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Abstract Water quality restoration efforts often suffer

the risk of ineffectiveness and failure due to lack of

quantitative decision supports. During the past two dec-

ades, the restoration of one of China’s most heavily pol-

luted lakes, Lake Dianchi, has experienced costly decision

ineffectiveness with no detectable water quality improve-

ment. The governments are planning to invest tremendous

amount of funds in the next 5 years to continue the lake

restoration process; however, without a quantitative

understanding between the load reduction and the response

in lake water quality, it is highly possible that these plan-

ned efforts would suffer the similar ineffectiveness as

before. To provide scientifically sound decision support for

guiding future load reduction efforts in Lake Dianchi

Watershed, a sophisticated quantitative cause-and-effect

response system was developed using a three-dimensional

modeling approach. It incorporates the complex three

dimensional hydrodynamics, fate and transport of nutrients,

as well as nutrient-algae interactions into one holistic

framework. The model results show that the model per-

forms well in reproducing the observed spatial pattern and

temporal trends in water quality. The model was then

applied to three total maximum daily load scenarios and

two refined restoration scheme scenarios to quantify phy-

toplankton responses to various external load reduction

intensities. The results show that the algal bloom in Lake

Dianchi responds to load reduction in a complex and

nonlinear way, therefore, it is necessary to apply the

developed system for future load reduction and lake res-

toration schemes for more informed decision making and

effective management.

Keywords Algae bloom � Water quality modeling �
Scenario analysis � Total maximum daily load � Lake

Dianchi

Introduction

Eutrophication resulting from society-mediated delivery of

excess nutrients to receiving water-bodies is a threat to

surface aquatic ecological systems across the world (Smith

et al. 1999; Conley et al. 2009). The over-enrichment of

nutrients can lead to serious eutrophication problems such

as algal blooms, habitat loss, biodiversity changes, bottom

oxygen depletion, and fishery loss (Diaz and Rosenberg

2008). The eutrophication control and water quality res-

toration for impaired waters pose a challenging problem for

environmental decision makers due to the complex non-

linear cause-and-effect relationship between nutrient
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sources and water quality responses. Without a quantitative

understanding about the response of eutrophication condi-

tion to different load control schemes, it would be very

difficult for environmental managers to make informed and

effective management decisions. In the past few decades,

water quality modeling (WQM) has evolved into a scien-

tifically sound technology to establish cause-and-effect

relationship between load reduction and water quality

responses, and has been widely used to support water

quality management decision-making (Vieira and Lijklema

1989; Chapra 1997; Ahmad et al. 2001; Liu et al. 2008a;

Zheng and Keller 2008; Zou et al. 2009; Zhao et al. 2011).

WQM plays a central role in determining the Total Maxi-

mum Daily Loads (TMDL) requirements to achieve water

quality standards and evaluating the effectiveness of pol-

lutant control actions (National Research Council 2001;

Lung 2001; Pelley 2003; Zou et al. 2006; Liu et al. 2008b).

In addition, Sagehashi et al. (2000) applied a predictive

model to simulate the long-term stability of shallow lakes

after bio-manipulations. Gurkan et al. (2006) developed a

structurally dynamic model for evaluating the effects of

restoration on Lake Fure, Denmark. Martins et al. (2008)

integrated mathematical modeling technology into decision

processes to analyze prospective scenarios for reducing the

risk of environmental degradation in Lake Sete Cidades

(Portugal).

The development of sophisticated water quality model

to support water quality management is of particular

importance in China, where eutrophication control is

among the top priority need and tremendous efforts have

been and will be made to restore lake water qualities in the

coming years (Ministry of Environmental Protection of

China (MEP) 2008). For example, Lake Dianchi, China’s

sixth largest freshwater lake, has been suffering severe

blue-green algae (BGA) bloom in the past decades (Yang

et al. 2009), and is currently recognized as one of the most

heavily polluted lakes in China (World Bank 2001; Liu

et al. 2006).

Restoration of Lake Dianchi has been a top priority for

local government in the past 20 years, and over two billion

U.S Dollars have been invested to control watershed pol-

lutant loading. However, due to lack of a scientifically-

sound quantitative understanding of the lake water quality

response to management activities, the previous manage-

ment efforts were based on un-informed decision making,

causing unwise spending of restoration funds. As a con-

sequence, after over 20 years of intensive restoration

efforts, the water quality in Lake Dianchi demonstrates no

sign of significant improvement. The government, scien-

tists, and publics are puzzled and questions were raised on

why the water quality never respond to all the implemented

restoration efforts as expected, and how should future

restoration efforts be designed to achieve better perfor-

mance. This is particularly critical since the China central

and local governments are planning to spend more in the

next 5 years to restore the water quality in Lake Dianchi.

The purposes of this study is to develop a decision support

framework that would potentially answer the questions

raised by the decision makers and publics, and guide a

more effective and wise spending of the lake restoration

funds for better results. The decision support system is

based on a sophisticated three-dimensional hydrodynamic

and water quality model. The model was calibrated and

validated against observed historical data to assure that it

reproduces the observed water quality pattern well. The

calibrated and validated model was then used as the deci-

sion support system to analyze various load reduction

scenarios to explore the complex cause-and-effect rela-

tionship between watershed loadings and in-lake eutro-

phication condition.

Materials and methods

Study area

Lake Dianchi, the largest lake in China’s Southwestern

Yunnan Province, is located south of the provincial capital

city of Kunming at an altitude of 1,887.4 m above sea level

(Fig. 1). It has a surface area of approximately 306.3 km2

and a watershed area of 2,920 km2 (latitude 24�280–25�280

N, longitude 102�300–103�000 E) (Yang et al. 2009). Lake

Dianchi was historically a clean water lake, serving as a

major drinking water source for Kunming metropolitan

area. However, the rapid urbanization and industrial

development of Kunming that began in the 1980s has

produced tremendous nutrient loads entering the lake,

causing severe deterioration in lake water quality, among

which Panlongjiang River and Daqinghe River poses the

biggest loading flux and river flow into the lake. In the past

two decades, Lake Dianchi has gradually lost its function

as a major drinking water source and is now one of the

three most heavily polluted lakes in China that the Chinese

central government mandates to develop effective water

quality management plans for and achieve significant water

quality improvement (MEP 2008).

The Kunming Environmental Monitoring Center is

responsible for monthly water quality monitoring. Data

were collected from seven regular monitoring sites. The

seven observation stations were Huiwanzhong (B6), Lu-

ojiaying (B5), Guanyinxi (B4), Guanyinzhong (B3),

Guanyindong (B2), Baiyukou (B1), and Haikouxi (A2)

(Fig. 1). Water samples were collected monthly and pre-

served, delivered, and analyzed using the standard methods
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of the American Public Health Association (APHA 1998)

and China’s GB3838-2002 Standard. These data provided

the basis for calibrating and validating the water quality

model developed in this study.

Theoretical framework

Eutrophication in Lake Dianchi can be conceptualized as

nutrient and algae dynamics primarily driven by external

nutrient loading and internal recycling. In the water col-

umn, algae would uptake nutrients in the forms of

ammonium, nitrate, and dissolved orthophosphate for

growth. In the meantime, algae respiration, mortality and

predation would release various forms of carbon, nitrogen

and phosphorous back into the water (Sagehashi et al.

2000). The aerobic oxidation of organic carbon in the water

column would exert a carbonaceous oxygen demand which

can cause aquatic eco-system impairment due to low DO.

In addition, the organic components of nitrogen and

phosphorous from both watershed sources and algal

metabolisms can also convert into inorganic forms through

degradation processes.

The ultimate sources of nutrients are from watershed

inflows and atmospheric deposition, which interact with

algae and other components of aquatic ecological system

after they enter the water column. A portion of particulate

nutrients, however, can exit the water column by settling to

the sediment bed. In the sediment bed, the deposited

nutrients undertake diagenetic processes that in return

generate sediment oxygen demand and upward flux of

nitrogen and phosphorus. The upward nutrient flux would

exert internal nutrient sources to the water column to

provide significant fuel for algal bloom in shallow lakes.

Apparently, the external nutrient sources from watershed

and atmosphere, the fate and transport of the nutrient in the

lake water column, and the sediment–water column inter-

action form three inexplicable components of the theoret-

ical framework that are necessary for analyzing the

effectiveness of load reductions schemes to restore Lake

Dianchi.

Computational platform

The water quality model for Lake Dianchi was developed

based on a sophisticated computational platform of Envi-

ronmental Fluids Dynamics Code (EFDC). EFDC is a

comprehensive one-, two-, or three-dimensional model

capable of simulating hydrodynamics, salinity, tempera-

ture, eutrophication dynamics, and the fate and transport of

toxic materials, using the FORTRAN language (Hamrick

1992, 1996; Park et al. 1995; Zou et al. 2008). The model

uses sigma vertical coordinates and Cartesian or curvilin-

ear, orthogonal horizontal coordinates to represent the

physical characteristics of a water body, although a recent

update now provides the capability for a General Vertical

Coordinate (GVC) representation of water bodies with

drastic bathymetry variation.

The hydrodynamic module of the model solves three-

dimensional, vertically hydrostatic, free surface and tur-

bulent averaged equations of motion for a variable-density

fluid. Dynamically coupled transport equations for turbu-

lent kinetic energy, turbulent length scale, salinity, and

temperature are also solved. For simplicity, the governing

equations and numerical schemes of the EFDC hydrody-

namic model will not be presented here, but are detailed in

Hamrick (1992). The general governing equation of the

water quality module of EFDC can be mathematically

represented as

Fig. 1 Lake Dianchi watershed, model grid, and sampling stations
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where C = concentration of a water quality state variable;

u, v, w = velocity components in the curvilinear, sigma x-,

y-, and z-directions, respectively; Ax, Ay, Az = turbulent

diffusivities in the x-, y-, and z-directions, respectively;

Sc = internal and external sources and sinks per unit vol-

ume; H = water column depth; mx, my = horizontal cur-

vilinear coordinate scale factors.

The last three terms on the left-hand side of Eq. (1)

account for transport and the first three terms on the right-

hand side account for diffusive transport. These six terms

for physical transport are solved using the same numerical

method for temperature and salinity in the hydrodynamic

model (Hamrick 1992). The last term in Eq. (1) represents

the kinetic processes and external loads for each of the state

variables. In EFDC, Eq. (1) is solved using a fractional step

procedure that decouples the kinetic terms from the phys-

ical transport terms:
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In Eqs. (2) and (3), the source–sink term in Eq. (1) has

been split into physical sources and sinks (SCP), which are

associated in volumetric inflows and outflows, and kinetic

sources and sinks(SCK).

The main steps for conducting EFDC include grid

generation and preprocessing, input file preparation, code

compiling and executing, diagnostic options and output,

time series output and analysis, results output and visual-

ization (Hamrick 1992). EFDC simulates 21 water column

state variables as listed in Table 1. The general interactions

between these state variables are illustrated in Fig. 2.

Water temperatures are needed for computation of the

water quality state variables and they are provided by the

internally coupled hydrodynamic model. More details

about the model structure and equations can be found in

Park et al. (1995).

In addition to representing the water column dynamics,

a predictive water quality model must quantitatively rep-

resent the interactions between the water column and

sediment in evaluating the response of water quality to

external loadings for water bodies when internal nutrient

loadings from sediments are significant. Lake Dianchi is a

shallow lake with highly enriched sediment, whereby the

internal nutrient loading from the benthic flux can be a

significant contributor to the long-term eutrophication

problem in the lake. Therefore, a critical component of the

water quality model for Lake Dianchi is to have the

capability of simulating the interactions between the sedi-

ment bed and water column water quality. The modeling

framework for the sediment–water interaction simulation is

the sediment diagenesis module in EFDC, which has 27

state variables representing the kinetic processes occurring

in the sediment bed. The sediment module, upon receiving

the particulate organic matter deposited from the overlying

water column, simulates the diagenesis and the resulting

fluxes of inorganic substances (ammonium, nitrate, phos-

phate, and silica) and sediment oxygen demand (SOD)

back to the water column. The coupling of the sediment

process model with the water column eutrophication model

allows the water quality model to have a predictive

Table 1 EFDC model water

quality state variables
(1) Algae group 1 (Bc) (12) Labile particulate organic nitrogen (LPON)

(2) Algae group 2 (Bd) (13) Dissolved organic nitrogen (DON)

(3) Algae group 2 (Bg) (14) Ammonia nitrogen (NH4)

(4) Refractory particulate organic carbon (RPOC) (15) Nitrate nitrogen (NO3)

(5) Labile particulate organic carbon (LPOC) (16) Particulate biogenic silica (SU)

(6) Dissolved organic carbon (DOC) (17) Dissolved available silica (SA)

(7) Refractory particulate organic phosphorus (RPOP) (18) Chemical oxygen demand (COD)

(8) Labile particulate organic phosphorus (LPOP) (19) Dissolved oxygen (DO)

(9) Dissolved organic phosphorus (DOP) (20) Total active metal (TAM)

(10) Total phosphate (PO4t) (21) Fecal coliform bacteria (FCB)

(11) Refractory particulate organic nitrogen (RPON) (22) Macrophyte/periphyton (Bm)
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capability that enables long-term simulations of water

quality following various load reduction conditions (Park

et al. 1995).

Model development

Configuration of the EFDC hydrodynamic and water model

for Lake Dianchi involved processing bathymetric data,

developing a model grid, assigning initial hydrodynamic

and water quality conditions in the water column, defining

boundary conditions at the water surface, and linking to a

watershed model for lateral flow and pollutant loading

boundary conditions. The following discussion provides

details regarding model configuration and application.

Grid generation

EFDC is a finite difference-based numerical modeling

system; therefore, the first step to modeling Lake Dianchi

with EFDC was to discrete the water body into a compu-

tational grid to solve the model’s governing equations. A

boundary-fit curvilinear grid was developed to most truly

represent the shape of the lake. The grid consisted of 664

curvilinear grid cells. Each cell was represented using six

layers to vertically resolve the light profile for accurate

phytoplankton simulations, which resulted in 3,984 com-

putational cells. Figure 1 presents the horizontal compu-

tational grid of the Lake Dianchi model.

Kinetic complexity determination

To accurately represent the complex chemical and bio-

logical interactions in the impaired water body, the highest

kinetic complexity represented in the EFDC model was

adopted. The water column state variables simulated in the

water quality model included three groups of phytoplank-

ton (Blue-green algae, diatom, green algae), DOC, LPOC,

RPOC, DOP, LPOP, RPOP, PO4, DON, LPON, RPON,

NH4, NO2/NO3, dissolved oxygen (DO), and COD.

In addition to representing the chemical and biological

interactions within the water column, a sediment diagenesis

model was developed to couple the water column and

sediment bed. It enables the prediction of benthic nutrient

flux and SOD in response to external nutrient loading and

water quality dynamics for not only historical conditions,

but also for watershed management and restoration sce-

narios. This predictive capability overcomes the inherent

limitation in many water quality models based on preset

static water–sediment interactions. This is of critical

importance for watershed management scenario analysis,

Fig. 2 Schematic diagram of

EFDC water quality model

structure (Park et al. 1995)
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whereby TMDL scenarios should (and in reality, would)

have a direct impact on sediment nutrient contributions to

the water column.

Boundary conditions

Model boundary conditions are external driving forces

applied to the modeling system. The lateral boundary

conditions include the tributary flow rate and associated

temperature and pollutant loadings. The surface boundary

condition is represented by time variable meteorological

conditions including solar radiation, wind speed and

direction, air temperature, atmospheric pressure, relative

humidity, and cloud cover conditions.

In the Lake Dianchi model, lateral boundary conditions

for flow and nutrients were configured based on the results

of a previously developed watershed model for the Lake

Dianchi watershed, which was based on the U.S. EPA’s

Generalized Watershed Loading Function (GWLF) mod-

eling framework. The spatial representation of the lateral

boundary conditions was determined by mapping the

geographical coordinates of the tributary outlets to the

model grid. Since the watershed model produced no result

for DO, the corresponding boundary conditions for DO

were configured based on observed data in the inflow

tributaries. The temperature boundary condition was

determined based on the simulated water temperature in the

lake to reflect the general response of water temperature to

atmospheric conditions. In addition to tributaries, atmo-

spheric deposition is an additional nutrient source, the

amount of which was estimated based on data to be

approximately 0.04 mg/L of PO4 and 0.7 mg/L of NO3 in

precipitation. This loading was represented in the EFDC

model as a constant wet deposition term.

The EFDC model requires atmospheric boundary forc-

ing data, which include atmospheric pressure, air temper-

ature, relative humidity, precipitation, evaporation, solar

radiation, cloud cover, wind speed, and wind direction to

drive the hydrodynamic simulation. The wind data were

obtained from three weather stations around Lake Dianchi,

including Chenggong, Daguanlou, and Jinning stations,

while other data were only from Daguanlou Station. The

wind data were represented using the corresponding coor-

dinates of the three weather stations, and the spatially

variable wind field above Lake Dianchi was internally

calculated in the EFDC model.

Initial conditions

Initial conditions provide an important starting point for the

model. Since Lake Dianchi has a very long retention time,

the impact of initial conditions can last for an extended

period. For such a system, proper assignment of initial

conditions serves as a critical step in developing the model.

In this study, the year 2003 was selected as the simulation

year based on data availability for model configuration and

calibration; the available data at the beginning of the year

was used to configure the initial conditions. Specifically,

the observed surface elevation at the beginning of year

2003 was used to initialize the water depth across the entire

lake. As for water quality, since significant spatial vari-

ability was demonstrated in the observed data, setting

spatially variable initial conditions through interpolating

the observed water quality concentration at seven locations

in the lake was thus desirable.

The initial condition for the sediment bed posed a

challenge for this modeling study due to a lack of data to

characterize the general magnitude and spatial variability

in the sediment bed. In light of this situation, an iterative

approach was adopted to derive the initial bed condition

through a calibration process. Specifically, the model was

run using an assumed initial bed condition for 5 years with

recycled boundary conditions, and then the resulting bed

condition was used as the initial condition for the calibra-

tion run. This process was repeated until the final calibra-

tion was achieved.

Results and discussion

Before the model can be used to support water quality

restoration decision making, its capability of representing

the relationship between watershed loading and in-lake

water quality should be established through a model cali-

bration and validation processes. Model calibration

involves adjusting parameter values within reasonable and

acceptable ranges, so that the deviations between the model

results and the measured data are minimized and are within

some acceptable ranges of accuracy (Jin et al. 2007).

Model validation is the subsequent testing of a calibrated

model to a second independent data to further examine the

model’s ability to realistically represent the waterbody. In

this study, there are two sets of independent data for the

years 2003 and 2004, respectively. These data sets are used

to calibrate and validate the Lake Dianchi water quality

model.

The model was calibrated for the period from January 1

to December 31, 2003, through a comparison of model

predictions with various observed data. The hydrodynamic

model was calibrated with temperature and surface eleva-

tion data. The dynamic water quality model was then cal-

ibrated using the observed data of chlorophyll-a (Chl a),

DO and multiple nutrient species.

The model calibration was conducted in a phased

manner, whereby the hydrodynamic model was calibrated

at first to make sure that the model reasonably represented
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the flow and water temperature dynamics. The simulated

water surface elevation was plotted against the data in

Fig. 3, and the comparison between modeled and observed

temperature at different monitoring stations are shown in

Fig. 4. As shown, the model accurately mimicked the

temporal variability in the water surface elevation and

temperature throughout the year and across the lake. In

general, both the model results and observed data show a

decreasing trend in elevation from January to July; then the

elevation rises from July to October before it levels off

toward the end of the year, which reflects the intra-annual

precipitation distribution whereby a majority of the rainfall

occurs during the summer. In addition to the water balance,

the temporal and spatial water temperature pattern in the

lake were also well reproduced by the model, providing a

physical basis for further calibrating the water quality

model since all the kinetic process of water quality con-

stituents are dependent on temperature.

The water quality model calibration was conducted to

enable the model reproduce the observed water quality

patterns in the lake. The simulated water quality was

compared with observed data and key kinetic parameters

were adjusted until a reasonable match between model

results and data was achieved. The key parameters adjusted

during the calibration process included nutrient- and algal-

related parameters. Table 2 shows the calibrated values of

the key parameters.

Figure 4 plots simulated surface NH4, DO, total nitrogen

(TN), and total phosphorus (TP) concentrations against

observed data at six monitoring stations in Lake Dianchi.

The observed data demonstrate significant temporal vari-

ability in water quality due to the dynamic features in

watershed loadings and in-lake processes, and the figure

shows that the model reproduced both the spatial and

temporal patterns of the observed data, indicating a good

representation of the lake. Considering the sparseness in

water quality data availability, it is not desired to calculate

error statistics to measure the model performance because

error statistics based on limited data can be misleading and

has no statistically significant meaning (Zou and Lung

2004).

As shown in Fig. 4, both the model results and observed

data show that NH4 concentration dropped sharply during

the first two months, which was likely caused by the lack of

sufficient inflow loadings during this dry season while the

early spring algal bloom in the lake uptakes significant

amount of NH4 to fuel the growth. Accompanying the

sharp drop in NH4, we observed in both the model results

and measured data that DO tended to increase from January

to February to reach a super-saturated condition, which

also suggests a spring algal bloom. The simulated chloro-

phyll-a match the observed data well and shows an

increasing trend during the first two months of the year that

corresponding to the early bloom. The chlorophyll-a then

decreases from February to March, indicating a collapse of

the early spring bloom likely due to the limitation from

depleted nutrient concentration.

Another interesting observation is that the DO concen-

tration in the water column correlates with the chlorophyll-

a trend very well, where increasing in chlorophyll-a always

accompanies increase in DO concentration. It appears that

majority of the fluctuation in DO concentration is associ-

ated with chlorophyll-a variability, indicating a good match

between modeled and observed DO can be an evidence of

good calibration of algae. This is particularly meaningful in

this modeling study because chlorophyll-a data were

available for only three times a year, while much more DO

data were available. Therefore, even though the good

match between simulated and observed chlorophyll-a

might not be sufficient to prove a good calibration of algal

dynamics, the well calibrated DO trend does provide

additional evidence that the algae dynamics were well

represented. In addition, it should be mentioned that DO

and chlorophyll-a are related in that when primary pro-

duction is strong, it would induce super-saturation of DO;

however, DO concentration and chlorophyll-a concentra-

tion cannot be directly correlated because DO is the result

of almost all water quality processes. A good representa-

tion of the algal dynamics is important for developing the

decision support tool for Lake Dianchi since majority of

the restoration efforts are dedicated to control algal bloom

in the lake.

To further establish the credibility of the Lake Dianchi

model, the independent data in 2004 were used to validate

the model. The validation involves applying the calibrated

model to the year 2004 without changing any parameter

values, and the simulated water quality conditions were

compared against the observed values to evaluate the

capability of the model to represent the real system. Fig-

ure 5 plots the model simulated water quality against

observed value. As shown, the model again mimics the
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Fig. 4 Model calibration: simulated water quality versus observed data at six monitoring stations
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observed water quality well, suggesting that the model

parameterization derived through the calibration process

is robust for representing a distinct year, providing addi-

tional evidence that the model has represented the reality

well.

Both the calibration and validation simulation demon-

strate that during the summer period, the DO concentration

rose to a very high concentration well above the saturation

level, which was caused by the intensive summer algal

bloom in the lake. The drastic increase in DO level during

summer occurs has been well documented for the hyper-

eutrophic lakes where algal bloom causes super-saturation

condition. Comparing the magnitude of summer DO at the

north lake station of Huiwanzhong and that at the south

lake station of Haikouxi, the peak DO value in the north

lake was clearly significantly higher than that in the south

lake, suggesting a more intensive algal bloom in the north

lake. This pattern agrees with the general observations in

Lake Dianchi (Yang et al. 2009), which can be explained

by the high nutrient input loading to the north side of the

lake from the main tributaries, the Daqinghe and Pan-

longjiang rivers; this will be discussed further under sce-

nario analysis.

During the dry period, the loading signal from the tribu-

taries is significant only at the north lake station of Hui-

wanzhong. However, during the wet period, we observed

spikes of increased nutrient concentration at all stations. Note

that after watershed loadings caused a spike in NH4 con-

centration, the spike turned into a sharp downtrend until an

external loading event produced another spike. The downturn

of NH4 following a spike was likely caused by a combined

effect from dilution due to mixing along with stimulated algae

activities caused by increased nutrient concentration, which

quickly took up inorganic nutrient and depleted the concen-

tration in the water column.

Table 2 Calibrated values for the key water quality parameters

Parameter Description Value References

Pa Max growth rate of algae

group 1

2.95/day 0.2–9.0

Pb Max growth rate of algae

group 2

2.8/day 0.2–9.0

Pc Max growth rate of algae

group 3

2.5/day 0.2–9.0

Ra Basal respiration rate of

algae group 1

0.14/day 0.01–0.92

Rb Basal respiration rate of

algae group 2

0.15/day 0.01–0.92

Rc Basal respiration rate of

algae group 3

0.14/day 0.01–0.92

Da Predation death rate of

algae group 1

0.04/day 0.03–0.3

Db Predation death rate of

algae group 2

0.15/day 0.03–0.3

Dc Predation death rate of

algae group 3

0.04/day 0.03–0.3

KEb Background light

extinction coefficient

0.3/m 0.25–0.45

KEc Chlorophyll-a induced

light extinction

coefficient

0.012 per

ug/L

0.002–0.02

KHNa Nitrogen half saturation

coefficient for algae

group 1

0.02 mg/L 0.006–4.32

KHNb Nitrogen half saturation

coefficient for algae

group 2

0.02 mg/L 0.006–4.32

KHNc Nitrogen half saturation

coefficient for algae

group 3

0.02 mg/L 0.006–4.32

KHPa Phosphorus half

saturation coefficient

for algae group 1

0.001 mg/L 0.001–1.52

KHPb Phosphorus half

saturation coefficient

for algae group 2

0.001 mg/L 0.001–1.52

KHPc Phosphorus half

saturation coefficient

for algae group 3

0.001 mg/L 0.001–1.52

TMRa Optimal temperature

range for algae group 1

26–30 �C N/A

TMRb Optimal temperature

range for algae group 2

10–15 �C N/A

TMRc Optimal temperature

range for algae group 3

22–25 �C N/A

Sa Settling rate of algae

group 1

0.10 m/day 0.001–13.20

Sb Settling rate of algae

group 2

0.25 m/day 0.001–13.20

Sc Settling rate of algae

group 3

0.15 m/day 0.001–13.20

SRP Settling rate of refractory

organic matters

0.2 m/day 0.02–9.0

Table 2 continued

Parameter Description Value References

SLP Settling rate of labile

organic matters

0.2 m/day 0.02–9.0

KRN RPON hydrolysis rate 0.001/day 0.001

KLN LPON hydrolysis rate 0.04/day 0.01–0.63

KDN DON decay rate 0.05/day 0.01–0.63

KRP RPOP hydrolysis rate 0.001/day 0.001

KLP LPOP hydrolysis rate 0.04/day 0.01–0.63

KDP DOP decay rate 0.05/day 0.01–0.63

KRC RPOC hydrolysis rate 0.001/day 0.001

KLC LPOC hydrolysis rate 0.05/day 0.01–0.63

KDC DOC decay rate 0.07/day 0.01–0.63

KN Base nitrification rate 0.05/day 0.001–1.3
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In summary, the model in general captures the spa-

tial and temporal distribution of water quality well,

although a few minor disparities exist between the

model result and data at certain locations and times,

which can be attributed to the uncertainty in both the

model and data. However, these disparities between

model and data are acceptable for the decision support

purpose as the model has been shown to represent the

overall dynamics well in the calibration and validation

simulations.
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TMDL and restoration scenario analysis

Three TMDL scenarios were conducted to derive the load

reduction requirement for achieving a series of water

quality targets. The water quality targets for Lake Dianchi

were set based on the China Environmental Quality Stan-

dards for Surface Water (EQSSW) system, which specifies

different concentration targets based on different water

quality classifications. For Lake Dianchi, the proposal was

made to reach the Class V target of EQSSW as an initial

objective of pollution control and then explore the feasi-

bility of reaching Classes IV and III.

In this study, iterative model scenario runs were con-

ducted to find that to reach the Classes III, IV, and V

water quality targets, an 80, 66, and 54 % reduction,

respectively, would be required in nutrient loading from

the watershed. Apparently, none of these reduction rate

requirements are an easy goal to be accomplished. As

shown, even to meet the lowest level goal would require

an approximately 50 % reduction in the existing loading

level, which can take a long time and tremendous effort to

achieve. Therefore, in the present and near future, gov-

ernmental and other related parties should base their water

quality goals on the Class V target and implement man-

agement schemes accordingly.

Quantitative analysis: water quality responses

under TMDL scenarios

The preliminary TMDL result provides a basic framework

for decision making; however, a refined and quantitative

analysis will be more powerful to evaluate various key

water quality restoration schemes. Therefore, the model

was applied to conduct a series of scenario analysis through

simulating how the in-lake algal bloom intensity responds

to various load reduction schemes. To execute such an

analysis, a baseline scenario was formulated based on the

existing loading level as in the calibration model, but with

recycling the boundary conditions for the last 40 years to

simulate the long-term trend; the results of the 40 year

were used as the basis of comparison. The major reason for

the long-term simulation was to explicitly represent the

response of internal nutrient sources from the sediment to

changes in external loadings under different scenarios.

Through preliminary scenario runs it was found that

approximately 40 years of continuous simulation was

required to allow reach quasi-steady state, therefore, all the

scenarios were run to 40 years to provide consistent and

stabilized results for comparison.

Two experimental scenarios proposed by the local

decision makers, with the three TMDL scenarios, were

configured based on the baseline model, but reducing the

nutrient loadings at various levels and from different

sources. They were proposed by decision makers to help

understand why the past restoration produced no response

in the lake. The two scenarios are:

1. All but P and D: remove 100 % of nutrient loadings

from all tributaries except for Panlongjiang River

(P) and Daqinghe River (D);

2. P and D only: remove 100 % of nutrient loadings

from Panlongjiang and Daqinghe rivers, but keep the

loadings from all other tributaries at the baseline

level.

All five scenarios were run for 40 years in the same

manner as the baseline analysis and the resulting time

variable, chlorophyll-a concentration, for the 40 year was

compared against the baseline result in Fig. 6. In later text,

the Panlongjiang and Daqinghe rivers will be referred to as

the Group 1 tributaries and all other tributaries as Group 2

tributaries.

Note in panel A of Fig. 6, the simulated chlorophyll-a

concentration for Scenario 1 is very close to the baseline

result, indicating that even with a unrealistic 100 %

nutrient reduction from all of the Group 2 tributaries, the

algal bloom intensity in the lake would still likely be the

same as the pre-control condition. Actually, this scenario

represents an extreme condition whereby the 100 % of

nutrient loadings are removed from those tributaries. In

reality, the reduction level would be much lower than the

extreme 100 %; therefore, it can be inferred that manag-

ing the Group 2 tributaries alone would be unlikely to

produce any visible improvement in algal bloom control.

This result helps the decision- makers understand why the

past watershed pollution control measures which focused

on non-point source controls associated with these tribu-

taries produced no detectable response in algal bloom

intensity.

In contrast, Scenario 2 results show that the algal

bloom in Lake Dianchi respond to control of loadings

from Panlongjiang and Daqinghe Rivers significantly.

With all the Group 2 tributaries un-controlled, removing

the loadings from Panlongjiang and Daqinghe Rivers

would significantly depress the algal bloom in the lake.

This scenario helps the decision-makers identify the key

for directing future resources in control algal blooms in

the lake. It should be noted that Scenarios 1 and 2 are

only experimental analysis, which were not designed to
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directly guide future decision making since it is not

realistic to control a group of tributaries to extremely

high level while leaving other tributaries alone.

The three TMDL scenarios were designed to provide

more realistic guidance for decision making. The results

of the TMDL scenarios were plotted against the baseline

results in panel C to E of Fig. 6. As shown, with the

increasing load reduction ratio, the algal bloom in Lake

Dianchi is significantly depressed due to insufficient in-

lake nutrient levels to sustain the fast growth of phyto-

plankton. However, the results of scenario 5 also show

that even the water quality reaches Class III, which is

very high for Lake Dianchi to compliance, the peak

chlorophyll-a can still reach a level [50 lg/L. There is a

relatively high risk of algal bloom. The scenario results

presented above demonstrate the difficulty of achieving a

significant depression in algal bloom intensity in Lake

Dianchi.

As shown above, the model developed in this study

reproduced the observed data well, providing the first

quantitative decision support tool for the lake Dianchi

water quality restoration. The current model can be applied

to evaluate more sophisticated load reduction and alloca-

tion scenarios for guiding current pollution control pro-

grams. In the meantime, it will be expected to further

update the current model using recently collected data, and

continue to provide refined decision support for future lake

restoration efforts.

Conclusion

A three-dimensional and hydrodynamic water quality

model was developed to simulate the fate and transport of

nutrients, along with the eutrophication dynamics in Lake

Dianchi, China. The model explicitly simulates the physi-

cal, chemical, and biological processes that are very

important in understanding the eutrophication dynamics in

the lake. This modeling study led to the following obser-

vations and conclusions.

1. Overall, the model reproduced the observed temporal

and spatial water quality patterns in the lake repre-

sented by two independent data sets, suggesting that

the model represent the eutrophication dynamics in the

lake well.

2. The model was applied to conduct a series of TMDL

scenario analyses and the results indicate that achiev-

ing observable algal control in the lake would be very

difficult. A significant depression of chlorophyll-a

concentration in the lake would require drastic nutrient

load reductions from the inflowing tributaries.

3. Internal nutrient sources from the sediment would

provide a long-lasting influx of nutrient to the water

column to sustain phytoplankton growth, causing

extensive simulation periods to be used, i.e., 40 years
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to produce quasi-steady state results for scenario

evaluation.

4. The modeling study found that significant watershed

pollutant reduction would be required even to achieve

the lowest level of water quality targets (Class V),

suggesting that a phased approach should be adopted

to set a site-specific water quality target. Complete

compliance at the highest target level (Class III) would

require approximately 80 % loading reduction, which

seems infeasible based on available management

technologies.

5. Future research should focus on refining the model

with more intensive and accurate data and conserving

the role of air deposition, hence allowing the model to

evolve along the process of watershed management

and pollutant control to provide real-time environ-

mental management decision support.
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