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Abstract This paper describes the application of multi-

layer perceptron (MLP), radial basis network and adaptive

neuro-fuzzy inference system (ANFIS) models for com-

puting dissolved oxygen (DO), biochemical oxygen

demand (BOD) and chemical oxygen demand (COD) lev-

els in the Karoon River (Iran). Nine input water quality

variables including EC, PH, Ca, Mg, Na, Turbidity, PO4,

NO3 and NO2, which were measured in the river water,

were employed for the models. The performance of these

models was assessed by the coefficient of determination R2,

root mean square error and mean absolute error. The results

showed that the computed values of DO, BOD and COD

using both the artificial neural network and ANFIS models

were in close agreement with their respective measured

values in the river water. MLP was also better than other

models in predicting water quality variables. Finally, the

sensitive analysis was done to determine the relative

importance and contribution of the input variables. The

results showed that the phosphate was the most effective

parameters on DO, BOD and COD.

Keywords ANN � ANFIS � Karoon River �Water quality

Introduction

The river water is a primary natural resource for people for

different consumptions such as drinking (especially in

developing countries), tourism, fish fostering and recrea-

tion; therefore, it requires at least an acceptable level of

water quality. The surface water quality in a region largely

depends on the nature and extent of the agricultural,

industrial and other anthropogenic activities in the catch-

ments (Singh et al. 2009). Therefore, in regard to the

importance of surface water in water resource modeling,

the prediction analysis of the river water quality for typical

development scenarios is essential. Predicting the water

quality is also the key factor in the water quality man-

agement of rivers, and it enables a manager to choose an

option that satisfies a large number of identified conditions

(Palani et al. 2008).

To assess river water quality, different parameters such

as dissolved oxygen (DO), biochemical oxygen demand

(BOD), chemical oxygen demand (COD), temperature, pH

and conductivity can be used. In general, the organic pol-

lution in an aquatic system is measured and expressed in

terms of declined dissolved oxygen (DO) level and the

biochemical oxygen demand (BOD) (Singh et al. 2009).

The DO level is a measure of the health of the aquatic

system. A certain minimum level of DO in water is

required for the aquatic life to survive (Basant et al. 2010).

The sources of DO in a water body include re-aeration

from the atmosphere, photosynthetic oxygen production

and DO loading. The sinks include oxidation of carbona-

ceous and nitrogenous material, sediment oxygen demand

and respiration by aquatic plants (Kuo et al. 2007). BOD is

the amount of oxygen used by aerobic microorganism to

break down the organic matters into more stable form

(Cox, 2003). It measures an approximate amount of
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biodegradable organic matter present in water and serves as

an indicator parameter for the extent of water pollution.

The BOD of any aquatic system is the foremost parameter

needed for assessment of the water quality as well as

development of management strategies for the protection

of water resources (Singh et al. 2009). The chemical oxy-

gen demand (COD) is used as a measure of the oxygen

equivalent of the organic matter content of a sample that is

susceptible to oxidation by a strong chemical oxidant. The

COD is used to measure the total quantity of oxygen-

consuming substances in the complete chemical break-

down of organic substances in water. It is an important

parameter in measuring quality and determining what

organic load is present in the water (Verma and Singh

2013).

Although parametric statistical and deterministic models

have been the traditional approaches for modeling the

water quality, these models require vast information on

various hydrological subprocesses in order to arrive at the

end results (Singh et al. 2009). Moreover, these models

require precisely determined rate constants/coefficients

pertaining to various hydrological, chemical, physical and

biological processes, which are largely time and space

specific in nature. Additionally, such models have analyt-

ical solutions, but they have boundary conditions as limi-

tations (Basant et al. 2010). Also, since a large number of

factors affect the water quality, it has a complicated non-

linear relation with the variables; therefore, traditional data

processing methods are no longer good enough for solving

the problem (Xiang et al. 2006; Ranković et al. 2012). In

recent years, several researches have been conducted on

water quality forecast models (Palani et al. 2008; Basant

et al. 2010; Faruk 2010). Over the past several years, many

nonlinear models such as artificial neural network (ANN)

and adaptive neuro-fuzzy inference system (ANFIS)

among others have been used for the prediction and fore-

casting of water resource variables. The literature review

shows ANN models have been widely accepted as a

potential useful way of modeling hydrological processes

and have been applied to a range of different areas

including water quality, rainfall runoff, sedimentation and

rainfall forecasting. For example, Kuok et al. (2009) have

used particle swarm optimization feed-forward neural

network for modeling runoff. Bateni et al. (2007) have used

ANNs and ANFIS models to estimate the equilibrium and

time-dependent scour depth with numerous reliable data-

base. ANNs have been used intensively in the development

of a reservoir water quality simulation model (Soyupak

et al. 2003; Chaves and Kojiri 2007). Palani et al. (2008)

used an ANN model to predict and forecast temperature,

salinity, DO and Chl-a in Singapore coastal. Singh et al.

(2009) applied the ANN model for computing the dissolved

oxygen (DO) and biochemical oxygen demand (BOD)

levels in the Gomti River (India). Faruk (2010) used a

hybrid neural network and ARIMA models for water

quality time series prediction. Their results showed that the

hybrid model provides much better accuracy over the

ARIMA and neural network models for water quality

predictions by itself. Najah et al. (2009) used ANN to

predict the Johor River (Malaysia) water quality parame-

ters. Basant et al. (2010) used linear and nonlinear mod-

eling for simultaneous prediction of the dissolved oxygen

(DO) and biochemical oxygen demand (BOD) levels in the

river water. They applied partial least squares (PLS)

regression and feed-forward back-propagation artificial

neural networks (FFBP ANNs) modeling methods to pre-

dict the DO and BOD levels by using eleven input vari-

ables which measured monthly in the river water at eight

different sites over a period of ten years. Their results

showed that both the linear (PLS) and nonlinear (ANN)

models could predict the values of DO and BOD, but the

performance of ANN was relatively better than PLS.

Although some water quality parameters like tempera-

ture, pH and DO, can be accurately measured with the

exceeding simplicity, whereas on the other hand, calcula-

tion of BOD and COD is not only cumbersome but also

inaccurate many times (Verma and Singh 2013). So, with

regard to the importance of prediction of water quality

parameters, this paper employs the application of ANN

(MLB/BP and RBF) and ANFIS models to predict the DO,

BOD and COD parameters of the Karoon River water

simultaneously, and the results of three models are dis-

cussed and compared with those obtained through the

measurements. For achievement of this purpose, the data of

Karoon River with period of seventeen years (1995 to

2011) were used.

Materials and methods

Study area

Iran with an area of about 1,648,000 km2 is located in the

southwest of Asia and lies approximately between 25N and

40N in latitude and between 44E and 64E in longitude. The

population of this country was estimated 75.0 million in

2011. Iran’s important mountains are Alborz and Zagros

ranges. Alborz and Zagros Chains stretch from northwest

to northeast and from northwest to southeast, respectively.

These two ranges play an important role in the non-uniform

spatial and temporal distribution of precipitation in the

whole country. The climate of Iran is mainly arid or

semiarid, except for the northern coastal areas and some

parts of western Iran. About 65 % of its territory is arid or

hyperarid, and approximately 85 % has an arid, semiarid or

hyperarid environment (Badripour 2006). Apart from the
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coastal areas, the temperature in Iran is extremely conti-

nental with relatively large annual range about 22 to 26 �C.

The average annual rainfall of the country is about

240 mm; less than 1/3 of the average rainfall of the world

(860 mm), with maximum amount in the Caspian Sea

plains, Alborz and Zagros slopes with more than 1,800 and

480 mm, respectively. The annual precipitation of central

and eastern plains decreases to less than 100 mm depend-

ing on their locations (Raziei et al. 2005). Since the rain in

Iran is highly variable in time, space, amount and duration,

therefore it is the most important limiting factor for bio-

logical and agricultural activities (Modarres and De Paulo

Rodrigues da Silva 2007).

Karoon, Dez, Karkhe, Jarahi and Marooun are the main

important rivers of Khuzestan province of Iran. Karoon

with a basin area of 62,570 km2 is the longest and most

important river of Iran which collects the runoff of exten-

sive areas and conveys to the Persian Gulf (Fig. 1). This

river supplies water demands of 16 cities, several villages,

thousands hectares of agricultural lands, and also with

having four large dams (Karoon 1, 2 3 and 4) has an

important role in power generation. As Khuzestan Province

is one of the strategic provinces of the country with a high

potential for agricultural and industrial development, water

pollution of the Karoon River system can significantly

affect the development of this province. The increasing

irregular water withdrawals for drinking, agriculture and

industry, rapid population growth and urban extension, lack

of sewage networks due to the high cost of making them,

unsuitable establishment of industries in the metropolitan

area and non-compliance of environmental laws by large

industrial units and direct wastewater discharges into Ka-

roon River have endangered the aquatic life of this river.

The agriculture return flows by drainage have a high

concentration of fertilizers, heavy metals, suspended and

dissolved solids and pesticides, which violate the national

effluent standard. Agricultural and agroindustrial return

flows, domestic wastewater of the cities and villages and

industrial effluents are the main pollution point sources of

the Karoon River. Increasing water demands at the devel-

opment stage including agricultural networks, fish hatchery

projects and inter-basin water transfers could result in a

gloomy future for water quality of the Karoon River (Ka-

ramouz et al. 2004). Approximately, the contribution of

domestic, agricultural and industrial wastewater pollution is

48, 26 and 23 %, respectively. More urban sewage of Ah-

waz, Gotvand, Abadan and Khorramshahr directly dis-

charges into rivers without any treatment. Ahvaz city with

1.3 million population and discharge of three-fifths waste-

water into Karun River has the highest share of pollution.

With respect to the importance of Karoon River, the

study of water quality and prediction water quality

parameters is very important. To achieve the goals of this

research, ANN and ANFIS models were used to simulate

water quality parameters such as DO, BOD and COD of the

Karoon River.

Fig. 1 Map of Karoon Basin (Iran)
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Water quality data set

The water quality data set of Karoon River flowing through

the southern alluvial Khuzestan plains in Iran, over a per-

iod of 17 years (1995 to 2011) was used in this study.

These data are monitored regularly each month at eight

different sites. The selection of an appropriate set of input

variables from all possible input variables during artificial

intelligence (AI) model development is important for

obtaining high-quality model (Ranković et al. 2012). Many

of the described methods for input variable selection are

based on heuristics, expert knowledge, statistical analysis

or a combination of these. However, although there is a

well-justified need to consider input variable selection

carefully, there is currently no consensus on how this task

should be undertaken (May et al. 2008). So, in this research

for prediction of the water quality parameters, i.e., dis-

solved oxygen (DO, mg L-1), biochemical oxygen demand

(BOD, mg L-1) and chemical oxygen demand (COD,

mg L-1) based on the existing measured values of different

variables and their correlative analysis, total nine factors

(variables) were identified which affected the water quality

parameters. These parameters are as follows: electricity

conductive (EC, ds m-1), water PH, calcium (Ca, mg L-1),

magnesium (Mg, mg L-1), sodium (Na, mg L-1), turbidity

(NTU), phosphate (PO4, mg L-1), nitrate nitrogen (NO3–

N, mg L-1),nitrite (NO2, mg L-1) (Eqs. 1, 2 and 3).

DO ¼ f 1ðEC; pH;Ca;Mg;Na;Turbidity; PO4;NO3;NO2Þ
ð1Þ

BOD ¼ f 2ðEC; pH;Ca;Mg;Na;Turbidity; PO4;NO3;NO2Þ
ð2Þ

COD ¼ f 3ðEC; pH;Ca;Mg;Na;Turbidity; PO4;NO3;NO2Þ
ð3Þ

To determine dispersion of data, two statistical measures,

i.e., the coefficient of variation (CV) and standard deviation

(SD), were used. The computations of these parameters for

three dependent variables (DO, BOD and COD) are shown

in Table 1. The results showed large variations between the

samples with a high coefficient of variation (51.2 % for DO,

64.5 % for BOD and 63.7 % for COD). The reason for

variation in concentration of the dependent variables is that

the Karoon River during its course passes through several

townships such as Ahwaz, Khorramshahr and Abadan cities

and a number of wastewater drains and tributaries pour

huge quantities of untreated wastewater into the Karoon

River. The coefficient of variation for independent variables

was also between 10.9 and 88.8 %.

In this study, ANNs and ANFIS were identified to pre-

dict the water quality (DO, BOD and COD) of the Karoon

River (Iran). For these models identification, the complete

river water quality data set of 17 years (200 samples 9 11

variables) was divided into two subsets. The training and

testing data subsets comprised of 160 (80 %) and 40

(20 %) samples, respectively. Finally, the model input

(independent variables), and the training and testing data

sets had dimensions of 160 samples 9 11 variables and 40

samples 9 11 variables, respectively. The output variables

(DO, BOD and COD) corresponding to the input variables

belonged to the same water sample which were measured

in same time and space.

Artificial neural network (ANN)

Artificial neural network (ANN) was first introduced in

1943 (McCulloch and Pitts 1943), and it is a massively

parallel-distributed information processing system that has

certain performance characteristics resembling biological

neural networks of the human brain (Haykin 1999). ANN

works very well when the volume and number of variables

or diversity of the data are very large; the relationships

between variables are vaguely understood, or the rela-

tionships are difficult to describe adequately with conven-

tional approaches. Thus, ANN provides an analytical

alternative to conventional techniques, which are often

limited by strict assumptions of normality, linearity, vari-

able independence, etc. For the training of the ANN model,

considerable amounts of data set are needed. According to

the learning algorithm, the ANN models can be classified

to back-propagation, feed-forward back-propagation, feed-

forward cascade correlation, radial basis function and

conjugate gradients. (ASCE 2000a, b). These models were

used by many researchers for engineering problems (Yil-

maz and Kaynar 2011; Wang et al. 2010; Bandyopadhyay

Table 1 Basic statistics of the measured water quality variables in

Karoon River, Iran

Variable Unit Min Max Average SD CV (%)

EC ds m-1 1.7 9.26 4.55 1.71 83.2

pH – 5.1 8.71 7.21 0.79 41.7

Ca mg L-1 1 75 10.02 7.88 78.6

Mg mg L-1 2.1 60 11.41 10.13 80.9

Na mg L-1 1.42 40 18.23 8.13 44.6

Turbidity NTU 1 25 7.81 6.32 88.8

PO4 mg L-1 0.13 3.21 1.14 0.89 78.6

NO3 mg L-1 0.34 2.7 1.01 0.42 10.9

NO2 mg L-1 0.08 2.1 0.46 0.38 37.5

COD mg L-1 1.06 34.2 13.12 8.36 63.7

BOD mg L-1 3.7 40.6 16.91 10.90 64.5

DO mg L-1 3.1 29.4 12.28 6.28 51.2

SD standard deviation, CV coefficient of variation
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and Chattopadhyay 2007), water quality study (Singh et al.

2009 and Chau 2006) and hydrological and hydraulic

modeling (ASCE 2000a, b). In the present study, two kinds

of ANN, i.e., the multi-layer perceptron (MLP) with back-

propagation algorithm and Radial basis neural networks

(RBNN), were used.

Multi-layer perceptron (MLP/BP)

MLP has generally three layers: input, output and inter-

mediate or hidden layers. Back-propagation was proposed

by Rumelhart et al. (1986), and it is the most popular

algorithm for training of a MLP network (Wasserman

1989; Fausett 1994; Haykin 1999). The back-propagation

algorithm involves two steps. The first step is a forward

pass, in which the effect of the input is passed forward

through the network to reach the output layer. After the

error is computed, a second step starts backward through

the network. The errors at the output layer are propagated

back toward the input layer with the weights being modi-

fied according to Eq. (4).

Dwij ðnÞ ¼ �e� oE

owij

þ a� Dwij ðn� 1Þ ð4Þ

where Dwij ðnÞ and Dwij ðn� 1Þ are, respectively, weight

increments between node i and j during the nth and (n -1)th

pass, or epoch, E is Error; e and a are called learning rate

coefficient and momentum factor, and control the algo-

rithm’s rate of learning. To optimize the rate at which a

network learns, these factors must be set and/or adjusted

properly during the training process. The valid range for

both e and a is between 0 and 1 (Qnet 2000 Manual 1999).

In the typical configuration for MLP, a set of data (X1, X2,

…, Xn) is first fed directly into the MLP through the input

layer, and subsequently, the multi-layer perceptron pro-

duces an expected result y in the output layer. The number

of hidden layers exhibits the complexity of the MLP,

because a greater number of hidden layers increase the

number of connections in the ANN. The number of nodes

in each layer is evaluated by trial and error. The MLP is

trained with a training set of input and known output data.

Radial basis network (RBF)

Radial basis neural networks (RBNN) were first introduced

into the neural network literature in late 1980s by Broom-

head and Lowe (1988). The RBF network is similar in

topology to the MLP network (Fernando and Jayawardena

1998). RBF networks have the advantage of non-suffering

from local minima in the same way as multi-layer percep-

trons (Haykin 1999; Orr 1996). RBF networks are also good

at modeling nonlinear data and can be trained in one stage

rather than using an iterative process as in MLP and also

learn the given application quickly (Venkatesan and Anitha

2006). Also, an important property of RBF neural networks

is that a high-dimensional space nonlinear problem can be

easily broken down through a set of combination of radial

basis functions, besides they are the beneficiary of the ability

to be quickly trained (Chang and Chen 2003). The RBF

network can be considered as a three-layer network, in which

the hidden layer performs a fixed nonlinear transformation

with no adjustable parameters (Leonardis and Bischof 1998).

This layer consists of a number of nodes and a parameter

vector called a ‘‘center,’’ which can be considered the weight

vector of the hidden layer. The standard Euclidean distance is

used to measure how far an input vector is from the center.

For each node, the Euclidean distance between the center and

the input vector of the network input is computed and

transformed by a nonlinear function that determines the

output of the nodes in the hidden layer. The output layer then

combines these results in a linear fashion. The output y of an

RBF network is computed by the Eq. (5) (ASCE 2000a):

y ¼ f ðuÞ ¼
Xn

i¼1

wiRiðxÞ þ w0 ð5Þ

where wi = connection weight between the hidden neuron

and output neuron; w0 = bias; x = input vector and R is

radial basis function.

Adaptive neuro-fuzzy inference systems (ANFIS)

The Adaptive neuro-fuzzy inference system (ANFIS) first

was introduced by Jang (1993). The neuro-fuzzy approach

combines ANN and fuzzy logic. It effectively integrates the

learning capability of neural networks into a fuzzy infer-

ence system (FIS). It can be used to approximate any real

continuous function on a compact set to any degree of

accuracy (Jang et al. 1997). Depending on the types of

inference operations upon if–then rules, most FIS can be

classified into three types: Tsukamoto’s system, Mamda-

ni’s system and Sugeno’s system (Kisi 2007). In this study,

the first-order Sugeno fuzzy model is used because it has

been used widely in engineering problems. The ANFIS

model is able to use two different optimization methods

(hybrid and back-propagation) to tune member function

(MF) and generate fuzzy rules. The hybrid method is a

combination of least squares estimation combined with

back-propagation method (MATLAB User Manual 2008).

In first-order Sugeno’s system, if FIS has two inputs x and

y and one output f, a typical rule set with two fuzzy IF/

THEN rules can be expressed as:

Rule 1 : If x is A1 and y is B1; then f1 ¼ p1xþ q1yþ r1

Rule 2 : If x is A2 and y is B2; then f2 ¼ p2xþ q2yþ r2

ð6Þ
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where x and y are input variables. Ai and Bi are the

linguistic labels (low, medium, high, etc.) characterized by

convenient membership functions, fi are the outputs within

the fuzzy region specified by the fuzzy rule; pi, qi and ri are

the parameters of the output function (i = 1 or 2).

Figure 2a shows the first-order Takagi–Sugeno fuzzy

model with a two input and one output system. Also, the

equivalent ANFIS architecture of the first order is shown in

Fig. 2b.

As can be seen from Fig. 2a, ANFIS consists of five

layers, and the basic functions of each layer are the input,

fuzzification, rule inference, normalization and defuzzifi-

cation. The relationship between the input and output of

each layer is summarized as follows:

Layer 1 (Input notes) Every node I in this layer is an

adaptive node, and each node in this layer generates mem-

bership grades of crisp inputs variable which belong to each

of convenient fuzzy sets by using the membership functions.

Parameters in this layer are called premise parameters. The

output of each node in this layer O1
i is defined by:

O1
i ¼ lAiðxÞ for i ¼ 1; 2 or

O1
i ¼ lBi�2ðyÞ for i ¼ 3; 4

ð7Þ

where x and y are the crisp input to the ith node, and Ai and

Bi-2 are the linguistic labels characterized by MFs lAi
and

lBi
, respectively. Another major consideration that should

be taken into account while designing ANFIS is the

selection of proper MF. Several MFs were reported in the

literature such as Gaussian, generalized bell-shaped,

trapezoidal and triangular. Selection among the

abovementioned MFs is generally based on the trial and

error. Assuming a generalized bell-shaped as the MF, the

node output in first layer O1
i can then be calculated by:

O1
i ¼ lAi

¼ 1

1þ x� cið Þ=aið Þ2bi

O1
i ¼ lBi�2

¼ 1

1þ y� cið Þ=aið Þ2bi

ð8Þ

where {ai, bi and ci} are the parameters in generalized bell-

shaped membership function that changes the shape of

membership function with minimum and maximum equal

to 0 and 1, respectively.

Layer 2 (Rule nodes) Every node in this layer is a fixed

node labeled p, and the output is the product of all the

incoming signals. Each node output that represents the

firing strength of a rule is computed as.

O2
i ¼ wi ¼ lAi

ðxÞlBi
ðyÞ; i ¼ 1 and 2 ð9Þ

Layer 3 (Average nodes) In this layer, the nodes

calculate the ratio of the ith rule’s firing strength to the
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Fig. 2 a Sugeno’s fuzzy if–

then rule and fuzzy reasoning

mechanism; b equivalent

ANFIS
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sum of all rules’ firing strengths; the firing strength in this

layer is normalized and taken as �wi:

O3
i ¼ �wi ¼

wiP
wi

; i ¼ 1 and 2 ð10Þ

Layer 4 (Consequent nodes) This layer’s nodes are

adaptive with node functions,

O4
i ¼ �wi:fi ¼ wiðpixþ qiyþ riÞ; i ¼ 1 and 2 ð11Þ

where �wi is the ith node’s output from the previous layer

and fi is a linear function of input variables.

Layer 5 (Output nodes) This layer’s single fixed node

computes the final output as the summation of all incoming

signals

O5
i ¼

P
�wi � fiP

�wi

ð12Þ

Modeling performance criteria

The performance of ANN and ANFIS configurations was

assessed based on three error measures, namely correlation

coefficient, R2, which presents the degree of association between

predicted and measured values; root mean square error, RMSE,

which is preferred in many iterative prediction and optimization

schemes; and mean absolute error, MAE, which is a parameter

commonly understood in engineering applications. Expressions

for these measures are given as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1ðOi � PiÞ2

n

s

ð13Þ

MAE ¼ 1

N

XN

i¼1

Oi � Pij j ð14Þ

R2 ¼
Pn

i¼1 ðOi � �OÞðPi � �PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðOi � �OÞ2

Pn
i¼1 ðPi � �PÞ2

q ð15Þ

where N is the number of data, O observed values, P pre-

dicted values and the bar denotes the mean of the variable.

The primary purpose of data transformation is to modify

the distribution of input variables so that they can match

outputs better. The performance of a neural network is

often improved through data transformations (Shi 2000).

Therefore, in this research for development of ANN and

ANFIS models, the raw data of both the independent and

dependent variables were normalized to an interval by

transformation by means of Eq. (16):

XN ¼
X � Xmin

Xmax � Xmin

ð16Þ

where XN is the normalized value of X, Xmax and Xmin

represents the maximum and minimum value of each var-

iable of original data, respectively; Eq. (16) makes data

within the range of [0–1].

Results and discussion

MLP/BP

The learning of ANN model depends on the number of nodes in

the hidden layer and transfers functions. Selection of an

appropriate number of nodes in the hidden layer is a very

important factor since a larger number of these nodes may

result in over-fitting, while a smaller number of nodes may not

capture the information adequately. The number of nodes in

the hidden layer(s) can be determined by trial and error (Bateni

et al. 2007; Eberhart and Dobbins 1990). Fletcher and Goss

(1993) suggested that the appropriate number of nodes in a

hidden layer ranges from (2n1/2 ? m) to (2n?1), where n is the

number of input nodes and m is the number of output nodes.

Therefore, in this study for the computation of DO, BOD and

COD parameters, different MLP/BP models were constructed

and tested in order to determine the optimum number of nodes

in the hidden layer and transfer functions. The network was

trained using the training data set, and then, it was validated

with the testing data set. The optimal structure was determined

by varying the number of hidden layers from 1 to 8 and picking

the MLP/BP structure which led to the best results. The training

of the ANN model was stopped when the number of iterations

exceeded a prescribed maximum of 10,000. The learning rate

of 0.01 was also used. Besides the number of hidden nodes, the

transfer function between nodes also affects the performance

of MLP/BP model. In order to investigate their effect, the

model was run with different transfer functions including

sigmoid (f ðxÞ ¼ 1= 1þ expð�xÞð Þ, Gaussian (f ðxÞ ¼ e� x : x),

hyperbolic tangent (f ðxÞ ¼ tanhðxÞ) and hyperbolic secant

(f ðxÞ ¼ SechðxÞ). The optimal network size was selected from

the one which resulted in minimum mean square error (MSE)

and root mean square error (RMSE) and high regression

coefficient (R2) in training and testing data sets.

Comparison of results with the aforementioned transfer

functions and different hidden nodes indicted for DO the

MLP/BP model was composed of hyperbolic tangent

transfer function, and three hidden layers gave the best

results. Also for BOD and COD, MLP/BP model composed

of hyperbolic tangent transfer function and three hidden

layers and hyperbolic tangent transfer function and four

hidden layers, respectively, gave the best results. The

coefficient of determination (R2), RMSE and MAE as

computed for the best of three models (DO, BOD and

COD) is presented in Table 2. Figure 3 shows the plots

between measured and model computed values of DO,

BOD and COD in training and testing data stages. The

results showed that MLP/BP model had very small MAE

and RMSE during training and testing stage. In the training

stage, RMSE for DO, BOD and COD was 3.37, 3.99 and

3.27 mg L-1, respectively. Also, in the testing stage,

RMSE for DO, BOD and COD was 3.15, 2.57 and
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1.99 mg L-1, respectively. Also, the results of MLP/BP

model for BOD, DO and COD showed consistently good

correlation throughout the training ([0.86) and testing

([0.85). Overall, with respect to the statistical parameters,

the results showed that the MLP/BP model can predict the

BOD, DO and COD parameters.

RBF

In addition to MLP/BP, another type of ANN namely RBF

was developed using the same input variables to predict

DO, BOD and COD parameters. In the RBF model, the

center selection process found an appropriate tolerance

value of 0.005 and the radial basis spread of 40. To eval-

uate the performance of the RBF model, the predicted DO,

BOD and COD were shown versus the observed ones in

Fig. 4 for both training and testing data sets. Also R2,

RMSE and MAE as computed for the training and testing

data are presented in Table 3. As the results of Fig. 4 and

Table 3 showed, RBF had performed relatively well in

predicting the DO concentrations in the training

stage (MAE = 3.52 mg L-1, RMSE = 4.38 mg L-1 and

R2 = 0.75), but its performance was not good in the testing

stage (MAE = 3.65 mg L-1, RMSE = 4.29 mg L-1 and

Table 2 Performance parameters of MLP model for computation of

the BOD, DO and COD in Karoon River water (Iran)

ANN-structure Variable Stage RMSE MAE R2

MLP DO Training 3.37 2.6 0.86

Testing 3.15 2.7 0.85

BOD Training 3.99 3.09 0.93

Testing 2.57 2.05 0.96

COD Training 3.27 2.75 0.95

Testing 1.99 1.77 0.94

Fig. 3 Scatter plots of observed

and predicted DO (top panel),

BOD (middle panel) and COD

(bottom panel) using MLP/BP

model: a training and b testing
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R2 = 0.66). Also the model could well predict the BOD

and COD concentrations with RMSE of 5.57 and

5.57 mg L-1 in the training stage, and 4.86 and 3.31 mg

L-1 in the testing stage, respectively.

Anfis

For the ANFIS model, the Gaussian, triangular, trapezoidal,

sigmoid and bell-shaped input membership functions were

Fig. 4 Scatter plots of observed

and predicted DO (top panel),

BOD (middle panel) and COD

(bottom panel) using ANFIS

model: a training and b testing

Table 3 Performance parameters of the RBF model for computation

of the BOD, DO and COD in Karoon River water (Iran)

ANN-structure Variable Stage MAE RMSE R2

RBF DO Training 3.52 4.38 0.75

Testing 3.65 4.29 0.66

BOD Training 4.58 5.75 0.85

Testing 4.43 4.86 0.85

COD Training 4.62 5.57 0.84

Testing 3.05 3.31 0.81

Table 4 Performance parameters of the RBF model for computation

of the BOD, DO and COD in Karoon River water (Iran)

ANN-structure Variable Stage MAE RMSE R2

ANFIS DO Training 3.14 3.75 0.83

Testing 3.65 4.07 0.71

BOD Training 4.11 5.7 0.89

Testing 3.52 4.72 0.89

COD Training 3.75 4.21 0.92

Testing 2.56 2.92 0.85
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used. Because the ANFIS only operates on Sugeno-type sys-

tem, therefore, two types of constant and linear functions were

used for output membership function. Moreover, the perfor-

mances of the ANFIS model with two hybrid and back-prop-

agation learning algorithms were investigated. It was found

that, the best results were achieved when the input membership

function was gaussian, the learning algorithm was hybrid and

the output membership function was constant. To evaluate the

performance of the ANFIS model, the predicted DO, BOD and

COD were shown versus the observed ones in Fig. 5 and

Table 4 for both training and testing stages. As the results

showed, ANFIS performed well in predicting the DO param-

eter in the training stage (RMSE = 3.75 mg L-1 and

R2 = 0.83), but its performance was not good in the testing

stage (RMSE = 4.07 mg L-1 and R2 = 0.71). As shown in

Fig. 5, ANFIS performed well in predicting the BOD both in

training (RMSE = 5.7 mg L-1 and R2 = 0.89) and testing

stages (RMSE = 4.72 mg L-1 and R2 = 0.89). Also, ANFIS

performed well in predicting the COD both in training

(RMSE = 4.21 mg L-1 and R2 = 0.92) and testing stages

(RMSE = 2.92 mg L-1 and R2 = 0.85). Overall, the com-

parison of the results of ANFIS and RBF models with ANN

revealed that the ANN performed better than ANFIS and RBF

models in both training and testing.

Sensitivity analysis

To assign the relative significance of each of the independent

parameters (input variables), on DO, BOD and COD (outputs),

a sensitivity analysis was applied. As the MLP was better than

ANFIS and RBF models, the analysis was conducted with the

MLP model in the absence of every parameter in the data set.

Table 5 gives the sensitivity analysis results for the parameters

in Eqs. (1), (2) and (3), respectively. Although, the network

does not necessarily represented physical meaning through the

weights, it suggested that all the input variables had direct

relevance with the dependent variables in water and played a

significant role in determining the outputs, i.e., DO, BOD and

Fig. 5 Scatter plots of observed

and predicted DO (top panel),

BOD (middle panel) and COD

(bottom panel) using ANFIS

model: a training and b testing
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COD levels simultaneously (Basant et al. 2010). However, as

the results of Table 5 showed, all the parameters had relatively

a high contribution (R2 [ 0.51) to the networks, but phosphate

(PO4), nitrite (NO2), nitrate (NO3), turbidity and salinity (Na)

have a greater impact on the model results. In other word, PO4

was the most effective parameter on DO, BOD and COD. This

finding is consistent with that of Talib and Amat (2012) and

Singh et al. (2009). The second and third factors to contribute to

the DO, BOD and COD values detected were NO2 and NO3

parameters. Increased levels of nutrients such as phosphate and

nitrogen compounds (PO4, NO2, NO3) in a water source can

lead to increased rates of primary production by phytoplankton

and organic plants, and therefore, the amount of organic matter

increased in the water source. Levels of phosphates and nitrate

that are intolerable to local organisms have been known to

deplete dissolved oxygen levels by causing algae blooms. The

COD value tends to be higher when the phosphate concen-

tration is high. As phosphate takes important part in oxidization

and energy-release process, there is a direct link between

increase in phosphate concentrations and microorganisms,

thus, higher growth of microorganisms (Talib and Amat 2012).

The turbidity is an important parameter in the water quality

assessment because the degree of turbidity of stream water is

often taken to be an approximate measure of the intensity of the

pollution. Indeed, this parameter can be used to evaluate the

effects of pollution by waste waters and even to follow the

course of self-purification of streams (Klein et al. 1962). The

sensitivity analysis shows that turbidity has effect on DO, BOD

and COD values. Turbidity can impact the level of dissolved

oxygen in water in multiple ways. Increased light absorbency

by turbid water can lead to increased water temperatures and

decreased oxygen levels. The contents of the particles causing

turbidity can also lead to a decrease in dissolved oxygen levels

(Zhang and Li 2010). The various substances making up tur-

bidity causing particles can have a high biological oxygen

demand (BOD), which is a measure of the amount of oxygen

used to decompose a substance. Increased turbidity is therefore

associated with increased BOD and decreased oxygen levels

(Singh et al. 2009). Salinity also has an impact on the model

results. From chemical aspects, when an ionic salt like NaCl is

added to water, the ions from the salt introduced will attract the

water molecules in an effort to ‘‘solvate’’ the ions. This has the

tendency to decrease the weak affinity of non-polar oxygen

molecules to water and drive the dissolved oxygen out of the

polar water. In general, the solubility of a gas in a solvent is

affected significantly by the presence of other solutes in the

solution (Comer 1996).

Conclusion

In this study, the applications of two types of ANNs, namely

MLP/BP and RBF along with ANFIS, were used to estimate

the DO, BOD and COD parameters. The measured data of

Karoon River (Iran) over a period of 17 years were col-

lected for networks training and testing. The results showed

that a single-layer MLP/BP with 12 neurons, a single-layer

RBF with 25 neurons and an ANFIS model with 3 mem-

bership functions were considered as the best and the most

executive models. Also, the comparison of RMSE, MAE

indices and coefficient of correlations (R2) for predicting

DO, BOD and COD showed that the performance of the

MLP/BP model was higher than those of ANN-RBF and

ANFIS models. The R2 values for a good fit of the DO, BOD

and COD models to the data set were obtained 0.86, 0.93

and 0.95 for the training stage and 0.85, 0.96 and 0.94 for

testing, respectively (Table 4). Based on the results of this

research, the ANN can be used as an effective tool to

compute and predict the river water quality parameters.
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Table 5 Sensitivity analysis of the governing variables on DO, BOD and COD

Method DO (mg L-1) BOD (mg L-1) COD (mg L-1)

MAE RMS R2 MAE RMS R2 MAE RMS R2

The best ANN 2.70 3.40 0.85 3.00 3.75 0.94 2.55 2.9 0.95

ANN no EC 3.23 3.82 0.80 3.36 4.23 0.92 3.29 3.84 0.89

ANN no PH 3.05 3.77 0.80 3.31 4.19 0.92 3.09 3.69 0.89

ANN no NO2 3.90 4.40 0.74 6.90 9.02 0.71 7.51 8.16 0.74

ANN no NO3 3.50 4.17 0.75 5.05 7.13 0.80 4.25 4.84 0.86

ANN no Turbidity 3.60 4.20 0.76 4.11 4.46 0.90 3.66 4.1 0.87

ANN no Na 3.30 3.95 0.78 3.72 4.36 0.91 3.55 4 0.88

ANN no PO4 4.20 5.32 0.51 8.07 11.35 0.60 11.29 13.21 0.68

ANN no Mg 2.85 3.43 0.85 3.11 4.10 0.92 2.27 2.83 0.93

ANN no Ca 3.03 3.61 0.83 3.21 4.16 0.92 2.96 3.37 0.92
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