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Abstract Water level, as an intuitive factor of hydrologic

conditions, is of great importance for lake management. In

this study, periodic structures of water level and its fluc-

tuations in Lake Baiyangdian are analyzed based on

wavelet analysis and seasonal-trend decomposition using

local error sum of squares (STL). Data of monthly time

series are divided into three types with emphasis on

anthropogenic influence from water allocation. It is found

that intra-annual characteristics of water level fluctuations

are the common periodic structures. Water allocation alters

the periodic structures by decreasing and weakening the

oscillations of water level, compared with the slight effects

of natural hydrologic water supplies and short-term climate

changes. An irregular water level decline and short-term

oscillation with irregular periodicity are deduced from

seasonal-trend decomposition analysis using STL. With

seasonality depicted monthly, the influence of water allo-

cation implies irregular oscillations with high-frequency

components, especially for monthly changes. The water

level fluctuations are influenced by seasonal changes, as

demonstrated by three types of time series. The impacts of

water allocation on seasonality show the differences with

continuous single-peak oscillations representing no influ-

ences and continuous double-peak oscillations representing

frequent influences. Furthermore, the accumulation of

water allocation shows a slight rising trend in average

monthly level fluctuations over the last several years. The

study helps understand periodic structures and long-term

trend changes of water level fluctuations, which will

facilitate lake management of Lake Baiyangdian.

Keywords Periodic structure � Water level fluctuation �
Wavelet analysis � Seasonal-trend decomposition analysis
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Introduction

As one of several hydrologic factors, water level is an

important indicator in lake management (Angel and Kun-

kel 2010; Leeben et al. 2012) and is an intuitive factor

indicating water availability for shallow lakes. Water level

fluctuations are decisive elements in hydrology, especially

for shallow lakes embedded in wetlands that are particu-

larly sensitive to any rapid change in water level and input

(Coops et al. 2003). Therefore, water level fluctuations may

have an overriding effect on the ecology, functioning, and

management of such lakes. Water levels in shallow lakes

naturally fluctuate intra- and inter-annually depending

largely on regional and global climate changes, seasonal

variations in meteorological conditions, and human activ-

ities (Keenlyside et al. 2008; Küçük et al. 2009; Omute

et al. 2012). Actually, water level fluctuations are induced

by change to the water budget, such as the amounts of

precipitation and evaporation, catchment size and charac-

teristics, and water inflow and outflow conditions of the
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basin. Water level fluctuations are considered as an intui-

tive factor of early warning for lake health that link climate

changes and anthropogenic interferences.

Such fluctuations are not a recent phenomenon and have

varied for a long time (Jay Baedke and Alan Thompson

2000; Chenini et al. 2008; Liu et al. 2013). The fluctuations

and their ecological and socioeconomic consequences have

been investigated in many large lakes (Chowdhury and

Rahman 2008; Wang and Yin 2008; Saleh et al. 2011).

Lake Baiyangdian is the largest shallow freshwater lake in

North China. In recent decades, it has shrunk and dried up

several times since 1980s, as the result of climate changes

and human activities. Thus, water allocations are important

for water balance of the lake. These have been imple-

mented over decades, especially during the last one.

However, it is unclear whether such allocations have the

potential to threaten the natural periodic structures of water

level fluctuations. Therefore, it is necessary to clarify the

periodic structures and to assess potential effects of dis-

turbances in water allocation..

With respect to inter-annual water level fluctuations of

lakes, the influences of hydrologic, meteorological, and

geophysical processes are usually negligible. This is

because their amplitudes are generally less then 10 cm and

only slightly increase the scatter of water level time series

(Cengiz 2011). In fact, in mean water level computation,

most of these local processes approach zero at the scale of

selected time series of the lake, assuming homogeneous

sampling of surface patterns (Hofmann et al. 2008; Shir-

mohammadi et al. 2013). Thus, to better understand the

long-term complex nature of water level fluctuations, the

wavelet transform method is a powerful tool for analyzing

nonstationary time series, as well as an exploration of

interest changes with inner/over the last few years in water

resources. Wavelet analysis and global spectrum methods

have been applied in hydrologic and meteorological sys-

tems in multivariate phenomena for many studies (Labat

et al. 2005; Küçük and Agiralioglu 2006; Wang et al.

2012a). The wavelet spectrum based on continuous wavelet

transform is three-dimensional, in that energy is manifests

as contour lines plotted in the time–frequency domain

(Rajaee et al. 2010). This of course provides an ideal

opportunity to examine energy variations in terms of

location and timing of hydrologic events (Labat 2008).

As for intra-annual level fluctuations of lake level, all

external natural superimposed factors are usually consid-

ered negligible, since their amplitudes are generally less

than 20 cm and thus only slightly increase the scatter of

water level time series. The variability of water level

responses significantly changes in water supply from water

allocation or the China South-to-North Water Transfer

Project (Cui et al. 2010), as well as from rainfall or cyclical

modifications to the evapotranspiration regime. Such

variability results from the customary seasonal oscillation

and from the superimposed effect of several nonseasonal

forcing factors. Variation of the seasonal cycle has been

studied using seasonal-trend decomposition using loess

(local error sum of squares) (STL) method for water level

(Lenters 2001; Sellinger et al. 2007) and nutrient trend

(Qian et al. 2000; Wang et al. 2012b). In this case, the trend

of water level fluctuations in Lake Baiyangdian can be

decomposed to depict intra-annual water level variation,

using STL method. Furthermore, unusual water level

fluctuations are often discernible in spite of the time that

water resides in the lake. This residence time usually

strongly modulates the hydrologic regime. The resulting

high- and/or low-frequency oscillations may turn water

level fluctuations into indicators of recent historical climate

changes (Jöhnk et al. 2004; Kebede et al. 2006; Zhao et al.

2013). Therefore, it is important to study the periodic

structure of water level fluctuations over both long-term

period and a seasonal short-term periods, which can help

understand the mechanism of lake hydrologic cycle.

In this paper, long-term time series data of water level

during 1950–2009 are used to inspect trends and harmonic

behavior in water level time series of Lake Baiyangdian,

Northern China. To investigate the characteristics of water

level fluctuations, we propose three intervals of time series:

integrate full, interceptive less anthropogenic influence,

and increased anthropogenic disturbance. Our main

objectives are to (1) describe long-term periodic structural

characteristics of water level fluctuations in the time

domain, with an emphasis on interferences of water allo-

cation; (2) reveal the characteristics of seasonal water level

variation, incorporating effects of nature and human

activity; and (3) propose an effective assessment method

for periodic structures of water level fluctuations.

Materials and methods

Study site and background

Lake Baiyangdian, in the central North China Plain, is

located 130 km south of Beijing (48�430–39�020N and

115�380–116�070E) (Fig. 1). The lake consists of more

than 100 small and shallow lakes, linked by thousands of

ditches. The lake surface area is 366 km2, with the

catchment area of 31,200 m2. Lake depth varies with

hydrologic conditions, but is usually less than 2.0 m (Xu

et al. 1998). Annual mean precipitation is less than

450 mm, and annual mean ambient temperature is less

than 17 �C under climate changes. With average annual

runoff of 3.57 9 109 m3, the lake has a vital roles in flood

reservation, environmental pollution decomposition, and

others. However, Lake Baiyangdian has shrunk and dried
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up frequently since the 1980s, when the water level is less

than 5.5 m. Moreover, the lake is a monomictic lake with

only one entrance receiving pollutant emissions from

Fuhe River (Fig. 1). Recently, the lake has suffered

eutrophication and much of the area has been converted to

swamps because of nutrient overload. Consequently, water

resources of the lake benefit substantially from China

South-to-North Water Transfer Project. In addition, water

allocation scheme has been implemented at least once per

year in Lake Baiyangdian since 1990s (Cui et al. 2010). In

the period of 2000–2009, water level of the lake is fre-

quently influenced by such water allocations (Table 1),

which has significantly changed natural patterns of water

level fluctuations.

Fig. 1 Geographical location of Lake Baiyangdian, North China

Table 1 Recent

implementations of water

allocations to Lake Baiyangdian

(2000–2009)

Time period of

water allocation

Reservoir Discharge out

of the reservoir (104 m3)

Discharge flow into

the lake (104 m3)

Jul 2000 Angezhuang 3,111 1,800

Dec 2000–Jan 2001 Wangkuai 7,902 4,060

Feb 2001–Mar 2001 Angezhuang 3,287 2,164

Jun 2001–Jul 2001 Wangkuai 9,079 4,513

Feb 2002–Mar 2002 Xidayang 5,015 3,501

Apr 2002–May 2002 Xidayang 3,873 1,974

Jul 2002–Aug 2002 Wangkuai 6,108 3,104

Jan 2003–Ma 2003 Wangkuai 20,000 11,634

Feb 2004–Jun 2004 Yuecheng 39,000 16,000

Mar 2005–Apr 2005 Angezhuang 5,863 4,251

Mar 2006 Angezhuang 3,200 828

Mar 2006–Apr 2006 Wangkuai 9,000 4,844

Nov 2006–Mar 2007 The Yellow River 20,000 10,010

Jan 2008–Jun 2008 The Yellow Rive 31,200 15,660

Jun 2009–Jul 2009 Angezhuang 6,974 1,725

Nov 2009 The Yellow Rive 20,000 10,000
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Data sources and classification of water level time

series

Monthly hydrologic data of water level time series from

1950 to 2009 were obtained from the Agency of Envi-

ronmental Protection of Anxin County, Hebei Province.

Considering the influences of artificial dam in upstream of

the lake since 1980s, three intervals of water level time

series data are representative of different scenarios. Water

level I covers the entire time series from 1950 to 2009, and

water level II (intercepted from water level I) represents the

time series with no anthropogenic disturbances by water

allocation (1950–1959), while water level III time series is

characterized by various and frequent anthropogenic water

allocations (2000–2009).

Methods

To analyze the temporal variability of long-term water

level fluctuations, we use continuous wavelet transform

and Fourier power spectrum analysis.

Spectrum analysis deals with the identification of cyclical

patterns in data. Data windowing is used to smooth the

power spectrum, thereby reduce its variance and increase

statistical confidence, although this may cause spectral

leakage (Cazelles et al. 2008). To reach a compromise

between strong smoothing (more confidence but stronger

bias) and weak smoothing (less confidence but less bias)

with acceptable spectral leakage, power spectrum estima-

tions are generated by applying a smoothing Hamming

window of variable length (Torrence and Compo 1998).

To investigate periodic structures of lake water level

fluctuations, monthly time series data were selected. Two

harmonic tools were applied to these data series: classical

Fourier analysis and continuous wavelet transform. The

classical Fourier transform uses sine and cosine base

functions of infinite span. It is globally uniform in time,

and only reveals the presence of spectral components (Lau

and Weng 1995). We used the conventional power of two

fast Fourier transform procedures. Decomposition of time

series into time–frequency space permits determination of

both the dominant modes of variability and their temporal

variation. Water level time series were analyzed by clas-

sical Fourier analysis and continuous wavelet transform

using the Morlet wavelet (Meyers et al. 1993).

Assuming a continuous time series x(t), t[[?, -?], a

wavelet function w(g) that depends on a nondimensional

time parameter g can be written

WðgÞ ¼ Wðs; sÞ ¼ s�1=2W
t � s

s

� �
ð1Þ

where t is time, s is the time step over which the window

function is iterated, s[[0,?] is for the wavelet scale. w(g)

must have zero mean and be localized in both time and

Fourier space.

The continuous wavelet transform is expressed by con-

volution of x(t) with a scaled and translated w(g):

Wðs; sÞ ¼ s�1=2

Zþ1

�1

xðtÞW�ðt � s
s
Þdt ð2Þ

where * denotes complex conjugate. By changing varying

both s and s values gradually, one can construct a two-

dimensional picture of wavelet power.

As for global wavelet spectrum, if a vertical slice

through a wavelet plot is a measure of the local spectrum,

then the time-averaged wavelet spectrum over all periods

or all the local wavelet spectra is

�W2ðsÞ ¼ 1

T

XT�1

t¼0

WtðsÞj j2 ð3Þ

where T is number of points in the time series, |Wt(s)|

denotes wavelet modulus or wavelet absolute value,

|Wt(s)|2 is the wavelet power, indicating the frequency (or

scale) of peaks in the spectrum of x(t), and how these peaks

change with time.

The time-averaged wavelet spectrum is generally called

the global wavelet spectrum (Torrence and Compo 1998).

The frequency (or scale) and temporal changes of peaks in

the spectrum of x(t) can be indicated with Wt sð Þj j2,

showing how these peaks change with time (Eq. 3).

The smoothed Fourier spectrum approaches the global

wavelet spectrum as the amount of necessary smoothing

decreases with scale. The latter spectrum provides unbiased

and consistent estimation of the true power spectrum and is a

useful tool for nonstationary time series analysis. The global

spectrum is compatible with a power spectrum. In the latter,

spectral components are defined as frequency, and periodic

components are ordered according to period scales within a

global wavelet spectrum. In addition, since a global spectrum

is calculated using a continuous spectrum, the starting and

finishing time of the periodic components can be obtained.

To evaluate overall patterns within intra-annual varia-

tions for the entire water level series (1950–2009), we use a

graphically based approach, i.e., the STL method. The

method is an iterative nonparametric procedure using

repeated loess fitting (Sellinger et al. 2007). A time series

of monthly monitoring data may be considered a sum of

three components: high-frequency seasonal, low-fre-

quency, long-term (or trend), residual (variation not

explained by time). These are expressed as

Yyear;month ¼ Tyear;month þ Syear;month þ Ryear;month ð4Þ

where Yyear,month is the observed value for a given year and

month, Tyear,month is the trend component, Syear,month is the

seasonal component, and Ryear,month is the residual term.
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Although the median polish process uses median values

for the trend and seasonal components, the STL method

uses one continuous loess line for the long-term trend

component and 12-month-specific loess lines for the sea-

sonal component. As with median polishing, fitting is done

on each component iteratively, until the resulting trend and

seasonal components are no longer different from the

estimates of the previous iterations. The nonparametric

nature of the STL makes it flexible in revealing nonlinear

patterns in seasonal data. Because each month is a sub-

series in the fitted loess model, the seasonal pattern can

evolve with time, thus revealing changes in timing,

amplitude, and variance in the seasonal cycle. As with all

nonparametric regression methods, the STL requires sub-

jective selection of smoothing parameters. There are two

smoothing parameters in the model, representing the win-

dow widths of the seasonal and long-term components. We

chose window widths of 21 and 61 months, respectively, to

visually elucidate trends.

Results and discussion

Descriptive statistics

Descriptive statistics (maximum, minimum, mean and

standard deviation) of three time intervals of monthly water

level are shown in Table 2. Intuitively, compared with

water level II, water level III indicates decline values,

indicating possible disturbance by upstream anthropogenic

artificial dams. This is because that the frequently water

allocations during 2000–2009 became important in the

water supply of Lake Baiyangdian (Table 1).

Wavelet analysis

Continuous wavelet transform

To analyze time-scale localization of the periodical signals

in the water level series, we used continuous wavelet

transform analysis. Figure 2 shows the real part of the

continuous Morlet wavelet spectra for the water level time

series. Figure 2a shows with confidence intra-annual

(\12 month) and near-half-decadal (*60 month) oscilla-

tions in water level I. The intra-annual structure persists

through the entire record period, whereas the near-half-

decadal signal was stronger since beginning in the 1950s. In

the periods of water levels I and II, both intra-annual

(\12 month) and *20-month periodic structures are obvi-

ous throughout the entire records (Fig. 2b, c). The real part

of wavelet spectra in the three intervals time series shows the

common characteristic of intra-annual water level fluctua-

tions. The results indicate that intra-annual water level

change is the inherent periodic structure that is unaffected by

the anthropogenic influences. This is the possible explana-

tion of short-term influences of climatic changes.

The wavelet power spectrum

Power of the wavelet transform (|Wt(s)|2 in Eq. 3) for the

monthly water level fluctuations in Lake Baiyangdian is

shown in Fig. 3. The square of absolute value gives infor-

mation on relative power at a certain scale and period. Fig-

ure 3a–c shows the actual oscillations of wavelets in three

time intervals, rather than just their magnitude. The wavelet

power spectrum reveals that the highest energy occurs for

water level time series. Periods of greater energy changes for

water level I are from 6–16 and 16–32 months (Fig. 3a).

Global variance of water level shows that the periodic

structures of 6 and 16 months are above the 95 % confident

level (Fig. 3d). For water level II and III, the wavelet power

spectra reveal an obvious difference of the highest energy

appearance, relative to the results from real part of contin-

uous wavelet transform. The period of the greatest energy

occurring for water level II is centered on 12 months, and

there are relatively weaker periods of 2 and 6 months that

persist for very short period (Fig. 3b). However, there are no

higher energy periods for water level III, only several weak

and short time periods scattered throughout the entire time

series (Fig. 3c). The global variance indicates that the

periods of 6 and 12 months are above 95 % confident level

for water level II (Fig. 3e), as is the periods of 6 months for

water level III (Fig. 3f). The results of both wavelet power

spectrum and global variance indicate the periodic coher-

ence with water levels II and I. The wavelet power spectrum

for water level III shows less obvious differences, and the

global variance only shows the common 6-month periodic

changes. Moreover, the durations of higher energy oscilla-

tions for water level III appear shorter.

Intra-annual fluctuations

Although above wavelet analysis shows multiple time-scale

variations in water level, intra-annual variations were

Table 2 Descriptive statistics for water level time series

Variables Duration time Unit Max. Min. Mean SD

Water level

I

Jan 1950–Dec

2009

m 11.15 3.24 7.61 ±1.27

Water level

II

Jan 1950–Dec

1959

m 11.15 7.49 8.90 ±0.78

Water level

III

Jan 2000–Dec

2009

m 7.57 5.70 6.75 ±0.46

Water levels I, II and III are measured referencing DaGu elevation as

a benchmark
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detected for all three interval time series. We are also mainly

interested in intra-annual fluctuations (\12 months), which

correspond to periodic management decisions in practice.

Consequently, we determined the global average variance to

the interested component. Figure 4 shows the intra-annual

average variances of three interval water level time series.

For water level I, there were high-confidence, intra-annual

water level variations from the beginning of the 1950s to the

end of the 1980s (Fig. 4a). For a long time, there were fewer

fluctuations with confident levels above 95 % in period of

water level III, but clear fluctuations in the period of water

level II (Fig. 4a). There were similar results from the sepa-

rate analysis in water level II and water level III (Fig. 4b, c).

Regarding the recent insufficient water resources and fre-

quent water recharges, water level variations in Lake

Baiyangdian are largely modulated by discharges from

upstream reservoirs, in addition to the quantity of water

resources. Both natural hydrologic water supplies and short-

term climate changes contribute less to the water level

fluctuations in the period of water level III.

STL results

Seasonal water level change is one of the main types of

intra-annual water level fluctuations. We know that intra-

annual water level fluctuations in recent years demon-

strate an negligible effect on natural hydrologic water

supplies and short-term climate changes. Thus, we studied

long-term and seasonal trends in water level fluctuations

using the STL method in the last decade. The nonpara-

metric nature of the STL approach makes it possible to

identify nonlinear trends and seasonal interactions that

would be missed by traditional trend detection methods.

STL decomposes the water level time series into three

components: a smoothed long-term trend (Fig. 5a), a

seasonal cycle of varying amplitude (Fig. 5b), and resid-

uals (Fig. 5c). The long-term trend line indicates an

irregular water level decline occurring before the end of

1980s and a short-term oscillation with an irregular

periodicity (Fig. 5a). After the end of 1980s, there was an

irregular water level rise. This is consistent with events

during the late 1980s, when water allocation gradually

became a vital inflows to Lake Baiyangdian. Similar

timing nodes also occur in seasonal cycles of variable

amplitudes (Fig. 5b). With seasonality depicted by month

(Fig. 5d), we see that the overall pre-1980s decline is

accentuated in autumn, indicated by declining seasonal

components from September to November. There is

dampening in spring–early summer, indicated by

increasing components from March to July. Continuous

monthly average water levels in the period of water level
Fig. 2 Real part of the continuous Morlet wavelet spectra for water

level I (a), water level II (b), and water level III (c)
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Fig. 3 Wavelet power spectrum using Morlet mother wavelet for

water level I (a), water level II (c), and water level III (e). The relative

low-resolution region is the cone of influence, where zero padding has

reduced the variance. Black contour is the 5 % significance level,

using a white-noise background spectrum. The global wavelet

variance (solid line) for water level I (b), water level II (d), and

water level III (f), and the dashed line is the confidence for the global

wavelet variance, assuming the same confidence level and back-

ground spectrum as in power spectrum
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I indicate a decrease trend from January to June and an

increase from July to September (Fig. 5d), which indicate

clear variation of seasonal fluctuation ranges (Fig. 5b).

The monthly average water level decline in spring points

to a huge water demand for use on land. Integrated water

recharge via precipitation and evaporation causes water

level increasing in summer, with a subsequently decline

because of less precipitation in the fall. The fluctuation

mode for the water level I period implies a response to

climate changes. Variations of the seasonal component

can be adequately depicted by monthly changes. How-

ever, obvious changes in the seasonal fluctuation range

can be a possible interpretation for increasing effects of

water allocation or anthropogenic interferences after

1980s.

To investigate differences of natural fluctuations and

disturbing fluctuations, STL analysis was done for water

level II and water level III. The smoothed trend of water

level II is consistent with the trend of water level III

during first 6 years. The curves show completely differ-

ent trends in the remaining periods, with declining in

water level II (Fig. 6a) and rise in water level III

(Fig. 6d). With seasonality depicted by month, the dif-

ferences lie in changing frequencies. In the period of

water level II, seasonality is shown by single-peak

changes (Fig. 6b). However, for the water level III per-

iod, there are double-peak changes in seasonality curves

(Fig. 6e). Continuous monthly average water level trends

in the water level II period are coincident with those in

the water level I period (Fig. 7a), which implies influ-

ences from climate changes. However, seasonal fluctua-

tions in the water level III period have different trends,

with drastic changes in spring and slight ones in fall

(Fig. 7b). Nevertheless, very weak trends of seasonal

level fluctuations in the water level III period still show

the potential influence of climate changes. These results

demonstrate the effects of water allocation on water level

fluctuations. There was frequent water allocation in

winter to guarantee the maximum water level in spring

(Cui et al. 2010). The water level was affected by intra-

annual climate changes until the following water

allocation.

Long-term periodic structure of water level fluctuations

Three long-term time series data with emphasis on

anthropogenic disturbances were used to detect periodic

structures of water level fluctuations in Lake Baiyangdian.

From the real part of the wavelet analysis, there was

intra-annual periodic structure (\12 month) in all three

time series. This result is similar to those of Cengiz,

which demonstrated that annual cycle events are generally

characterized by periodicities in water level fluctuations

Fig. 4 Intra-annual average fluctuations for water level I (a), water

level II (b), and water level III (c) based on wavelet global variance.

The dash line means 95 % confident level
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(Cengiz 2011). This inherent periodic structure is less

affected by anthropogenic disturbances. However, power

spectrum analysis indicates the accurate oscillations of

water level fluctuations. The consistent results in water

level I and water level II periods demonstrate that the

periodic structures of 6–16 months are natural structures

of water level fluctuations, whereas approximate 6-month

periodic structures in the water level III period indicate

the influence of water allocation on water level periods.

These results can also be shown by intra-annual fluctua-

tions analysis. Although precipitation and evaporation

were correlated with water level fluctuations, precipitation

changes had less impact on water level relative to human

activities (Zhuang et al. 2011). For a long-term, water

level modified by water allocation can decrease frequen-

cies with greater than 95 % confident level, which means

Fig. 5 Results of the STL method with depicting the long-term water level I component (a), seasonal component (b), and residuals (c). Red Solid

horizontal line in the (d) is the long-term mean of monthly trends for each month from 1950 to 2009

Fig. 6 Results of STL method with depicting trend component (a), seasonal component (b), residuals (c), for water level II and trend component

(d), seasonal component (e), residuals (f) for water level III
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water level fluctuations are deeply influenced by such

allocation. For intra-annual water level fluctuations, water

allocations are far more important than the climate

changes.

Seasonal trends of water level fluctuations

Although intra-annual water level fluctuations in recent

decade have a faint effect on natural hydrologic water

supplies and short-term climate changes, the STL method

further analyzes seasonally varying amplitudes responding

to the water level trend, as well as the monthly water level

depicting by seasonality. Based on the STL method, the

long-term trend shows an irregular water level declines and

short-term oscillations of irregular periodicity. However,

exact short-term period is unavailable, simply because of

selection of smoothing parameters in STL method to better

elucidate visual trends (Cleveland et al. 1990; Qian et al.

2000). For seasonality variations, there was a salient time

node at the end of 1980s, consistent with the result of long-

term trend variations. However, in seasonality depicted by

month, coincident oscillations occurred in both periods of

water level I and II periods; there was a relatively weak

trend in water level III. These results show the response of

climate changes to water level fluctuations. The obvious

differences in seasonality depicted by month for the water

level III period lie in the magnitudes of oscillations in

spring and fall. For water level III, the greatest seasonal

trend was in spring, in contrast to the corresponding trends

in fall for the water level I and II periods. This phenome-

non of water level III period gives an abnormal monthly

depiction of seasonality and suggests irregular oscillations

Fig. 7 Results of STL method with depicting mean of monthly trends for each month in period of water level II (a) and water level III (b). Red

Solid horizontal line is the long-term mean of monthly trends
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in high-frequency components, especially in monthly

changes. Annual water allocation constitutes these high-

frequency components, which demonstrates the changing

response to water allocation. For normal water level fluc-

tuations, seasonality can depict monthly part or completely.

Similar results were reported by Lenters (2001) and Quinn

(2002). Potential reasons for the differences in water level

III could be from monthly water budget, which is com-

pletely different from seasonal changing mode. Assel et al.

(2000) pointed out some potential influential factors could

change water level fluctuations, such as monthly total lake

evaporation, conversion factor, monthly mean land surface

runoff flows into the lake, monthly mean outflow, monthly

mean groundwater inflow/outflow, monthly mean con-

sumptive use, monthly mean water diversions, monthly

mean rate of change in volume due to thermal expansion,

and dynamic monthly lake. We have not considered these

factors, so they should be the focus of future research.

By comparing results for the period of water levels II and

III, water allocation impacts the seasonality of water level

fluctuations are shown by double-peak changes in the peri-

odic structure variations. The smaller peaks indicate the

disturbances of water allocation. Accumulation of frequent

water allocation is possible primary reason for an increased

trend over the last several years in the period of water level

III. Therefore, water allocation is of profound significance in

water level fluctuations, and future research should focus on

both influencing factors and ecological risk assessment.

Conclusion

In this study, water level I (1950–2009) represented the

entire time series and water level II (1950–1959) the time

series with no disturbances by water allocation. The water

level III time series (2000–2009) was characterized by

frequent disturbances from water allocation. Long-term

period structures and seasonal-trend decomposition of

water level fluctuations, especially regarding effects of

anthropogenic disturbances by water allocations, were

analyzed with the wavelet approach and the STL method

for Lake Baiyangdian for water levels I, II and III. In

summary, we demonstrated the following.

1. Intra-annual fluctuations were detected in all three

time series. The results of wavelet and power spectrum

analyses show that there were periodic structures with

60 and 16–32 months in the period of water level I,

respectively. There was an approximate 20-month

periodic structure in the period of water level II, from

the wavelet analysis. Inter-annual periodic structures

were below the 95 % confident level for the periods of

water levels II and III. Water allocation alters the

periodic structures of water level by decreasing and

weakening the oscillations, in contrast with the slight

effects of natural hydrologic water discharges and

short-term climate changes.

2. An irregular water level decline and a short-term

oscillation with an irregular periodicity were deter-

mined by the STL method in the period of water level

I. With seasonality depicted by month, the influence of

water allocation produces irregular oscillations in

high-frequency components, especially in monthly

changes. The long-term trend for the period of water

level II appears valid trend and is consistent with the

result of the water level I period. Despite the slight

trend in seasonality depicted by month in the water

level III period, seasonal change is suggested. More-

over, water allocation acting on seasonality shows

double-peak oscillations from 2000 to 2009, contrast-

ing with single-peak oscillations from 1950 to 1959.

The accumulation of water allocation shows a slight

rise in average monthly level fluctuations over the last

several years.

To better understand water level fluctuations from water

allocation disturbances, detailed study should be made of

other influencing factors and long-term ecological impacts

on lake ecosystem from such allocations. Future research

should also focus on the effects of hydrologic processes on

water level fluctuations.
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