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Abstract The optimization for poly-b-hydroxyalkanoate

production was carried out with nutrient removal efficiency

for total organic carbon (TOC), phosphate, and nitrate from

palm oil mill effluent waste. The experiment was conducted

in a fabricated fed-batch reactor and the data obtained was

analyzed using central composite rotatable design and fac-

torial design for response surface methodology as a sys-

tematic approach for designing the experiment statistically

to obtain valid results with minimum effort, time, and

resources. The analysis of numerical optimization with

propagation of error showed that 66 % of poly-b-hydrox-

yalkanoate production can be obtained with nutrient

removal of TOC and nitrate by 19 and 3 %, respectively.

However, phosphate removal efficiency was not found to be

much effective. More over, the chemical oxygen demand:

nitrogen phosphate (509 g/g N), chemical oxygen demand:

phosphate (200 g/g P), air flow rate (0.59 L/min), substrate

feeding rate (20 mL/min), and cycle length (20 h) were the

optimized variables for maximum poly-b-hydroxyalkano-

ate production and nutrient removal.

Keywords Biopolymer � Nitrate removal � Palm oil mill

effluent � Phosphate removal � Statistical design

Introduction

First commercial production of poly-b-hydroxyalkanoates

(PHAs) in the form of polyhydroxybutyrate (PHB) was

reported in 1963 by Grace & Co. in C & EN Laurel, Md

(Marchessaul 2009). PHAs can be classified by the number

of carbon atoms in the monomer units. These are including

the short-chain-length PHA (PHASCL) of 3–5 carbon

atoms, and the medium-chain-length PHA (PHAMCL) of

6–15 carbon atoms (Anderson et al. 1990). PHASCL have a

high degree of crystallinity, brittle and stiff, while PHAMCL

are elastomeric with low crystallinity, low melting point

and low tensile strength (Tokiwa and Calabia 2004). The

strength and material properties of these polymers can be

regulated by varying the copolymer composition (Otari and

Ghosh 2009).

Biologically, PHA production was achieved using

commercial substrates like acetate, glucose, glutamic acid

(Wong et al. 2000; Reddy et al. 2003; Salehizadeh and Van

Loosdrecht 2004). But still the production cost of PHA is

very high and it has some operational problems in scaling

up (Yu et al. 1998). Most of these polymers have been

explored in organic wastes as a renewable source under the

mixed culture development (Salehizadeh and Van Loos-

drecht 2004). Since last decade, bio-industrial waste for

PHA production have attracted much attention (Ahn et al.

2000; Fuchtenbusch et al. 2000; Hong et al. 2000; Wong

et al. 2000; Hassan et al. 2002). Some of the renewable
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sources are palm oil mill effluent (POME), vegetable oils,

molasses, brewery wastes, etc. Among all the bio-industrial

waste, palm oil waste is highly generated in Malaysia,

which is the cheapest and easily available carbon source for

PHA production. Malaysia and Indonesia generate 13

million tons of palm oil waste annually (Lam and Lee

2011).

Palm oil mill effluent are huge quantities of waste

generated from palm oil mill industry which is a hot,

acidic (pH between 4 and 5), brownish colloidal suspen-

sion containing high concentrations of organic matter,

high amounts of total solids (40,500 mg L21), oil and

grease (4,000 mg L-1), COD (50,000 mg L21), and BOD

(25,000 mg L-1) (Salmiati et al. 2007). POME has been

reported for its suitability for PHA production because it

consists of high organic acids (Mumtaz et al. 2010).

However, POME is usually present in a complex form,

which cannot be directly utilized by PHA-producing

bacterial species. Therefore, anaerobic treatment has been

proposed by many researchers for effective hydrolysis and

acidogenesis of wastes to short-chain volatile fatty acids

(VFAs), which are fatty acids with a carbon chain of six

carbons or fewer like acetic, butyric, and propionic acids

and followed by PHA production. It is well known that a

bacterial cell in a batch scale reactor is exposing to

diverse operational conditions. Hence, much work has

been done on studying the transient behavior of these

bioprocesses (Serafim et al. 2004). However, very few

research has been addressed on the optimization of the

interacting effect of various operating conditions such as

cultivation period, feeding rate, oxygen saturation, etc.

(Md Din et al. 2005). Recently, statistical models provide

a systematic and efficient plan for interactive experi-

mentation to achieve certain goals in comparison to tra-

ditional method of optimization. Optimization using

traditional ‘‘one factor-at-a-time’’ technique requires a

considerable amount of work and time. However, statis-

tical analysis methods like factorial experimental design

and response surface methodology (RSM), involves min-

imum number of experiments for a large number of fac-

tors with interactive effect within the factors (Bocchini

et al. 2002). Most frequently used statistical methods were

evolutionary operation (Kumar et al. 2011), RSM

(Sreekumar et al. 1999) and central composite rotatable

design (CCRD) (Rodrı́guez-Carmona et al. 2011). Among

these methods, RSM has been successfully applied for

various fermentations and bioprocesses (Watier et al.

1996; Lee and Chen 1997; Dey et al. 2001). However,

CCRD enables the significant factor(s) and interactive

factors to be identified quantitatively and it is often rec-

ommended for sequential experimentation. Also, a CCRD

is employed for fitting the second-order polynomial

because it is an economical way to obtain the maximum

amount of information with the fewest number of experi-

ments on mixing time or a dependent variable. An empir-

ical equation in the form of a second-order polynomial was

obtained with specified and limited data (Vijayendra et al.

2007).

Many reports were available on the PHA production rate

and productivity, however, less attention has been made on

PHA production and simultaneously nutrient removal using

statistical analysis. In the present study, we report the

statistical method for PHA production and nutrient removal

[total organic carbon (TOC), phosphate, and nitrate]. This

study was conducted during January–June, 2006 at Labo-

ratory of Environmental Engineering, Faculty of Civil

Engineering, Universiti Teknologi Malaysia, Skudai,

Johore, Malaysia.

Materials and methods

Substrates and inoculum development

Raw POME was obtained from Bukit Besar Palm Oil Mill,

Kulai, Johore, Malaysia and sewage sludge was obtained

from a nearby facultative pond (anaerobic pond from

POME), which is a natural method for wastewater treat-

ment, consists of shallow man-made basins comprising a

single or several series of anaerobic, facultative or matu-

ration ponds. The primary treatment takes place in the

anaerobic pond, which is mainly designed for removing

suspended solids, and some of the soluble element of

organic matter (BOD). The sewage sludge of facultative

pond and raw POME (2:1) was mixed in the distilled water

and treated as inoculum for fed batch process. The acti-

vated sludge was cultured in a stirred batch reactor (SBR)

with working volume of 6 L (with 50 % discharge level).

SBRs are a variation of the activated-sludge process. They

differ from activated-sludge plants because they combine

all of the treatment steps and processes into a single basin,

or tank, whereas conventional facilities rely on multiple

basins. The operations of SBR were based on a fill-and-

draw principle, which consists of five steps—fill, react,

settle, decant, and idle. These steps could be altered for

different operational applications.

Fed-batch process

The compositional analysis of the POME was done. Then

both raw POME and sewage sludge were introduced as

inoculums to acclimatize the autotrophic/heterotrophic
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bacteria in the sequencing batch reactor (SBR), which

differs from activated-sludge plants because they combine

all of the treatment steps and processes into a single basin,

or tank, whereas conventional facilities rely on multiple

basins. The SBR was operated with working volume of 6 L

(with 50 % discharge level) and two propellers. The

microbial population in the inoculums was developed for

24 h of incubation under the non-limiting nutrient con-

centrations. Then, the acclimatization of biomass concen-

tration has been performed for 3–4 weeks. The media used

for nutrient adaptation for microorganism under fed-batch

control system contained (g/L), 1.50, FeCl3�6H2O; 0.15,

H3BO3; 0.03, CuSO4�5H2O; 0.12, MnCl2�4H2O; 0.06,

Na2MoO4�2H2O; 0.12, ZnSO4�7H2O; 0.15, COCl2�6H2O;

10.0, ethylenediamintetraacetic acid (EDTA); 0.18, KI;

15.5, NH4Cl; 7.59, KH2PO4; 0.2, MgSO4�7H2O. The fed-

batch cultivation was optimized at three stages. First, a

high proliferation in growth phase; second, steady-state

phase and third, was an integrated process optimization for

PHA production and nutrient removal. These three stages

were apparently interconnected and an overall fed-batch

optimization scheme was proposed as (a) preliminary study

on bioprocess and biotechnology engineering, and under-

standing the specific activity, (b) design parameters, cali-

bration or verification, and (c) process design and set-up

the fed-batch configuration. The operating principles of a

batch activated sludge system are characterized in just

three discrete periods as fill (mineral feeding, 5 min and

carbon feeding, 60 min operation), reaction (aerobic for

[50 % solids), drawing (desludging, 10 min operation). In

Table 1 Experimental runs conducted in dynamic aerobic study with actual and coded levels

Run code COD:N:P (gCOD/g N/g P) AFD (L/min) CL (h) SFR (ml/min)

Actual Coded Actual Coded Actual Coded Actual Coded

1 550 [?1]b 0.875 [-1] 15.5 [-1] 27.5 [-1]

2 450 [-1] 1.625 [?1] 15.5 [-1] 27.5 [-1]

3 450 [-1] 0.875 [-1] 22.5 [?1] 27.5 [-1]

4 550 [?1] 1.625 [?1] 22.5 [?1] 27.5 [-1]

5 450 [-1] 0.875 [-1] 15.5 [-1] 42.5 [?1]

6 550 [?1] 1.625 [?1] 15.5 [-1] 42.5 [?1]

7 550 [?1] 0.875 [-1] 22.5 [?1] 42.5 [?1]

8 450 [-1] 1.625 [?1] 22.5 [?1] 42.5 [?1]

9 500 [0] 1.250 [0] 19.0 [0] 35.0 [0]

10 500 [0] 1.250 [0] 19.0 [0] 35.0 [0]

11 450 [-1] 0.875 [-1] 15.5 [-1] 27.5 [-1]

12 550 [?1] 1.625 [?1] 15.5 [-1] 27.5 [-1]

13 550 [?1] 0.875 [-1] 22.5 [?1] 27.5 [-1]

14 450 [-1] 1.625 [?1] 22.5 [?1] 27.5 [-1]

15 550 [?1] 0.875 [-1] 15.5 [-1] 42.5 [?1]

16 450 [-1] 1.625 [?1] 15.5 [-1] 42.5 [?1]

17 450 [-1] 0.875 [-1] 22.5 [?1] 42.5 [?1]

18 550 [?1] 1.625 [?1] 22.5 [?1] 42.5 [?1]

19 500 [0] 1.250 [0] 19.0 [0] 35.0 [0]

20 500 [0] 1.250 [0] 19.0 [0] 35.0 [0]

21 400 [-2] 1.250 [0] 19.0 [0] 35.0 [0]

22 600 [?2] 1.250 [0] 19.0 [0] 35.0 [0]

23 500 [0] 0.500 [-2] 19.0 [0] 35.0 [0]

24 500 [0] 2.000 [?2] 19.0 [0] 35.0 [0]

25 500 [0] 1.250 [0] 12.0 [-2] 35.0 [0]

26 500 [0] 1.250 [0] 26.0 [?2] 35.0 [0]

27 500 [0] 1.250 [0] 19.0 [0] 20.0 [-2]

28 500 [0] 1.250 [0] 19.0 [0] 50.0 [?2]

29 500 [0] 1.250 [0] 19.0 [0] 35.0 [0]

30 500 [0] 1.250 [0] 19.0 [0] 35.0 [0]

COD:N:P chemical oxygen demand:nitrate:phosphate, AFD air flow rate, CL cycle length, SFR substrate feeding rate
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order to control the fast uptake and storage polymer, the

system was operated in continuous reaction period, which

means no settling or allowing the idle phase [hydraulic

retention time (HRT) = sludge retention time (SRT)],

which denotes HRT for the period that a liquid remain

inside a bioreactor and for SRT it refers to the period that a

sludge/biomass remains inside a bioreactor. The length of

each phase was varied independently on the cultivated

tank. The influent was pumped into the tank and mixed

with the biomass that settled during the previous cycle until

the time for filling reached. During pulse fill, a high sub-

strate concentration is almost instantaneously available for

the microorganisms. At steady-state condition, microor-

ganisms will generate two major phases, which are feast or

growth phase (with nutrient supply) and famine or accu-

mulation phase (without nutrient supply) condition. In

order to control the feast and famine period, most of the

operations were influenced by nitrification. To prevent the

possible influence of nitrification on the measurements, at

least 100 mg of allylthiourea was added to the reactor

before each sampling cycle. Reactors and tubes were

periodically cleaned to avoid the proliferation of bacteria

on lines and walls. The length of the feast period in the

pulse-fed system was evaluated from dissolved oxygen

(DO) measurements continuously recorded by the data

acquisition.

Analytical procedures

Samples were taken from the reactor and centrifuged using

Sorval RC-5B centrifuge (Hermmicks, Germany) at

10,000 rpm for 10 min. The supernatant was then filtered

by using PVDF-syringe filter and were analyzed for

ammoniacal nitrogen (NH4-N), phosphate (PO4-P), TOC

and VFA in accordance with standard methods (Clesceri

et al. 1995). The carbon concentration in the supernatant

was measured by gas chromatography (GC, Shimadzu,

Japan), while NH4–N, NO3–N and PO4–P concentrations in

the supernatant were measured spectrophotometrically

(HACH Spectrophotometer DR-4000U, USA) at 630, 450,

and 520 nm, respectively. The supernatant of VFAs (acetic

acid, propionic acid, and butyric acid) were measured by

GC14A with flame ionization detector.

PHA quantification

Samples for PHA quantification were added to 10 mL

tubes containing two drops of formaldehyde in order to

stop all biological activity immediately. The PHB content

was washed with 5 mM KH2PO4 buffer (pH 7) and cen-

trifuged at 10,000 rpm for 10 min. The supernatant was

freeze-dried using freezer-dryer for 24 h. Dried solids were

weighed and stored in screw-cap bottle. Dried biomass was

saponified and the PHA was quantified using GC method.

In qualitative measurement, the dried biomass for PHA

constituent was determined by extraction, hydrolyzation,

and esterification in a mixture of hydrochloric acid,

1-propanol, and dichloroethane at 100 �C followed by

addition of 2 mL of chloroform. The screw-cap bottle was

then digested at 100 �C for 2 h using digester reflux

(HACH digester, USA) and allowed to cool followed by

addition of 3 mL of distilled water in each bottle. Bottles

were shaken for 10 min and allowed to separate the organic

and inorganic layer. After complete digestion, 1 lL of the

chloroform phase (bottom layer) was injected into the GC

and the PHA concentration (%) was calculated. Benzoic

acid (2 mL) was used as an internal standard throughout

the procedure.

Experimental design

The experimental design was evaluated using single obser-

vation obtained from the optimum fraction of PHA produc-

tivity. The RSM analysis was only performed in four main

variables [COD:N:P (400–600 g COD/g N/g P), air flow rate

(AFR) (0.5–2 L/min), cycle length (CL) (12–26 h), and

substrate feeding rate (SFR) (20–50 mL/min)] with POME

as a substrate. The experimental design was carried out

at four factor at five levels (-2, -1, 0, ?1, ?2) using

MINITABTM (version 13.2, UK). A total of 30 runs were

used to optimize the production process divided into three

parts: a 24 Hadamard matrix factorial run (1–8 and 11–18),

star point runs (21–28) and center point runs (9–10, 19–20,

and 29–30) (Table 1). The interactive and synergistic effect

of the factors were determined based on the Hadamard

matrix and center point runs, while the non-linear response

behavior was analyzed using star point and center point runs.

The center point runs were also repeated six times in order to

allow better estimation of the experimental error. All of the

experiments were conducted in 8 h length, except for CL

study.

Model validation

An independent experiment was used to verify the opti-

mum conditions identified in the two-level factorial

experiment. The verification consisted of triplicate runs

comparing the control bioprocess (i.e., original non-opti-

mal medium) and the optimized growth medium with 80 %

air in the gas phase (at least 10 L/min). After 7 days, the

samples were removed and analyzed for PHA production.
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Results and discussion

The compositional analysis of POME showed high COD

(87.30 ± 0.54 g/L), soluble COD (41.52 ± 0.61 g/L),

total solids (31.05 ± 0.49 g/L), total volatile solids

(27.60 ± 0.94 g/L), lactic acid (3.90 ± 1.22 g/L), and

acetic acid (3.62 ± 0.31 g/L). Also the pit sludge POME

contained phosphates and nitrogen which are very good for

PHA production. POME was found to be with numerous

fatty acid components, thus the PHA production will not

limit for 3-hydroxybutyrate (3HB) monomer (Malaysia

Palm Oil Board 2005).

Model diagnostic and RSM

A common and powerful approach for optimizing a mul-

tivariate system is the RSM (Myers and Montgomery

2002). A large absolute studentized residual (deleted

residuals) indicated the observation in the model that

increases the error variance or it had a large affect upon the

parameter estimates, or both. The major diagnostic method

is residual (observed minus predicted) analysis as shown in

Fig. 1, providing diagnostic for residual behavior. There

were several residuals graphs to test the model assump-

tions. The predictive model used to generate response

surface graphs and contour plots contains equation for

describing linear and quadratic effects of the process and

interaction between process factors and the response

(%PHA, %TOC, %PO4, and %NO3). MINITABTM divided

the data into intervals represented as bars in a high-reso-

lution histogram, as asterisks in a character histogram. As

depicted in the Fig. 1a–d, the response model for PHAs

production was fixed to the normal distribution. The next

analysis was to study the deleted residuals versus the fitted

value (Fig. 1b). The result showed that there was no sys-

tematic pattern in the plot. All points were decreased

within a horizontal band centered at zero. Departure from

suggests a violation of the constant variance assumption.

The size of deleted residuals was found to be independent

of its fitted value and that spread was about the same across

all levels of the fitted values. Deleted residuals versus

observation order (number) graphs revealed any time-based

affects or sequential component (Fig. 1c). The positive

effect of PHA production in four variables was quantified

through Fig. 1b–d. A pictorial representation of the effect

is shown in Fig. 1a, where the highest frequency obtained

Fig. 1 Residual diagnostics of response model for %PHA. a Histogram, b deleted residuals versus fitted values, c deleted residuals versus

observation order, d normal probability
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at -0.5 of deleted residual, which means in the normal

range (-2 to 2).

The variance inflation factor (VIF) is used to detect

whether one predictor has a strong linear association with

the remaining predictors (the presence of multicollinearity

among the predictors). VIF measures how much the vari-

ance of an estimated regression coefficient increases if the

predictors are correlated (multicollinear). The VIF of 1

indicates the predictor with no relation (Montgomery and

Peck 1982). The largest VIF among all predictors is often

used as an indicator of severe multicollinearity. Mont-

gomery and Peck (1982) suggest that when VIF is [5–10,

then the regression coefficients were poorly estimated.

Since the results from Table 2 did not show any relation

between predictors, therefore, multiple regressions have

been computed, afterward. However, the computed VIF

value significantly indicated the non-severely multi-col-

linear analysis. The Durbin–Watson (DW) statistic tested

the residuals to determine if there was any significant

correlation based on the order in which they occurred in the

data file. Due to the fact that the DW value exceeded 1.4

and there were probably no significant autocorrelation in

the residuals. The coefficient of determination (R2) indi-

cated that the model could only reach as high as 41.3 % of

the variability in PHA production. Then, the adjusted R2

statistic, which is more suitable for comparing models with

different numbers of independent variables, was only

31.8 %. Therefore, the model showed that the interaction

effect of TOC, AFR, CL, and SFR was unable to predict.

As a conclusion, the study suggested the residual diag-

nostic to evaluate the predictor of PHA production, TOC

removal, NO3–N removal, and PO4–P removal.

Table 2 ANOVA and regression analysis for selected responses

Response Predictor/analysis Constant Factor

A B C D

PHA production Coefficient 24.66 0.078 -6.294 0.071 0.236

SE Coeff. 17.90 0.026 3.899 0.557 0.097

T 1.38 3.00 -1.61 0.13 -2.42

P 0.18 0.006 0.119 0.900 0.023

VIF 1.00 1.00 1.00 1.00 1.00

DW statistic = 1.55

P = 0.008, R2 = 41.2 %, R2(adj) = 31.8 %

TOC removal Coefficient -1.74 0.03 -0.34 -0.03 -0.03

SE Coeff. 8.121 0.012 1.769 0.253 0.044

T -0.21 2.42 -0.19 -0.10 -0.62

P 0.832 0.023 0.849 0.923 0.538

VIF 1.00 1.00 1.00 1.00 1.00

DW statistic = 1.72

p = 0.213, R2 = 20.1 %, R2(adj) = 7.3 %

NO3–N removal Coefficient 10.00 0.007 -4.068 -0.148 -0.038

SE Coeff. 8.139 0.012 1.773 0.253 0.044

T 1.23 0.62 -2.29 -0.58 -0.87

P 0.231 0.543 0.030 0.566 0.395

VIF – 1.00 1.00 1.00 1.00

DW statistic = 1.75

p = 0.186, R2 = 21.2 %, R2(adj) = 8.6 %

PO4–P removal Coefficient 0.244 -0.027 1.549 0.302 0.087

SE Coeff. 7.987 0.012 1.740 0.249 0.044

T 0.03 -2.30 0.89 1.21 1.99

P 0.976 0.030 0.382 0.236 0.057

VIF – 1.00 1.00 1.00 1.00

DW statistic = 2.14

p = 0.043, R2 = 31.5 %, R2(adj) = 20.6 %

VIF variance inflation factor, DW Durbin-Watson, A COD:N:P (chemical oxygen demand: nitrate: phosphate), B air flow rate, C cycle length,

D substrate feeding rate
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The residuals from the best two-predictor model of the

best subsets regression has been chosen to obtain the

satisfactory result from regression model. In this multiple

regression, the third variable from the best three-predic-

tor model may not add appreciably to the fit. The

residual patterns examined from the best two-predictor

model to further examine the goodness-of-fit. Figure 2

showed the residuals plots procedure, which can generate

four plots in best two-predictor model (e.g., PHA pro-

duction). In general, the normal plot (Fig. 2a) shows an

approximately linear pattern that is relatively consistent

with a normal distribution (-2 to 2). Similarly, the his-

togram exhibits a pattern that is consistent with a sample

from a normal distribution (Fig. 2c). However, the chart

of residuals depicted in Fig. 2b illustrated a control chart

of individual observations. It reveals that one point

labeled with number 1 (at 22 and 23 observation num-

ber) is outside the three sigma limits [upper control limit,

mean and lower control limit]. This flagged point indi-

cated that the values are not significantly used for further

analysis. Residual versus fit graph (Fig. 2d) display the

real response data plotted against the fitted responses.

Points above 2 or below -2 the mean areas of over or

under fitted. Except the outlier, no significant violations

were found in the model assumptions and the residual

analysis. This design point seems to be due to mea-

surement error rather than random experimental error.

The plot of residuals versus fits shows that the fit tends

to be better for intermediate predicted values (55–65).

The scattered point showed the trend of fit for optimi-

zation of all factor of four variables.

The results suggested that only carbon ratio and AFR

have significant effects to the particular responses (e.g.

%PHA, %TOC removal, etc.). From the analysis of the

data in Table 5 by the least squares method, the following

second-order model was fitted. Since the regression anal-

ysis did not show a correct evaluation (especially %PO4

and %NO3), the RSM was conducted and the regression

equation for %PHA, %TOC removal, %PO4 removal, and

%NO3 removal are shown in Eqs. 1–4, respectively.

Fig. 2 Residual model diagnostic for %PHA in four variables (COD:N:P, AFR, CL, and SFR). a Normal plot, b I-Chart, c histogram, d residuals

versus fits
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%PHA ¼ 67:2 þ 0:0489 A � 12:2 B ð1Þ
%TOCremoval ¼ 16:4þ 0:0224 A � 4:54 B ð2Þ
%PO4removal ¼ �29:1þ 7:59 B ð3Þ
%NO3removal ¼ �6:5 þ 0:0447 A ð4Þ

where A is the variable for COD:N:P and B is the variable

for AFR.

Response surface analysis was carried out in this study

to determine the second-order behavior of the factors, to

model the relationship between the factors and the response

and to find the factor settings that produce the best

response. The predictive model used to generate response

surface graphs and contour plots contains equations for

linear, interaction, and quadratic processes of factors.

When the problem involves the data that are subject to

experimental errors, statistical methods measure the effects

of change in operating variables and their mutual interac-

tions on the process performance through factorial exper-

imental designs.

In this study, the response surface was employed to

determine the effect of the operational variables that was

conducted in fed-batch study. If the environmental vari-

ables have no significant effect on the objective function,

such as PHA production, the response surface will have a

flat zone with respect to the variables. A wide range of the

flat zone implies that the environmental variable can be

controlled within the desired range in the scale-up biore-

actor. On the other hand, if the operational variables have

no significant interaction in regression analysis (p [ 0.1),

this means that the state variables in the scale-up bioreactor

cannot be manipulated within the required range. It was

then necessary to proceed to the second step, which is

called as factorial design.

Table 3 illustrated the final constant values for model

analysis. Except for the linear term, either A (variable

for COD:N:P) or B (variable for AFR) (p \ 0.05), none

of the other (linear, quadratic, and interaction terms)

were statistically significant. The final second-order

polynomial equation for PHAs production, organic and

nutrient removals after omitting p value, is shown in

Eqs. 5–8.

%PHA ¼ �861:896þ 1:308 Aþ 173:412 B � 0:001 A2

ð5Þ
%TOC ¼ �356:313þ 218 Aþ 56:182 B ð6Þ
%PO4 ¼ 561:714 � 94:604 B ð7Þ
%NO3 ¼ �574:108þ 0:627 A ð8Þ

The statistical significance of the model equation was

evaluated by the F test for analysis of variance (ANOVA),

which showed that the regression is statistically significant

at 95 % (p \ 0.05) confidence level. The model F value of

Table 3 Results of the regression analysis of the CCRD

Term %PHA production %TOC removal %PO4 removal %NO3 removal

Coefficient p value Coefficient p value Coefficient p value Coefficient p value

Constant -861.896 0.000 -356.315 0.000 561.714 0.000 -574.108 0.002

A 1.308 0.063 0.218 0.096 -0.809 0.358 0.627 0.005

B 173.412 0.002 56.182 0.016 -94.604 0.002 -12.176 0.518

C 37.673 0.773 17.121 0.731 -10.836 0.574 40.097 0.275

D 12.340 0.424 10.498 0.282 -17.824 0.169 5.165 0.761

A2 -0.001 0.099 -0.0002 0.429 0.0003 0.228 -0.0004 0.138

B2 -12.656 0.140 -1.370 0.749 5.711 0.266 -5.841 0.219

C2 -0.482 0.679 -0.218 0.717 -0.259 0.714 -0.969 0.151

D2 0.029 0.877 -0.061 0.529 0.039 0.734 -0.063 0.547

AB -0.106 0.205 -0.006 0.893 0.002 0.971 -0.029 0.530

AC -0.007 0.816 0.003 0.867 0.009 0.645 -0.008 0.624

AD -0.008 0.520 -0.002 0.781 0.012 0.133 0.0001 0.977

BC -3.968 0.335 -1.850 0.384 3.090 0.222 1.515 0.508

BD -1.191 0.466 -0.847 0.321 1.256 0.215 0.506 0.579

CD -0.487 0.428 -0.323 0.313 0.499 0.191 -0.148 0.665

Lack-of-fit p = 0.008 p = 0.138 p = 0.000 p = 0.000

0.01–0.04, highly significant; 0.05–0.1, significant; 0.1–0.2, less significant;[0.2, insignificant; A COD: N: P (chemical oxygen demand: nitrate:

phosphate), B air flow rate, C cycle length, D substrate feeding rate
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2.04 (in regression analysis) for PHA production (taken as

one example) implies that the model is statistically

significant (degree of freedom, DF [ F). The value of

p \ 0.05 indicates that the model terms are also significant.

However, p value must be higher than F value, and in our

study it was not observed. Therefore, the coefficient of

determination (R2) was calculated to be 0.769, indicating

that the model could only achieve 76.9 % of the variability.

The ‘‘lack of fit tests’’ compares the residual error to the

‘‘Pure Error’’ from replicated design points. The ‘‘lack of fit

F value’’ of 10.87 (for %PHA) implies the lack of fit is

significant (F [ a), since a was initially set at 2. However,

with inconsistent variability of F and p value, implies that

the predictive model is not statistically correct and that the

process appears insignificant to the model. There is only

0.08 % chance that a ‘‘lack of fit F value’’ this large could

occur due to the noise factor. The analysis from response

surface analysis was initially carried out using full

quadratic terms (i.e., linear, interaction, and squares).

Based on the p value (\0.2) for PHA production, the

results indicate that only linear terms are significant, while

the square terms considered insignificant. The R2 value of

the model is acceptable (79.6 %) but the p value of the lack

of fit test (0.008) indicates its significance. As a result, the

estimated models fit the experimental data is only valid in

small-scale reactions.

Three-dimensional response surfaces were plotted on

the basis of the model equation, to investigate the inter-

action among the variables and to determine the optimum

concentration of each factor for maximum PHA production

(incorporated with percentage of TOC, PO4, and NO3

removal) by mixed cultures. The effects of varying the

COD:N:P and other variables are shown in Fig. 2, which

demonstrates that the response surfaces for the three

Fig. 3 Response surface plot showing variation in predicted PHA production, organic and nutrient removal of POME as a function of COD:N:P

and AFR for incubation 9 h (CL and SFR were fixed at 18 h and 20 mL/min, respectively)
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combinations were similar to %PHA production, %TOC,

and %NO3 removals. However, %PO4 removal was mon-

itored irreversible than those three responses. The incre-

ment of AFR (1.5–2.0 L/min) and COD:N:P (400–600 g

COD/g N and 200 g COD/g P) reflected to the PO4

removal decrement from 0 to 15 %.

The interactive effect of carbon, nitrogen and phos-

phorus concentrations on PHA production was clearly

observed in Fig. 3. At the lowest ratio of COD:N:P (450 g

COD/g N and 100 g COD/g P), the increment in oxygen

supply had little effect on PHA production, TOC, NO3, and

PO4 removal for above 1 L/min. Meanwhile, if the ratio

more than 550 g COD/g N (oxygen supply is \1 L/min),

most of the PHA production and nutrient reduction (TOC

and NO3) efficiencies reached high value. The ANOVA

suggested that no statistically significant effect of HRT and

SFR on the PHA production. The principal factor that

influenced PHA accumulation was the concentration of

oxygen in the gas phase. The PHA concentration increased

with decreasing amounts of oxygen. The results clearly

suggest that oxygen limitation has an important role in

PHA production and the dissolved oxygen in the cultiva-

tion broth should be controlled for attaining a high pro-

ductivity of PHA.

Optimization analysis

The numerical optimization seeks a point that maximizes

this desirability function. Tables 4, 5 showed constraints

for the responses and factors, and optimal points based on

the desirability function. The propagation of error (POE)

method makes the production process robust (insensitive)

to variations in input factors. Point prediction was used to

make predictions for responses at any factor combination

(COD:N:P, AFR, CL, and SFR). As shown in Table 4, the

desirability value indicated that the starting point (pre-

dicted point), which was assumed and accepted earlier. The

overall desirability is a measure of how well the variable is

satisfied for the combined goals (in all of the responses).

Overall desirability (D) has a range 0–1 whereas one may

represents the ideal case of zero that indicates one or more

responses are outside their acceptable limits. The study

found that the lowest D is 0.87 for %TOC removal, while

the highest value appeared at 0.948 for %NO3 removal.

Therefore, the composite desirability reached to 0.921, and

the global solution (factor combination) was acceptable for

numerical optimization with POE.

In order to analyze the main interaction effect, the

graphic analysis of this optimization is shown in Fig. 4.

This optimization plot allows user to interactively change

the input variable settings to perform sensitivity analyses

and possibly improve the initial solution (e.g. COD:N:P,

AFR, etc.). The local desirability (d) in this study wasT
a

b
le

4
S

ta
ti

st
ic

al
an

al
y

si
s

an
d

n
u

m
er

ic
al

o
p

ti
m

iz
at

io
n

o
f

d
if

fe
re

n
t

fa
ct

o
rs

u
se

d
in

th
e

o
p

ti
m

iz
at

io
n

st
u

d
y

fo
r

th
e

P
H

A
s

p
ro

d
u

ct
io

n
,

o
rg

an
ic

,
an

d
n

u
tr

ie
n

t
re

m
o

v
al

in
th

e
fe

d
-b

at
ch

re
ac

to
r

u
si

n
g

P
O

M
E

as
su

b
st

ra
te

R
es

p
o

n
se

s
S

ta
ti

st
ic

al
an

al
y

si
s

o
f

d
if

fe
re

n
t

fa
ct

o
rs

N
u

m
er

ic
al

o
p

ti
m

iz
at

io
n

fo
r

fa
ct

o
ri

al
d

es
ig

n

A
d

ju
st

ed
su

m
o

f

sq
u

ar
e

R
-s

q
u

ar
ed

(%
)

A
d

ju
st

ed
m

ea
n

sq
u

ar
e

F
v

al
u

e
p

v
al

u
e

G
o

al
L

o
w

er
li

m
it

T
ar

g
et

U
p

p
er

li
m

it
W

ei
g

h
t

Im
p

o
rt

an
ce

%
P

H
A

p
ro

d
u

ct
io

n
2

1
4

.8
6

7
9

.6
5

3
.7

1
5

1
.5

0
0

.2
5

1
T

ar
g

et
6

0
6

6
7

0
1

3

%
T

O
C

re
m

o
v

al
2

8
.2

0
7

5
9

.4
7

.0
5

2
0

.7
4

0
.5

8
1

T
ar

g
et

1
5

1
9

2
2

1
3

%
P

O
4

re
m

o
v

al
1

0
6

.1
3

0
6

1
.2

2
6

.5
3

2
2

.0
0

0
.1

4
6

M
in

im
iz

e
-

1
0

-
1

0
3

1
3

%
N

O
3

re
m

o
v

al
4

0
.8

8
6

6
4

.3
1

0
.2

2
2

0
.9

1
0

.4
8

3
T

ar
g

et
-

1
0

3
.5

5
1

3

680 Int. J. Environ. Sci. Technol. (2014) 11:671–684

123



obtained at range 0.86–0.95, which indicated the prediction

values of PHA, TOC, NO3, and PO4 was acceptable.

Therefore, the curve line has a sharp shape compared to

other influence factors. As a conclusion, carbon ratio must

be well controlled in order to reach both PHA production

and nutrient removal (Kulpreecha et al. 2009). At the same

time, the study also suggests that the AFR, CL and SFR

should be operated at 0.59 L/min, 20 h, and 22 mL/min,

respectively.

The results from Pareto chart (Fig. 5) suggested that

attaining a high production of PHA required a limited of

the DO and high COD:N:P. A second set of experiment

was carried out under selected range of AFR (0.5–1.5

L/min). The concentrations of carbon, nitrogen, and

phosphate sources were varied in a narrow interval around

the central composite optimum in a 16 factorial experi-

mental design. The %PHA production was sharply reduced

at limiting COD:N:P and/or AFR in comparison with the

two-level factorial optimal process. When harvesting a

high PHA production during feast period, COD:N:P and

AFR gave significant effect to TOC and NO3 removal.

Therefore, NO3 concentration could be influential for PHA

production rather than the degradation of organic constit-

uents only. The present study showed no increase in

COD:N:P in the new experimental range of variables and

the optimal conditions for maximum production (%PHA),

Fig. 4 Response optimizer for

best factor-response analysis for

PHA production and nutrient

removal (COD chemical oxygen

demand, AFR air flow rate,

CL cycle length, SFR substrate

feeding rate, TOC total organic

carbon)

Table 5 Numerical optimization with the overall predicted and desirability obtained from response optimizer with the POME

Responses Predicted Desirability Starting point Global solution Composite

desirability

%PHA

production

66.29 0.927 CODNP ratio = 600 g COD/g N and

200 g COD/g P

CODNP ratio = 509 g COD/g N and

200 g COD/g P

0.921

%TOC

removal

19.39 0.870 DO = 0.5 l/min DO = 0.59 l/min

%PO4

removal

-9.24 0.942 HRT = 18 h HRT = 20 h

%NO3

removal

2.80 0.948 FR = 20 ml/min FR = 20 ml/min
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and nutrient removal (%TOC, %PO4, and %NO3) in the

two-level factorial design. Thus, a culture medium for

maximizing PHA production should be in the range

450–500 g COD/g N, 180–200 as g COD/g P, and

AFR = 0.5–0.6 L/min (5–6.2 % of DO saturation). A high

transfer rate of oxygen should be maintained in the biore-

actor during feast period for better storage capacity. Model

verification results showed that the control of COD:N:P

and AFR of the medium had a strong effect on PHA pro-

duction, TOC, and NO3–N removal. No significant effect

has been observed for SFR and CL. However, the incre-

ment of PO4–P concentration will be occurred during high

PHA production. After 7 days of culture, the biomass

concentrations obtained were 10 % higher than single

factor in the optimized conditions. The biomass concen-

trations were successfully enhancing the PHA content in

their cells (increase up to 60 % of total dry weight) after

reconfiguring the operational condition. The increased PHA

production was obtained at COD: N = 509 g COD/g N,

COD: P = 200 g COD/g P, AFR = 0.59 L/min, FR =

20 mL/min, and CL = 20 h. Thus, the overall bioprocess

optimization approach using the statistical method is inef-

ficient and time consuming.

Conclusion

Palm oil mill effluent was found to be the best substrate for

PHA production. The results showed initial limiting con-

dition of N and P of the culture medium significantly

affects biomass and PHA productivities. The increment of

AFR affected a low PHA production, TOC removal, and

NO3 removal. The PO4 resulted in adverse effect, but the

values still in non-removal efficiency. The control of

COD:N:P and AFR of the medium had a strong effect on

PHA production, TOC, and NO3–N removal. No signifi-

cant effect has been observed for SFR and CL. However,

the increment of PO4–P concentration will be occurred

Fig. 5 Pareto chart for PHA production, total organic carbon, and nutrient removal at different variables (a 0.1, COD chemical oxygen demand,

AFL air flow rate, CL cycle length, SFR substrate feeding rate). Line of significance is depicted as dotted line and determined by MINITABTM
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during the high PHA production. Through a statistically

designed optimization, the PHB production, TOC and

NO3–N removal could be increased from an average of 66,

19, and 3 %, respectively. From this optimization, the non-

PO4 removal could be minimized as low as -9 % during

feast period.
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