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Abstract This study presents a landslide susceptibility

assessment for the Caspian forest using frequency ratio

and index of entropy models within geographical infor-

mation system. First, the landslide locations were identi-

fied in the study area from interpretation of aerial

photographs and multiple field surveys. 72 cases (70 %)

out of 103 detected landslides were randomly selected for

modeling, and the remaining 31 (30 %) cases were used

for the model validation. The landslide-conditioning fac-

tors, including slope degree, slope aspect, altitude,

lithology, rainfall, distance to faults, distance to streams,

plan curvature, topographic wetness index, stream power

index, sediment transport index, normalized difference

vegetation index (NDVI), forest plant community, crown

density, and timber volume, were extracted from the

spatial database. Using these factors, landslide suscepti-

bility and weights of each factor were analyzed by fre-

quency ratio and index of entropy models. Results showed

that the high and very high susceptibility classes cover

nearly 50 % of the study area. For verification, the

receiver operating characteristic (ROC) curves were

drawn and the areas under the curve (AUC) calculated.

The verification results revealed that the index of entropy

model (AUC = 75.59 %) is slightly better in prediction

than frequency ratio model (AUC = 72.68 %). The

interpretation of the susceptibility map indicated that

NDVI, altitude, and rainfall play major roles in landslide

occurrence and distribution in the study area. The land-

slide susceptibility maps produced from this study could

assist planners and engineers for reorganizing and plan-

ning of future road construction and timber harvesting

operations.

Keywords Forest road construction � Mountainous

terrain � Slope stability � Susceptibility modeling

Introduction

Landslides are the movement of a mass of rock, debris, or

soil along a downward slope, due to gravitational pull (Das

et al. 2012). The reasons for landslides are many, complex,

convoluted, and every so often unknown (Yalcin et al.

2011). The significance of forestry activities such as road

construction and timber harvesting in slope imbalance

causing frequent occurrence of landslides is widely

acknowledged (e.g., Larsen and Parks 1997). Timber har-

vesting in the north mountainous forest (Caspian region) of

Iran moved on to steep terrain in the 1980s and early 1990s

without a systematic approach for the identification of

unstable terrain or down slope risks associated with road

construction and timber harvesting. History has shown that

roads with improper terrain stability assessment in this area

can cause extensive and severe landslides (IPBO 2000).
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High landslide frequency has resulted in large financial,

social, and environmental costs in this area. This trend is

not likely to decline soon; some estimates suggest that

significant portions of forestland in the northern Iran are

prone to mass wasting and the forestry activities that reg-

ularly happening on these lands have the potential to

accelerate landslide rates and magnitudes (IPBO 2000). It

is therefore critical to understand landslides and to find

measures to mitigate subsequent losses to future landslides.

Through scientific analyses, geoscientists and engineers

can assess and predict landslide-prone areas, offering

potential measures to decrease landslide damages (Oh and

Pradhan 2011). Landslide susceptibility mapping (LSM)

could be the basis for decision-making to help citizens,

planners, and engineers to reduce the losses caused by

current and future landslides by means of prevention,

mitigation, and avoidance (Feizizadeh and Blaschke 2013).

Various techniques and methods have been proposed and

developed for the LSM purposes. They can be categorized

into four groups depending on the modeling approach:

statistical, analytic, deterministic, and heuristic techniques

(Guzzetti et al. 1999). Each has its inherent advantages and

limitations. For example, when study area is large, appli-

cation of analytic methods is almost impossible (Pradhan

2013). The levels of landslide susceptibility determined by

statistical methods are drastically affected by the accuracy

of mapping of different conditioning factors and landslide

inventory (Guzzetti et al. 1999). Das et al. (2012) address

the issue of LSM along road corridors using Bayesian

logistic regression models. They state that ‘‘heuristic

approaches, in many instances, are biased as they depend

on expert knowledge. Statistical methods, on the other

hand, help to remove the bias of expert judgment and

express the variability present in the datasets. Logistic

regression is a robust and straightforward statistical method

that is relatively easy to handle.’’ Yilmaz (2009), in a

comparative study, argues that ‘‘input process, calculations,

and output process are very simple and can be readily

understood in the frequency ratio model; however, logistic

regression and neural networks require the conversion of

data to ASCII or other formats. It is also very hard to

process the large amount of data in the statistical package.

On the other hand, all the three models have relatively

similar accuracies.’’ In general, these methods give rise to

qualitative and quantitative maps of the landslide hazard

areas, and the spatial results are appealing (Bui et al. 2012).

Independent of the modeling approach, the first step for

assessing and managing of any landslide-prone area is to

provide a landslide inventory map. The next step is the

production of a LSM, which includes the spatial distribu-

tion of conditioning factors. This will allow landslide-

prone areas to be delimited and indicate where landslides

may likely occur in the future. The third step involves the

creation of a landslide hazard map, which, in contrast to

LSM, includes a temporal framework, with the probability

of landslide occurrence within a specified period of time.

The final step is the production of a landslide risk map,

describing the expected annual cost of landslide damage

throughout the affected area. Ultimately, all four maps are

used to delimit and present zones of landslide susceptibil-

ity, hazard, and risk, respectively. A landslide zone is

essentially a division of the land into areas and their clas-

sification according to degrees of actual or potential land-

slide hazard or susceptibility (Kamp et al. 2008).

The study was carried out in the Educational and Exper-

imental Forest of Tarbiat Modares University (EEFTMU) in

July–October 2012. The main objective of this study was to

provide managers and foresters with a comprehensive

assessment of landslide susceptibility in forestlands. For this

purpose, we used frequency ratio and index of entropy

models within a GIS environment. These models exploit

information obtained from an inventory map, and a wide

variety of conditioning factors to predict where landslides

may occur in future. Furthermore, we provided a validation

of the landslide susceptibility maps prepared for the study

area. This study has practical implications for forest man-

agement and is novel; in that, it is the first replicated study in

north mountainous forest of Iran to comprehensively assess

the terrain stability for forestry activities.

Materials and methods

Study area

The study area is located in the EEFTMU, between the

northern slopes of Albourz Mountains and southern shores

of the Caspian Sea. The area lies between 36�2901000N and

36�3205000N latitude and 51�4006000E and 51�4802000E lon-

gitude, and covers an area about of 52 km2 (Fig. 1). The

area is a part of the Kojour watershed in the Caspian forest,

with a rough topography, and a highest elevation of

2190 m a.s.l. The climate is humid and mild. The mean

annual rainfall at the site is about 650 mm, falling mostly

as rain and including a cover of snow in winters. The

average summer and winter temperature are estimated to be

22.5 and 10 �C, respectively. The natural vegetation is a

deciduous forest with dominant species of Fagus orientalis

and Carpinus betulus. The geological, geomorphological,

and hydrogeological environment of the area is favorable

for landsliding. A number of landslides have occurred in

the past; there are also numerous recorded instances of

active landslides in this area. On the other hand, the forest

managers had recently decided to construct new roads for

timber harvesting operations. Hence, they need an assess-

ment from landslide susceptibility in this area.
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Data used

Landslide inventory map

Landslide inventory mapping is the systematic mapping of

existing landslides in the study area using different tech-

niques, such as field survey, aerial photograph, and satellite

image interpretation, and literature search for historical

landslide records (Ozdemir and Altural 2013). The land-

slide inventory map for our study area was compiled

through aerial photographs interpretation and field-based

inspection. In the aerial photographs, historical landslides

could be observed as breaks in the forest canopy, bare soil,

or geomorphological features, such as head- and side-

Fig. 1 Location of the study area with landslide location map
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scarps, flow tracks, and soil deposits and debris deposits

below a scar (Oh and Pradhan 2011). Given the abundant

overstory and understory vegetation in the study forest, we

also conducted multiple field surveys and observations to

produce a more detailed and reliable landslide inventory

map. A total of 103 landslides were detected in the study

area (Fig. 1). 72 cases (70 %) out of 103 detected land-

slides were randomly selected for modeling, and the

remaining 31 (30 %) cases were used for the model vali-

dation purposes (Mohammady et al. 2012; Pourghasemi

et al. 2013).

Landslide-conditioning factors

The fundamental step for developing the predictive

models of landslide occurrence is the recognition of the

factors that are responsible for landsliding. The number

of conditioning factors may range from only a few

numbers to several (Mohammady et al. 2012; Pourgha-

semi et al. 2012b; Papathanassiou et al. 2012). The

selection of these factors mainly depends on the avail-

ability of data for the study area and the relevance with

respect to landslide occurrences (Papathanassiou et al.

2012). According to the Ayalew and Yamagishi (2005),

in GIS-based studies, the selected factors should be

operational, complete, non-uniform, measurable, and

non-redundant. In this study, we considered a total of 15

landslide-conditioning factors. ArcGIS and SAGA GIS

were employed to generate required conditioning factors.

Slope degree, slope aspect, altitude, plan curvature,

topographic wetness index (TWI), stream power index

(SPI), and sediment transport index (STI) were extracted

from a 20-m digital elevation model (DEM) (Fig. 2a–g).

Given the physical relation between the landslide

occurrence and slope gradient (Oh and Pradhan 2011;

Pourghasemi et al. 2012b), substantial attention has been

given for slope conditions in this study. The slope aspect

is related to the general physiographic trend of the area.

This factor strongly affects hydrological processes via

evapo-transpiration and thus affects weathering processes

and vegetation and root development. Altitude is also a

significant landslide-conditioning factor because it is

controlled by several geological and geomorphological

processes (Dai et al. 2001). Plan curvature is described

as the curvature of a contour line formed by intersecting

a horizontal plane with the surface. The influence of plan

curvature on the slope erosion processes is the conver-

gence or divergence of water during downhill flow (Oh

and Pradhan 2011). In the case of the plan curvature,

positive curvature is an upwardly convex cell, zero

curvature represent flat, and negative curvature is

upwardly concave cell. The topography plays important

role in controlling the spatial variation of hydrological

conditions, such as soil moisture, groundwater flow, and

slope stability (Yilmaz 2009). Secondary topographic

attributes have been applied to describe spatial soil

moisture patterns (Moore et al. 1991). One of these

indices is the TWI developed by Beven and Kirkby

(1979) within a runoff model. The TWI is the ratio

between the specific catchment area and the slope

(Moore et al. 1991):

TWI ¼ ln
As

b

� �
ð1Þ

where As is the specific catchment area (m2/m), and b is

slope angle in degrees. The TWI reflects the tendency of

water to accumulate at any point in the catchment (in terms

of a) and the tendency of gravitational forces to move that

water down slope (Pourghasemi et al. 2012b). The other

secondary derivative of the DEM is the SPI (Bagnold

1966). On the one hand, SPI is an indicator for erosive

processes, as are caused by surface runoff. On the other

hand, it is an indicator for the intermediate scale

topographic position (ridge, slope, or valley bottom)

(Vorpahl et al. 2012). The SPI is calculated from the

following formula:

SPI ¼ As � tan b ð2Þ

where As is the specific catchment area (m2/m), and b is

slope angle in degrees. The next type of DEM-derived

topographic data used in this study is STI. This index is

equivalent to the length–slope factor in the Revised

Universal Soil Loss Equation (Pourghasemi et al. 2012a)

and often used to reflect the erosive power of overland

flow. The STI is denoted mathematically by the Moore and

Burch (1986) as below:

STI ¼ As

22:13

� �0:6

� sin b
0:0896

� �1:3

ð3Þ

where As is the specific catchment area (m2/m), and b is

slope angle in degrees. TWI, SPI, and STI can be easily

produced as a function of standard terrain analysis within a

SAGA GIS. The geological map prepared by Geological

Survey of Iran (GSI) on 1:100,000 scale was used for the

present study. The general geological setting of the area is

shown in Fig. 3, and the lithological properties are

summarized in Table 1 (Ghajar et al. 2012). The distance

to streams was calculated using the topographic database

(Fig. 4a). The distance to faults was calculated at 100-m

intervals based on faults (Fig. 4b). The rainfall map was

prepared using the mean annual precipitate data from the

meteorological station for the study area over last 20 years

(Fig. 5). In this study, a normalized difference vegetation

index (NDVI) was also used as an environmental parameter

for LSM (Fig. 6a). The NDVI is a measure of surface
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reflectance and gives a quantitative estimate of vegetation

growth and biomass (Hall et al. 1995). The NDVI is

defined as follows:

NDVI ¼ ðIR� RÞ
ðIRþ RÞ ð4Þ

where IR is the infrared portion of the electromagnetic

spectrum, and R is the red portion of the electromagnetic

spectrum. Low values of the NDVI (0.1 and below)

indicate barren areas, sand, or snow. Moderate values

(0.2–0.3) represent shrub and grasslands, whereas high

values (0.6–0.8) correspond to temperate and tropical

rainforests (Yilmaz and Keskin 2009). Forest canopy,

timber volume, and plant community are also significant

environmental parameters considered in this study

(Fig. 6b–d). Given the important role of forest canopy in

controlling many aspects of forest ecosystem dynamics

(Sefidi et al. 2011), this index is incorporated as vital

variables when modeling forest responses to the pressing

issues (Didham and Fagan 2004). Timber volume (m3/ha)

has long been the most commonly used forestland attri-

bute for providing information for the development of

management strategies. Forest plant community is known

to introduce some mechanical changes through soil rein-

forcement and slope loading (Abdi et al. 2010). The

increase in soil strength due to root reinforcement has

great potential to reduce the rate of landslide occurrence

(Yalcin et al. 2011).

All the above-mentioned landslide-conditioning factors

were stored in raster format with a cell size of 20 9 20 m

and were overlaid with the landslide inventory map for

the application of frequency ratio and index of entropy

models.

Landslide susceptibility mapping (LSM)

Frequency ratio model

Mass movement and landslide-controlling factors are

generally assumed to be similar to those observed in the

past. If this assumption holds true, one can predict future

slides occurring in a non-specified time span (Feizizadeh

and Blaschke 2013). The frequency ratio model is based on

the assumption that future landslides will occur at similar

conditions to those in the past (Lee and Pradhan 2007). The

frequency ratio is the ratio of the area where landslides

Fig. 2 Topographic parameter maps of the study area; a slope degree, b slope aspect, c altitude, d plan curvature; e topographic wetness index;

f stream power index; g sediment transport index
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have occurred to the total study area and is also the ratio of

the landslide occurrence probabilities to the non-occur-

rence for a given attribute (Lee and Pradhan 2007). To

calculate the frequency ratio, the area ratio of landslide

occurrence to non-occurrence was calculated for each

factor’s type or range, after which an area ratio for the

range or type of each factor to the total area was calculated.

Therefore, the frequency ratio for each factor’s class or

type was calculated from its relationship with landslide

events. The larger the ratio was, the stronger the relation-

ship between landslide occurrence and the given factor’s

attribute (Yalcin et al. 2011). The landslide susceptibility

index (LSI) was calculated by summation of each factor’s

ratio value using following equation:

LSI ¼
X

FR ð5Þ

where FR is rating of each factor’s type or range. FR is

expressed as follows:

FR ¼
NpixðSXiÞPm

i¼1
SXi

NpixðXjÞPn

j¼1
NpixðXjÞ

ð6Þ

where Npix(SXi) is the number of pixels with landslides

within class i of factor variable X, Npix(Xj) is the number of

pixels within factor variable Xj, m is the number of classes

in the parameter variable Xi, and n is the number of factors

in the study area (Regmi et al. 2013). The frequency ratio

model can be simply implemented within a GIS environ-

ment, and the results are easy to understand (Yalcin et al.

2011; Mohammady et al. 2012; Ozdemir and Altural

2013).

Fig. 2 continued

Fig. 3 The lithology map of the study area
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Index of entropy model

Another model used for LSM in this study is index of

entropy model. The entropy indicates the extent of the

instability, disorder, imbalance, and uncertainty of a system

(Yufeng and Fengxiang 2009). The entropy of a landslide

refers to the extent that various factors influence the

development of a landslide (Pourghasemi et al. 2012b).

Several important factors provide additional entropy into

the index system. Therefore, the entropy value can be used

to calculate objective weights of the index system. The

equations used to calculate the information coefficient Wj

Table 1 Types of geological formation of the study area (Ghajar et al. 2012)

Era (groups) Geological age Code Lithology

Mesozoic Cretaceous K1
1 Orbitolina limestone and calcareous shale

K2
1 Conglomerate in lower part, limestone, marly limestone, and sandy limestone

K2
ml Limestone, marl, limy marl, and silty marl

Triassic R3
sh,1 Shale, sandstone, and limestone

R2
dl Thick-bedded to massive dolomitic limestone, dolomite, and limestone

Paleozoic Permian Pn Cherty limestone, calcareous, and sandy shale

Pr Gray, thick-bedded to massive limestone and dolomite

Cenozoic Quaternary Qal Recent alluvium in river beds

Fig. 4 Distance factors; a distance to streams, b distance to faults

Fig. 5 The rainfall map of the

study area
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representing the weight value for the parameter as a whole

(Bednarik et al. 2010, 2012; Constantin et al. 2011) are the

following:

Pij ¼
b

a
ð7Þ

Pij

� �
¼ Pij

PSj

j¼1

Pij

ð8Þ

Hj ¼ �
XSj

i¼1

Pij

� �
log2 Pij

� �
; j ¼ 1; . . .; n ð9Þ

Hjmax ¼ log2 Sj; Sj is the number of classes ð10Þ

Ij ¼
Hjmax � Hj

Hjmax

; I ¼ 0; 1ð Þ; j ¼ 1; . . .; n ð11Þ

Wj ¼ IjPij ð12Þ

where a and b are the domain and landslide percentages,

respectively, (Pij) is the probability density, Hj and Hjmax

represent entropy values, Ij is the information coefficient,

and Wj represents the resultant weight value for the factor

as a whole. The final landslide susceptibility map is

prepared using the following equation:

YIOE ¼
Xn

i¼1

z

mi

� C �Wj ð13Þ

where YIOE is the sum of all the classes; i is the number of

particular parametric map; z is the number of classes within

parametric map with the greatest number of classes; mi is

the number of classes within particular parametric map;

C is the value of the class after secondary classification;

and Wj is the weight of a parameter (Bednarik et al. 2010;

Devkota et al. 2013). The result of this summation repre-

sents the various levels of the landslide susceptibility

(Constantin et al. 2011).

Results and discussion

Application of frequency ratio model

The result of the landslide susceptibility assessment based

on the frequency ratio model shows that each class of the

conditioning factors is characterized by a certain landslide

occurrence density (Table 2). From table 2, it is seen that a

slope angle in ranges of 30–508 and 30–508 shows 52.78

Fig. 6 Environmental parameter maps of the study area; a NDVI, b forest canopy, c timber volume, d plant community
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and 31.94 % of probability to landsliding with frequency

ratio values of 1.25 and 1.50, respectively. The low prob-

ability of landslide occurrence is obtained in the areas

having a steeper slope [50�. It is clear that the landslide

occurrence increases by the increase in slope angle up to a

certain extent, and then, it decreases. A similar pattern was

also observed by Devkota et al. (2013). Generally, the

shear stress is related to the slope. As the slope angle

increases, the shear stress in the soil or other unconsoli-

dated material generally increases. Gentle slopes are

expected to have a low frequency of landslides because of

the generally lower shear stresses are associated with low

gradients (Mohammady et al. 2012). In the case of slope

aspect, the value of frequency is higher for the areas facing

the east, northwest, west, and southeast, and lower for flat

and northeast. Previous studies (e.g., Fernandes et al. 2004;

Ayalew and Yamagishi 2005) have also suggested that the

high landslide density at specific slope aspects was asso-

ciated with local conditions, such as the prevailing direc-

tion of winds and storms, fault orientation, rock structure,

and even coastal erosion. However, some authors working

in different areas have not noticed a significant relationship

between landslides and slope aspect (e.g., Ayalew and

Yamagishi 2004). For the altitude, landslide density is

highest at the elevation ranging from 0 to 600 followed by

600–1,200 m. Meanwhile, altitude 1,200–1,800 m and

[1,800 m show low frequency ratio, 0.59 and 0.00,

respectively. Pachauri and Pant (1992) suggested that the

higher elevation shows a greater susceptibility to sliding.

However, in our study and based on the results reported by

Ercanoglu and Gokceoglu (2002) and Pourghasemi et al.

(2013), the higher topographic elevation is formed by the

lithological units resistant to landslide and has a low fre-

quency ratio. According to the results of the frequency

ratio model, the more negative the curvature value, the

higher is the probability of landslide occurrence. Relation

between plan curvature and landslide probability shows

that concave areas have a higher frequency ratio value

(1.26) than convex areas (0.90), whereas flat areas have a

low frequency ratio value of 0.83. The curvature area, in

turn, will increase the moisture content of the soil, which

will remain saturated, increase erosion, and decrease soil

stability (Pourghasemi et al. 2013). The frequency ratio

between landslide occurrence and TWI shows that the

higher frequency ratio values are related to the class of[12

(2.49). Similarly, for SPI, the areas ranging on 450–600 and

[600 have higher frequency ratio values (Table 2). In the

case of the STI, landslide susceptibility is higher in areas

where the STI ranges from 60 to 80 and [80. During the

fieldwork, landslides were commonly observed on and

close to relatively flat valley bottoms with a huge con-

tributing area, where TWI, SPI, and STI expose higher

values. Given that landslide initiation requires a

contributing area of sufficient size combined with a mini-

mum slope angle (Vorpahl et al. 2012), we expected low

landslide susceptibility at low values of TWI, SPI, and STI.

An analysis of the landslide distribution in relation to the

geological formation types indicates that the Pr formation

exhibits the highest frequency ratio (4.96), followed by the

R3
sh1 formation (1.28). The other lithological units show

different sensitivities to landslides (Table 2). Our results

are in agreement with those of Gokceoglu et al. (2005), Lee

and Pradhan (2007), and Ozdemir and Altural (2013),

which have found that variations in landslide distribution

are highly dependent on lithology type. For distance to

streams, the frequency values show that when the distance

increases, the probability of landslides decreases. The

highest probability for landslide occurrence is within dis-

tances less than 100 m. Streams can adversely affect sta-

bility by eroding slopes or saturating the lower part of a

material until the water level increases (Dai et al. 2001).

However, landslides seem to occur most often at specific

distances from the streams. For distance to faults, the

landslide occurrence probability is high in areas where the

distance is 100–200 and 200–300 m, whereas the proba-

bility decreases at a distance of less than 100 m or more

than 300 m from a fault line. A similar trend was also

reported by Ozdemir and Altural (2013). On the other

hand, a different result was reported by Khanh (2009), who

found that most landslides occur within a distance of

250–1,000 m. We attribute this difference to the local

conditions, such as fault density, fault orientation, and rock

structure. Investigation of rainfall indicates that for initia-

tion of landslides in the study area, an intense rainfall is

required. The frequency ratio in class of 762–879 mm is

very high (3.19) than that of the other three classes. For

NDVI values 0.3–0.5, the landslide frequency ratio was

larger than 1, illustrating that relatively high vegetation

coverage can easily lead to landslide occurrence. A posi-

tive correlation between landslide occurrence and NDVI

was also reported by Yilmaz and Keskin (2009). The

widely held view is that the vegetation coverage can pro-

tect slopes by reducing erosion, strengthening soil, and

inhibiting landslides, which increase general slope stability

(Bell 1998; Abdi et al. 2010). However, huge hardwood

trees in the study area exposed to wind may transmit the

forces into the slope and cause slope failure by increasing

the lateral load in vulnerable terrain. Weight of such trees

surcharges the slope, increasing normal and downhill force

components, and may cause failure during the monsoon

(Ghimire 2011). In case of forest plant community, land-

slides are more associated with the communities of Fagio-

Parrio-Carpinetum betulus and Parrio-Carpinetum betu-

lus. In the study area, these plant communities are strongly

correlated with steep and unstable slopes. Although Par-

rotia persica and Carpinus betulus have been identified as

Int. J. Environ. Sci. Technol. (2014) 11:909–926 917
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Table 2 Frequency ratio values of the landslide-conditioning factors

Conditioning factor Class Number of pixels

in domain

Number of

landslides

% Total of

area (a)

% Total of

landslide area (b)

FR (b/a)

Slope angle 0–5 7,061 3 5.58 4.17 0.75

5–15 36,700 8 28.98 11.11 0.38

15–30 53,543 38 42.28 52.78 1.25

30–50 26,981 23 21.31 31.94 1.50

[50 2,354 0 1.86 0.00 0.00

Slope aspect F 180 0 0.14 0.00 0.00

N 27,135 11 21.43 15.28 0.71

NE 20,032 1 15.82 1.39 0.09

E 18,587 19 14.68 26.39 1.80

SE 19,873 14 15.69 19.44 1.24

S 12,275 5 9.69 6.94 0.72

SW 5,024 1 3.97 1.39 0.35

W 6,982 6 5.51 8.33 1.51

NW 16,551 15 13.07 20.83 1.59

Altitude (m) 0–600 13,705 33 10.82 45.83 4.24

600–1,200 43,928 17 34.69 23.61 0.68

1,200–1,800 65,077 22 51.39 30.56 0.59

[1,800 3,929 0 3.10 0.00 0.000

Plan curvature (100/m) Concave 41,880 30 33.07 41.67 1.26

Flat 31,739 15 25.06 20.83 0.83

Convex 53,020 27 41.87 37.50 0.90

TWI \8 22,705 17 17.93 23.61 1.32

8–12 94,036 41 74.26 56.94 0.77

[12 9,898 14 7.82 19.44 2.49

SPI 0–150 14,111 3 11.14 4.17 0.37

150–300 11,124 4 8.78 5.56 0.63

300–450 9,887 2 7.81 2.78 0.36

450–600 8,545 7 6.75 9.72 1.44

[600 82,972 56 65.52 77.78 1.19

STI 0–20 22,876 4 18.06 5.56 0.31

20–40 22,797 6 18.00 8.33 0.46

40–60 20,229 10 15.97 13.89 0.87

60–80 15,605 15 12.32 20.83 1.69

[80 45,132 37 35.64 51.39 1.44

Lithology Qal 1,700 0 1.34 0.00 0.00

K2
1 10,368 2 8.19 2.78 0.34

K1
1 31,849 21 25.15 29.17 1.16

K2
ml 30,309 20 23.93 27.78 1.16

R3
sh1 5,479 4 4.33 5.56 1.28

R2dl 37,160 16 29.34 22.22 0.76

Pn 6,582 0 5.20 0.00 0.00

Pr 3,192 9 2.52 12.50 4.96

Distance to streams (m) 0–100 76,116 54 60.10 75.00 1.25

100–200 30,738 13 24.27 18.06 0.74

200–300 9,498 3 7.50 4.17 0.56

300–400 3,923 1 3.10 1.39 0.45

[400 6,364 1 5.03 1.39 0.28
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a potential restoration species for revegetating steep slopes

(Abdi et al. 2010), their relatively sparse crown makes

them relatively ineffective at insuring slope stability (Sefidi

et al. 2011). For timber volume, the results show that the

range between 0–100, 200–300, and 300–400 m3/ha is

relatively favorable (highly susceptible) for landslide

occurrence. Their frequency ratios are 1.23, 1.02, and 1.28,

respectively. With regard to forest canopy, the classes of

50–60 % and [80 % seem to have the lowest impact on

landslide occurrence. Their frequency ratios are 0.00 and

0.63, respectively. In forest ecosystems, canopy acts as a

shelter and reduces soil erosion and landslide occurrence.

The final result of frequency ratio model is a LSI map, in

which the LSI values vary from 7.91 to 47.48.

Application of index of entropy model

In landslide susceptibility mapping using frequency ratio

model, it was assumed that all the conditioning factors

carry equal weight in determining the vulnerability status

of the pixels. However, a factor is considered as non-

existing and is ignored for the study when it has the same

value throughout the study area. According to the Sharma

et al. (2010), ‘‘if 90 % of the study area has same value and

only 10 % of the study area has different values for a

particular parameter, the overall role of this parameter in

determining the vulnerability status in the study area

should be less than any other parameter whose values

exhibit consistent and uniform variation throughout the

Table 2 continued

Conditioning factor Class Number of pixels

in domain

Number of

landslides

% Total of

area (a)

% Total of

landslide area (b)

FR (b/a)

Distance to faults (m) 0–100 15,442 6 12.19 8.33 0.68

100–200 13,567 13 10.71 18.06 1.69

200–300 13,266 13 10.48 18.06 1.72

300–400 11,891 4 9.39 5.56 0.59

[400 72,473 36 57.23 50.00 0.87

Rainfall (mm) 414–529 9,220 0 7.28 0.00 0.00

530–645 63,812 23 50.39 31.94 0.63

646–761 35,427 16 27.97 22.22 0.79

762–879 18,180 33 14.36 45.83 3.19

NDVI \0.1 321 0 0.25 0.00 0.00

0.1–0.3 463 0 0.37 0.00 0.00

0.3–0.5 11,265 40 8.90 55.56 6.25

[0.5 114,590 32 90.49 44.44 0.49

Forest canopy (%) 0–40 1,226 1 0.97 1.39 1.43

40–50 2,864 2 2.26 2.78 1.23

50–60 5,370 0 4.24 0.00 0.00

60–70 21,252 20 16.78 27.78 1.66

70–80 29,185 25 23.05 34.72 1.51

[80 66,742 24 52.70 33.33 0.63

Timber volume (m3/ha) 0–100 4,355 3 3.44 4.17 1.21

100–200 5,309 1 4.19 1.39 0.33

200–300 22,387 13 17.68 18.06 1.02

300–400 56,153 41 44.34 56.94 1.28

400–500 28,252 11 22.31 15.28 0.68

[500 10,183 3 8.04 4.17 0.52

Plant community Fagetum orientalis 54,858 20 43.32 27.78 0.64

Fagio-Carpinetum betulus 24,930 12 19.69 16.67 0.85

Carpino-Quercetum castaneifolia 10,131 2 8.00 2.78 0.35

Parrio-Carpinetum betulus 9,561 8 7.55 11.11 1.47

Fagio-Carpino-Quercetum

castaneifolia

5,837 1 4.61 1.39 0.30

Fagio-Parrio-Carpinetum betulus 21,322 29 16.84 40.28 2.39
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Table 3 Entropy values of the landslide-conditioning factors

Conditioning factor Class a b Pij (Pij) Hj Hj max Ij Wj

Slope angle 0–5 5.58 4.17 0.747 0.193 1.844 2.322 0.206 0.160

5–15 28.98 11.11 0.383 0.099

15–30 42.28 52.78 1.248 0.322

30–50 21.31 31.94 1.499 0.387

[50 1.86 0.00 0.000 0.000

Slope aspect F 0.14 0.00 0.000 0.000 2.709 3.170 0.145 0.129

N 21.43 15.28 0.713 0.089

NE 15.82 1.39 0.088 0.011

E 14.68 26.39 1.798 0.224

SE 15.69 19.44 1.239 0.155

S 9.69 6.94 0.716 0.089

SW 3.97 1.39 0.350 0.044

W 5.51 8.33 1.511 0.189

NW 13.07 20.83 1.594 0.199

Altitude (m) 0–600 10.82 45.83 4.235 0.769 1.011 2.000 0.494 0.681

600–1,200 34.69 23.61 0.681 0.124

1,200–1,800 51.39 30.56 0.595 0.108

[1,800 3.10 0.00 0.000 0.000

Plan curvature (100/m) Concave 33.07 41.67 1.260 0.422 1.560 1.585 0.016 0.016

Flat 25.06 20.83 0.831 0.278

Convex 41.87 37.50 0.896 0.300

TWI \8 17.93 23.61 1.317 0.288 1.427 1.585 0.100 0.152

8–12 74.26 56.94 0.767 0.168

[12 7.82 19.44 2.488 0.544

SPI 0–150 11.14 4.17 0.374 0.094 2.103 2.322 0.094 0.075

150–300 8.78 5.56 0.632 0.159

300–450 7.81 2.78 0.356 0.089

450–600 6.75 9.72 1.441 0.361

[600 65.52 77.78 1.187 0.298

STI 0–20 18.06 5.56 0.308 0.064 2.081 2.322 0.104 0.099

20–40 18.00 8.33 0.463 0.097

40–60 15.97 13.89 0.869 0.182

60–80 12.32 20.83 1.691 0.354

[80 35.64 51.39 1.442 0.302

Lithology Qal 1.34 0.00 0.339 0.035 2.073 3.000 0.309 0.373

K2
1 8.19 2.78 1.284 0.133

K1
1 25.15 29.17 1.160 0.120

K2
ml 23.93 27.78 1.161 0.120

R3
sh1 4.33 5.56 0.000 0.000

R2dl 29.34 22.22 0.757 0.078

Pn 5.20 0.00 0.000 0.000

Pr 2.52 12.50 4.959 0.513

Distance to streams (m) 0–100 60.10 75.00 1.248 0.381 2.145 2.322 0.076 0.050

100–200 24.27 18.06 0.744 0.227

200–300 7.50 4.17 0.556 0.170

300–400 3.10 1.39 0.448 0.137

[400 5.03 1.39 0.276 0.084
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study area.’’ In this study, we employed index of entropy to

reduce the unevenness among the parameters and thereby

to provide realistic status of their impact on the landslide

susceptibility within the study area. The results show that

each class of the conditioning factors is characterized by a

certain landslide occurrence density Pij (Eq. 7 and

Table 3). Overall, the most important factors controlling

the distribution of landslides were derived and are pre-

sented in Table 3. The findings based on entropy approach

show that NDVI, altitude, and rainfall are the most

important factors which explain better the landslide

occurrence and distribution in study area. The final land-

slide susceptibility map was developed using the Eq. (13)

as follow:

Table 3 continued

Conditioning factor Class a b Pij (Pij) Hj Hj max Ij Wj

Distance to faults (m) 0–100 12.19 8.33 0.683 0.123 2.181 2.322 0.061 0.067

100–200 10.71 18.06 1.685 0.303

200–300 10.48 18.06 1.724 0.310

300–400 9.39 5.56 0.592 0.106

[400 57.23 50.00 0.874 0.157

Rainfall (mm) 414–529 7.28 0.00 0.000 0.000 1.198 2.000 0.401 0.463

530–645 50.39 31.94 0.634 0.137

646–761 27.97 22.22 0.794 0.172

762–879 14.36 45.83 3.193 0.691

NDVI \0.1 0.25 0.00 0.000 0.000 0.377 2.000 0.812 1.367

0.1–0.3 0.37 0.00 0.000 0.000

0.3–0.5 8.90 55.56 6.245 0.927

[0.5 90.49 44.44 0.491 0.073

Forest canopy (%) 0–40 0.97 1.39 1.435 0.222 2.259 2.585 0.126 0.136

40–50 2.26 2.78 1.228 0.190

50–60 4.24 0.00 0.000 0.000

60–70 16.78 27.78 1.655 0.256

70–80 23.05 34.72 1.507 0.233

[80 52.70 33.33 0.632 0.098

Timber volume (m3/ha) 0–100 3.44 4.17 1.212 0.240 2.448 2.585 0.053 0.045

100–200 4.19 1.39 0.331 0.066

200–300 17.68 18.06 1.021 0.202

300–400 44.34 56.94 1.284 0.254

400–500 22.31 15.28 0.685 0.136

[500 8.04 4.17 0.518 0.103

Plant community Fagetum orientalis 43.32 27.78 0.641 0.107 1.986 2.585 0.232 0.232

Fagio-Carpinetum betulus 19.69 16.67 0.847 0.141

Carpino-Quercetum castaneifolia 8.00 2.78 0.347 0.058

Parrio-Carpinetum betulus 7.55 11.11 1.472 0.245

Fagio-Carpino-Quercetum castaneifolia 4.61 1.39 0.301 0.050

Fagio-Parrio-Carpinetum betulus 16.84 40.28 2.392 0.399

YIOE ¼

slope degree� 0:16ð Þ þ slope aspect� 0:129ð Þ þ altitude � 0:681ð Þ þ plan curvature� 0:016ð Þ
þ TWI� 0:152ð Þ þ SPI� 0:075ð Þ þ STI� 0:099ð Þ þ lithology� 0:373ð Þ þ distance to streams� 0:05ð Þ
þ distance to faults � 0:067ð Þ þ rainfall� 0:463ð Þ þ NDVI� 1:367ð Þ þ forest canopy� 0:136ð Þ
þ timber volume� 0:045ð Þ þ forest plant community� 0:232ð Þ

0
BBB@

1
CCCA:
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The final result of index of entropy model is a LSI map,

in which the LSI values vary from 1.5965 to 24.5357.

Landslide susceptibility maps

For visual interpretation of LSI maps, the data need to be

classified into categorical susceptibility classes. There are

many classification methods available, such as quantiles,

natural breaks, equal intervals, and standard deviations

(Ayalew and Yamagishi 2005). Generally, the selection of

classification methods depends on the distribution of the

landslide susceptibility indexes (Ayalew and Yamagishi

2005). For instance, if the data distribution is close to normal,

equal interval, or standard deviation, classifiers should be

used. If the data distribution has a positive or negative

skewness, the quantile or natural break distribution classifi-

ers could be chosen (Akgun et al. 2012). In this study, con-

sidering data distribution histogram, the quantile and natural

break classifiers were applied to the data. The comparison

results indicated that the quantile classifier was able to pro-

duce better results than the natural break classifier. There-

fore, the quantile data classification approach was chosen,

and the landslide susceptibility index maps were classified

into four susceptibility classes: low, moderate, high, and very

high (Pourghasemi et al. 2012b). According to the landslide

susceptibility map generated with the frequency ratio model

(Fig. 7), 24.49 % of the total area falls in the low suscepti-

bility zone. Moderate and high susceptible zones represent

26.06 and 24.93 % of the total area, respectively. The very

high landslide susceptibility zone includes 24.52 % of the

total study area. In landslide susceptibility map produced

from index of entropy model (Fig. 8), the low susceptible

zone covers 22.84 % of the total study area, whereas

moderate, high, and very high susceptible zone cover 26.77,

26.76, and 23.63 % of the total area, respectively.

Validation of the landslide susceptibility maps

Any effort to make certain landslide susceptibility in a

region needs proper validation. Confirmation should

establish the quality (i.e., consistency, robustness, degree

of fitting, and prediction skill) of the proposed suscepti-

bility estimate (Yalcin et al. 2011). In our study, validation

of the susceptibility maps was checked by receiver oper-

ating characteristics (ROC) (Akgun et al. 2012; Bui et al.

2012; Ozdemir and Altural 2013). The ROC curve is a

useful method for representing the quality of deterministic

and probabilistic detection and forecast systems. The ROC

plots the different accuracy values obtained against the

whole range of possible threshold values of the functions,

and the ROC serves as a global accuracy statistic for the

model, regardless of a specific discriminate threshold

(Pourghasemi et al. 2012c). In the ROC curve, the sensi-

tivity of the model (in our case, the percentage of unstable

pixels correctly predicted by the model) is plotted against

1-specificity (the percentage of predicted unstable pixels

over the total) (Mohammady et al. 2012). The area under

the ROC curve (AUC) characterizes the quality of the

probabilistic model by describing its ability to reliably

predict an occurrence or non-occurrence event. The range

of values of the AUC is 0.5–1 for a good fit, while values

below 0.5 represent a random fit. For validation, we used

both success rate and prediction rate curves by comparing

the existing landslide locations with the landslide suscep-

tibility maps. The success rate results were obtained by

using the training dataset 70 % (72 landslide locations).

Fig. 7 Landslide susceptibility

map produced by frequency

ratio model
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Figure 9 shows the success rate curve for landslide sus-

ceptibility maps, which were classified by quantile data

classification approach. The index of entropy model has the

highest AUC value (0.7554), whereas frequency ratio has

0.7382. Since the success rate method used the training

landslide pixels that have already been used for building

the landslide models, the success rate is not a suitable

method for assessing the prediction capability of the

models. However, the success rate method may help to

determine how well the resulting landslide susceptibility

maps have classified the areas of existing landslides (Bui

et al. 2012; Pourghasemi et al. 2012c).

The prediction rate explains how well the model and

predictor variable predict the landslide. This method is

already widely used as a measure of performance of a

predictive rule (e.g., Mohammady et al. 2012; Akgun et al.

2012; Ozdemir and Altural 2013). In our study, the AUC

values of the prediction rate curves for frequency ratio and

index of entropy models were found to be 0.7268, and

0.7559, respectively. It can be concluded that both the

success rate and prediction rate curve show almost similar

result, and the models utilized in this study showed rea-

sonably good accuracy in predicting the landslide suscep-

tibility of the study area (Fig. 10).

Fig. 8 Landslide susceptibility

map produced by index of

entropy model

Fig. 9 Success rate curves for

the susceptibility maps

produced in this study
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As already mentioned, the natural break classifier was

also used to classify the LSI maps into categorical sus-

ceptibility classes. Furthermore, the obtained maps were

validated by ROC method. In the case of success rate, the

frequency ratio and index of entropy models showed the

AUC values of 0.7242, and 0.7195, respectively. For pre-

diction accuracy, the AUC values were 0.6977, and 0.6833,

respectively. The comparison results indicate that the

quantile classifier performs better than the natural break in

classification LSI maps produced in this study.

Conclusion

Landslides are the most frequent natural hazards in the

Caspian forest. However, progress in susceptibility map-

ping at the operational scale lags behind. This study

applied widely accepted models, frequency ratio, and index

of entropy, within a GIS environment for the purpose of

LSM. Although previous studies have applied these models

to produce LS maps, the efficiency and effectiveness of

which had not been evaluated in forestlands before the

present study. The ROC plots showed that the accuracy of

the LS maps produced by the frequency ratio and index of

entropy models was 72.68 and 75.59 %, respectively.

Furthermore, we have found the models relatively flexible

and easy to use. While complex models provide a basis for

building and consolidating scientific knowledge, simple

models are more useful and easily applied for land man-

agement purposes. One should always keep in mind that

‘‘simple is the best’’ in engineering applications. LSM

using GIS-based frequency ratio and index of entropy

models has the advantages of (1) allowing catchment-scale

assessment, (2) incorporating a wide range of the factors

thought to affect occurrence of landslide phenomena, and

(3) discriminating the considered factors to help the man-

agers to understand which factors are the most important to

trigger landslide phenomena.

The landslide susceptibility maps produced in this study

can provide a cheap and comprehensive assessment of the

study area for its capacity for supporting individual uses or

combination of uses, such as road construction and timber

harvesting. Managers and foresters can then make deci-

sions and prepare prescriptions that will have highly pre-

dictable results for producing sustainable products,

maintaining site quality, and substantially reducing risk of

any adverse impacts.
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