. However, urbanization that leads to more

industrial and commercial areas also caused more GHG

emissions. Relative to the previous results of land-use

change, X1 (population in 1996) and X5 (increased density

rate from 1996 to 2007) are the common driving forces of

land-use change and GHG emissions.

Table 7 GHG emission for sectoral-inventory

Emission Sector 1996 2007

Area emission Residence 0.0956 0.1312

(t-CO2e/m2-year) Industry 0.7626 1.4252

Commerce 0.1346 0.1553

Agriculture and forestry 0.0014 0.0009

Length emission Transportation 0.7265 2.7152

(t-CO2e/m-year)

Per capita emission Residence 0.9611 1.5157

(t-CO2e/capita-year) Waste treatment 0.5180 0.1614

Table 8 Binomial logistic coefficients between GHG emissions and the determinable driving force variables

Driving force variable Coefficient (B) SE Wald p value Exp (B)

X1 0.406 0.195 4.333 0.037* 1.502

X5 0.047 0.018 6.623 0.010** 1.048

X6 15.469 6.209 6.206 0.157 222758.49

X8 0.487 10.001 2.005 0.013* 411740.13

Constant -2.904 1.03 7.944 0.005** 0.055

Likelihood-ratio tests for the overall model Omnibus test (v2) = 29.724 p = 0.000

Hosmer–Lemeshow = 8.247 n.s. p [ 0.05

Likelihood-ratio tests for the variables Cox–Snell R2 = 0.342 Prediction rate: 80.3 %

Nagelkerke R2 = 0.456

X1 is population in 1996, X5 represents the increasing population rate from 1996 to 2007, X6 is industry and commerce areas in 1996 and X8

means the increasing rate of industry and commerce areas from 1996 to 2007

Bold values indicate the driving force variables that are significantly correlated to the GHG emissions

* Significance level of 5 % (p B 0.05)

** Significance level of 1 % (p B 0.01)
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Spearman correlations of land-use change and GHG

emission increments

A multivariate Spearman rank-order correlation matrix was

constructed to explore the correlation between land-use

change and GHG emission increments. Change I, Change

I-1, Change I-2, and urbanization level in 1996 (1996LU)

and 2007 (2007LU) were selected as potential variables.

The Spearman correlation matrix results are shown in

Table 9, which indicates the significant positive correlation

between total GHG emissions and Change I and Change I-1.

The correlation coefficients are 0.343 and 0.240, respec-

tively, indicating that the change of urbanization level may

influence total GHG emissions, particularly when low

urbanized areas transform into higher urbanized areas.

In the residence and transportation sectors, all variables

except Change I show a significant correlation with GHG

emissions. Change I-1 (urbanization level from low to

higher) shows a significant negative correlation, whereas

Change I-2 (urbanization level from medium to higher)

displays significant positive correlation. Such results sug-

gest that the urbanization process may slightly affect resi-

dential GHG emissions. However, when cities continue to

develop and urbanization levels change from medium to

high, residential GHG emissions synchronously increase.

Therefore, urbanization levels tend to affect GHG emis-

sions directly in well-developed urban areas.

In the industry and commerce sectors, Change I-1

(urbanization level upgrading from lower to higher) shows

a positive correlation and 1996LU (urbanization level in

1996) shows significant negative correlation with GHG

emissions, suggesting that low urbanized areas (such as

industrial areas) may be high GHG emission sources and

GHG emissions may increase in the early stage of urban-

ization. In the agriculture and forestry sectors, only

1996LU shows a significant positive correlation with GHG

emission, which suggests that low urbanized areas have

greater reduction capacity. In the waste treatment sector, all

variables except Change I-2 show a significant correlation

with GHG emissions. The positive coefficients of Change I

and Change I-1, and the negative coefficients of 1996LU

and 2007LU suggest that low urbanized areas contribute

greater GHG emissions to waste treatment in urbanization

processes. The overall result shows that only in residence

and transportation sectors, urbanization levels (both

1996LU and 2007LU) exhibit a significant positive corre-

lation with GHG emissions. Therefore, all GHG mitigation

policies should include these two sectors to maximize

reduction results. For local authorities, these results suggest

that land-based mitigation efforts may provide mechanisms

that are more viable for reducing emissions from the

transportation and residential sectors. The mitigation

effects caused by household action have been widely dis-

cussed recently; for example, Dietz et al. (2009)

Table 9 Significant Spearman correlation coefficients: GHG emission increments and land-use changes

Land-use change Total GHG emissions Resident Industry Commerce Transportation Agriculture and forestry Waste

Change I 0.343** -0.022 0.14 0.128 -0.141 -0.057 0.341**

Coefficient

Significance 0.003 0.855 0.245 0.289 0.242 0.638 0.004

Change I-1 0.240* 20.285* 0.267* 0.244* 20.399** 20.125 0.411**

Coefficient

Significance 0.044 0.016 0.025 0.04 0.001 0.298 0

Change I-2 0.125 0.303* 20.221 20.14 0.262* 20.185 20.03

Coefficient

Significance 0.298 0.01 0.064 0.246 0.028 0.123 0.805

1996LU 20.009 0.502** 20.369** 20.251* 0.678** 0.259* 20.719**

Coefficient

Significance 0.942 0 0.002 0.035 0 0.029 0

2007LU 0.147 0.529** 20.348** 20.222 0.594** 0.206 20.500**

Coefficient

Significance 0.22 0 0.003 0.063 0 0.085 0

Change I means that land use changed from lower and higher levels, which contains two types: Change I-1 (low to medium, medium–high, or

high) and Change I-2 (medium to medium–high or high). In addition, 1996LU and 2007LU stand for urbanization levels in 1996 and 2007

Bold values indicate the GHG emission increments that are significantly correlated to the land-use changes

* The Spearman’s rank correlation coefficient achieves a significance level of 5 % (p B 0.05)

** The Spearman’s rank correlation coefficient achieves a significance level of 1 % (p B 0.01)
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investigated the potential for near-term reductions using

available technologies in U.S. homes and nonbusiness

travel and estimated an achievable savings of 20 % of

household direct emissions, or 7.4 % of U.S. national

emissions. Adoption methods, such as upgrading equip-

ment, reducing standby electricity, and replacing vehicles

with higher fuel efficiency models, have been proposed to

mitigate GHG emissions. In contrast, a high rate of GHG

emissions from the industry sector may not be completely

attributed to an industry–commerce mixed city, such as

Xinzhuang, because the energy consumed during produc-

tion should be allocated to products. Ramaswami et al.

(2008) have proposed such a demand-centered, hybrid life-

cycle methodology for city-scale greenhouse gas

inventories.

Conclusion

This paper developed a classification system for deter-

mining urbanization levels and land-use change in the last

decade (from 1996 to 2007), and explored the relationship

between land-use change and GHG emissions for the study

area. Low to high levels of urbanization in neighborhoods

cause increased total GHG emissions and emissions from

all sectors, excluding agriculture/forestry and waste treat-

ment sectors. The correlation results show that GHG

emissions from residence and transportation sectors cor-

related significantly with urbanization and could be locally

addressed in GHG reduction. This study also examined the

driving forces of land-use change and GHG emission

increments. The results indicate that early-stage population

and increased population density during the period are

common factors of land-use change and GHG increments.

Understanding the correlations of land-use and GHG

emissions offers an important opportunity for local gov-

ernments to mitigate climate change problems.

Acknowledgments The authors wish to thank the Taiwan National

Science Committee for supporting this research. Funding for this

research was provided by the Taiwan National Science Committee

NSC99-2621-M002-012.

References

C40/ICLEI/WRI, (2012). Global Protocol for community—scale

greenhouse gas emissions (GPC), pilot version—May 2012.

Available at: http://www.ghgprotocol.org/files/ghgp/GPC_Pilot

Version_1.0_May2012_20120514.pdf

Cetin M (2009) A satellite based assessment of the impact of urban

expansion around a lagoon. Int J Environ Sci Tech 6(4):579–590

Chatterjee R (2009) Smart growth: a solution to climate change?

Environ Sci Technol 43(6):1660

Dietz T, Gardner GT, Gilligan J, Stern PC, Vandenbergh MP (2009)

Household actions can provide a behavioral wedge to rapidly

reduce US carbon emissions. Proc Natl Acad Sci 106(44):

18452–18456

Erickson P, Lazarus M (2012) Revisiting community-scale green-

house gas inventories. Environ Sci Technol 46(9):4693–4694

Forman RTT (1995) Land mosaics: the ecology of landscapes and

regions. Cambridge University Press, Cambridge

Hillman T, Ramaswami A (2010) Greenhouse gas emission footprints

and energy use benchmarks for eight U.S. cities. Environ Sci

Technol 44(6):1902–1910

Hoornweg D, Sugar L, Trejos Gómez CL (2011) Cities and
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