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Abstract The demand for accurate predictions of sea

level fluctuations in coastal management and ship naviga-

tion activities is increasing. To meet such demand, acces-

sible high-quality data and proper modeling process are

critically required. This study focuses on developing and

validating a neural methodology applicable to the short-

term forecast of the Caspian Sea level. The input and

output data sets used contain two time series obtained from

Topex/Poseidon and Jason-1 satellite altimetry missions

from 1993 to 2008. The forecast is performed by multilayer

perceptron network, radial basis function, and generalized

regression neural networks. Several tests of different arti-

ficial neural network (ANN) architectures and learning

algorithms are carried out as alternative methods to the

conventional models to assess their applicability for esti-

mating Caspian Sea level anomalies. The results derived

from the ANN are compared with observed sea level values

and with the forecasts calculated by a routine autoregres-

sive moving average (ARMA) model. Different ANNs

satisfactorily provide reliable results for the short-term

prediction of Caspian Sea level anomalies. The root mean

square errors of the differences between observations and

predictions from artificial intelligence approaches can be

significantly reduced by about 50 % compared with

ARMA techniques.

Keywords Artificial neural network � Sea level forecast �
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Introduction

The measurements, analysis, and prediction of sea level

fluctuations are considerably important for marine meteo-

rology and operational oceanography, as these aspects

could be successfully applied in coastal zone management

(Cazenave et al. 2002; Pashova 2002).

Sea level variations are complex outcomes of various

environmental factors, such as precipitation, runoff from

neighbor catchments, evaporation, air and water tempera-

ture, water salinity, as well as the interaction between water

body and low-lying aquifers. Contributions to sea level

variations may vary from region to region. In addition,

accurate measurements and analysis by conventional

methods considering different effective contributions are

still difficult to achieve and may have large uncertainties

(Talebizadeh and Moridnejad 2011).

Instead of using models or environmental factors as

inputs, some researchers have used historical sea level

records to predict sea level variations. The most con-

ventional technique for sea level prediction is based on

the extrapolation of linear trends; however, irregular

changes, such as the El Nino/Southern Oscillation, cannot

be fully fitted. Irvine and Eberhardt (1992) developed

multiplicative seasonal autoregressive integrated moving

average (ARIMA) models for lakes Erie and Ontario

using standardized monthly mean level data to predict up

to 6 months of sea level. Sen et al. (2000) applied simple

linear and periodic nonlinear models in modeling the

deterministic part of lake level time series and a second-

order Markov model in modeling the remaining stochastic

part. However, traditional methods, such as the ARIMA

or Box–Jenkins (Box et al. 1991), assume that a given

time series is generated from an underlying linear process.

Therefore, these methods may not always perform well
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when applied in modeling hydrological time series that

are often nonlinear.

One of the useful computational techniques for sea level

analysis and forecast is the artificial neural network (ANN).

ANNs have become increasingly popular because of their

independency with regard to the assumptions of functional

models, the probability distribution, or the smoothness

(Demuth et al. 2008). ANNs can approximately fit non-

linear mathematical functions and allow plausible simula-

tions of the behavior of complex systems without any

preceding knowledge of the internal relations among their

components (Haykin 1999a).

Röske (1997) first applied ANNs to improve the forecast

of the sea level along the German North Sea coast. Simi-

larly, Vaziri (1997) used ANNs and ARIMA models to

predict the monthly Caspian Sea level using tide gauge

records at Anzali Port in Iran for the period of January

1986–December 1993.

The prediction of Caspian Sea level change by tradi-

tional methods is less accurate because of the nonlinear

dynamic process of sea level data (Imani et al. 2012).

Hence, the objective of the current study is to develop and

validate a neural methodology applicable to short-term

Caspian Sea level forecasts. We use 15-year Topex/

Poseidon (T/P) and Jason-1 (J-1) altimetry data covering

1993–2008. The data were selected because of the highly

accurate measurements and the optimal spatial locations of

the ground tracks in the Caspian Sea compared with the

tide gauge records conventionally used for predicting sea

level variations. The following models are developed to

forecast Caspian Sea level variations: (a) multilayer per-

ceptron network (MLP); (b) radial basis function (RBF);

(c) generalized regression neural networks (GRNNs);

and (d) the autoregressive moving average (ARMA)

technique.

The main goals of this study are as follows: (1) to test

different ANN architectures and analyze their perfor-

mances, as well as (2) to compare the outcomes with those

derived from the conventional ARMA technique. An ade-

quate ANN structure and a better model performance for

each case are found using statistical indicators. Two alti-

metric data sets covering the period of 1993–2008 are used

to train and test the neural networks.

Study area and data

The Caspian Sea, with a surface area of 371,000 km2, is the

largest inland water body on earth, with virtually no tides

and a salinity of 13 mg/l. The present sea surface of the

landlocked Caspian basin at approximately 27 m below

global sea surface fluctuates rapidly on several time scales,

from seasons to centuries. These fluctuations result from

the interactions among river discharge (predominantly the

Volga River), evaporation, precipitation, and water tem-

perature (Rodionov 1994; Kostianoy and Kosarev 2005).

Measurements of Caspian Sea level variations covering

the whole basin provide helpful information about the

water mass balance as well as the interannual and decadal

oscillations in response to climate changes. Sea level gauge

records conventionally used for sea level monitoring are

considerably affected by geographical and meteorological

phenomena, including vertical crustal movements, changes

in atmospheric pressure, wind, river discharge, water cir-

culation, water density, and ice melting (Cazenave et al.

1997; Lebedev and Kostianoy 2008; Cretaux et al. 2011).

However, the trends of vertical movements and sea level

changes cannot be clearly distinguished when sea level

gauges are used.

In the last two decades, satellite-based sensors, partic-

ularly satellite altimetry, have offered a promising alter-

native for monitoring water surfaces with an unprecedented

high precision, from interseasonal to interannual time

scales and covering regardless of meteorological and geo-

logical constraints (Cretaux et al. 2011; Lebedev and

Kostianoy 2008).

As T/P and J-1 satellite altimeters can assess water

surfaces with high accuracy and comprehensively cover the

Caspian Sea with repeat ground tracks of 9.918 days, sea

surface measurements from both altimeters covering the

period of April 1993–January 2008 are employed in the

present study to predict Caspian Sea level anomalies.

T/P altimeter data in the form of sea surface heights

(SSHs) are extracted from the merged geophysical data

record (GDR) provided by NASA Physical Oceanography

Distributed Active Archive Center (PODAAC) at the Jet

Propulsion Laboratory of the California Institute of Tech-

nology (Benada 1997). Similarly, SSHs of J-1 are retrieved

from the interim GDR and the GDR provided by Archi-

vage, Validation et Interprétation des données des Satellites

Océanographiques and PODAAC (Picot et al. 2006).

Ground tracks of passes 092, 031, 016, 209, 133, and

057 are used in the study. Passes 168 and 224 are not used

because of less accurate altimetric measurements resulting

from strong winds, presence of ice, and shallow water

(Fig. 1).

After the application of recommended corrections,

including standard instrumental, media, and geophysical

corrections, sea level anomalies (hSLA) are calculated by

subtracting from the corrected SSHs the geoid heights from

the EGM2008 geopotential model (Pavlis et al. 2008). The

time series of the along-track averaged Caspian Sea level

anomalies for each repeat cycle covering 1993–2008 used

in the study can be computed by

hSLA tð Þ ¼ 1

n

Xn

1

hSLA t; nð Þ ð1Þ
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where t is the index of cycles, and n is number of altimetric

along-track measurements.

Materials and methods

Several neural network architectures can be applied for the

forecast of water level fluctuations, which is a nonlinear

dynamic process. ANN structures are massively distributed

in parallel, thereby introducing a new computational

technology that resembles the human information-pro-

cessing system (Palit and Popovik 2005).

The neural networks are organized hierarchically by layers

of neurons to process nonlinear signals. The information is

collected in the input layer and is then forwarded to the net-

work through processing by the hidden layer(s). This proce-

dure continues down throughout the layers to the output layer,

which presents the network results. The ANN computational

process is divided into two stages: training and testing. Dur-

ing the training stage, the network is iteratively trained, and

the interconnection weights and the biases between neurons

are adjusted in each step so that the output value fits the

desired input values. During the second testing stage, the

network can be verified to make predictions using the data

subset not presented in the training stage (Hagan et al. 1995).

In the study, three multilayer structures of ANNs, namely,

MLP, RBF, and GRNN, are developed.

Multilayer perceptron network

The MLP is a feedforward ANN model that associates sets

of input data with a set of appropriate output. The MLP

networks are an extension of perceptron networks con-

taining one or more hidden layers. Each neuron computes a

weighted sum of input signals by including a threshold

value passing through the transfer function that generates

the neuron output. The back propagation algorithm

involving two phases is usually used for tainting MLP

networks. During the first phase or the feedforward phase,

the free network parameters do not change, and the input

information is propagated through the network layer by

layer. At the end of this phase, the network error value,

which represents the difference between the desired

response and the output produced by the network in

response to the presented input vector, is computed. During

the second phase or the backward phase, the free network

parameters (weights and biases) are adjusted to minimize

the network error, which is computed according to the error

measurements (Cybenko 1989; Hornik et al. 1989).

MLPs are made up of neurons that contain information-

processing features essential to its operation. The inputs, xj,

are related to the neuron by the synaptic weight, wj.

Mathematically, a neuron can be described as follows:

vi ¼
Xp

j¼0

wijxj ð2Þ

yi ¼ u vi � hið Þ ð3Þ

where xj (j = 0,…, p) are the inputs, wj (j = 0,…, p) are

the synaptic weights linking the input j from the neuron i, vi

is the weighted sum of inputs to neuron i, u is the acti-

vation or transfer function, hi is the threshold value, and yi

is the output of the neuron i (Haykin 1999b).

Different MLP networks with one and two hidden layers

are applied in this study. Logistic sigmoid as the transfer

function in the hidden layer, linear transfer function in the

output layer, and training (gradient descent back propaga-

tion) algorithm for network training are used for forecast-

ing sea level changes.

Radial basis function (RBF)

The RBF network is a feedforward neural network that con-

sists of three layers, namely, the input, hidden, and output

layers. In RBF networks, the outputs are determined by

computing the distance between the network inputs and the

center of the hidden layer. Each neuron in the hidden layer has

a parameter vector called the center and computes its output

using an RBF. An output layer computes the linear weighted

sum of the hidden neuron outputs and represents the response

of the network (Cichocki and Unbehauen 1993).

Fig. 1 T/P and J-1 ground tracks over the Caspian sea
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A general expression of the network representing the out-

put–input relation can be given as (Robert and Howlett 2001)

yi ¼
XM

j¼1

bj/jðxÞ ð4Þ

where yi is the network output, M is the number of hidden

neurons, x is the input data, bj is the output layer weights of

the RBF network, and / (x) is the Gaussian RBF given by

/j xð Þ ¼ exp �k x� cj k2

r2
j

 !
ð5Þ

where Cj and rj are the center and width of jth hidden neuron,

respectively, and ||.|| denotes the Euclidean distance.

General regression neural network (GRNN)

The GRNN model is a kind of radial basis network that is

often used for regression problems (Cichocki and Unbeha-

uen 1993). The GRNN structure comprises four layers: the

input, pattern, summation, and output layers (Specht 1991).

The total number of observation parameters is equal to

the number of input units in the input layer. The first layer

is entirely associated to the second pattern layer. Each

neuron in this layer presents a training pattern, and its

output is a measure of the distance of the input from the

stored patterns. The pattern layer is connected to the

summation layer. Each pattern layer unit is connected to

the two neurons in the summation layer, namely, the S-

summation neuron and the D-summation neuron. The S-

summation neuron calculates the sum of the weighted

responses of the pattern layer, whereas the D-summation

neuron is used to compute the unweighted outputs of the

pattern neurons. The connection weight between the ith

neuron in the pattern layer and the S-summation neuron is

yi, which represents the output value corresponding to the

ith input pattern. In the case of the D-summation neuron,

the connection weight is unity. The output layer merely

divides the output of each S-summation neuron by that of

each D-summation neuron, resulting in the predicted value

of an unknown input vector x and in stored patterns xi as

(Specht 1991; Heimes and Heuveln 1998)

ŷi xð Þ ¼
Pn

i¼1 yi exp ½�Dðx; xiÞ�Pn
i¼1 exp ½�Dðx; xiÞ�

ð6Þ

where n indicates the number of training patterns. The

Gaussian D function is defined as

D x; xið Þ ¼
Xp

j¼1

xj � xij

f

� �2

ð7Þ

where p is the element number of an input vector. xj and xij are

the jth element of x and xi, respectively, f is the so-called

spread factor, the optimal value of which is often determined

empirically (Kim et al. 2003). The function approximation is

smoother in the large spread than in the small spread.

However, using a very large spread requires a large number

of neurons to fit a fast-changing function. Meanwhile, many

neurons are required to fit a smooth function. The network

may not be generalized well using a spread that is too small

(Specht 1991). In this study, we analyze the effect of dif-

ferent spreads to determine the best one that achieves a

minimum root mean square error (RMSE) for our problem.

Analysis of the result

In this study, the performance of the neural networks is

evaluated using statistical evaluation criteria, including the

correlation coefficient (R) and RMSE. The following for-

mulas are used:

R ¼
Pn

i¼1 y0
i � y0

� �
ðye

i � yeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðy0
i � y0Þ

Pn
i¼1ðye

i � yeÞ
q

2

64

3

75 ð8Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðy0

i � ye
i Þ

2

n

s

ð9Þ

where y0
i is the observed level, ye

i is the estimated level, and

n is the number of forecast level; y0 and ye are the averages

of observed and estimated levels, respectively.

Results and discussion

The Caspian Sea level anomalies observed by T/P and J-1

satellite altimeters were computed in this study according to

Eq. (1). Table 1 represents the statistical characteristics of

the data on Caspian Sea level covering the period of

1993–2008. Figure 2 illustrates the Caspian Sea level

anomalies from pass 092 with a maximum value of

-26.77 m in late spring of 1995 and a minimum of -27.81 m

in late 2001, indicating significantly seasonal signals.

In ANN models, the selection of appropriate input vari-

ables is critical for a successful modeling. Some researchers

(Sudheer et al. 2002; Aqil et al. 2007; Bilgili et al. 2007) have

demonstrated the computation of statistical analysis, such as

correlation as well as cross-, auto-, and partial auto-correla-

tion, to determine the appropriate input variables.

In the present study, the predicted sea level anomalies of

pass 092 were presented because the latter is a better indi-

cator of Caspian Sea level anomalies. Pass 092 was selected

because it holds more data and is relatively free of strong

winds and ice. Herein, the sea level anomalies of passes 031,

016, 209, 133, and 057 ground tracks were used as the input

layer of the network because they are highly correlated with

those of pass 092 as an output layer (Table 2).
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For ANN processing, sea level anomalies from altime-

ters covering 1993–2008 were divided into two parts. The

first part covering the period of 1993–2004 was used for

the training procedure, whereas the second part covering

2005–2008 was utilized for the testing procedure.

We attempted to determine the appropriate model

structure for the neural network applied in MLP, RBF, and

GRNN architectures. Following routine procedures for the

selection of the best ANN suited to the sea level data,

different activation function options and network archi-

tectures were compared based on the work of Cichocki and

Unbehauen (1993) and Demuth et al. (2008). Several

trainings were performed to determine the number of hid-

den layers and the number of neurons in the hidden layers

that provide the best testing performance for the afore-

mentioned networks. The number of neurons in the hidden

layer was chosen based on multiple reruns of different

ANN structures with one or two hidden layers.

For the MLP architecture, MLP (x, y, z), x denotes the

number of neurons in the input layer, y denotes the number

of neurons in the hidden layers, and z denotes the number

of neurons in the output layer. The optimal number of

neurons in the hidden layer(s) was determined via the test

simulation calculations using the statistical criteria (R and

RMSE) between the observed and fitted (or predicted) data

sets. Various combinations of different epochs and the

number of neurons in the hidden layer(s) were tested using

the MLP algorithm. A comparison is shown in Table 3.

As shown in Table 3, RMSE is reduced when two hid-

den layers are used instead of one hidden layer. The net-

work structure, that is, MLP (5, 16–8, 1), with two hidden

layers having 16 and 8 neurons and an input layer having 5

neurons and operated with 42 epochs provides the best

performance. This network structure has the lowest centi-

meter-level RMSE and the highest R compared with the

observed sea level values for the training and testing

periods. However, MLP simulations have several draw-

backs. After each simulation, different forecast values are

obtained within the same network design because of the

assignment of different initial random weights at the

beginning of each training. To overcome this problem,

simulations, even with the same network structure, were

conducted several times until the best performance was

Table 1 Statistical characteristics of altimetry sea level anomalies in

different ground tracks

Ground track Min (m) Max (m) Number of records

Pass 092 -27.81 -26.77 531

Pass 016 -27.81 -26.73 531

Pass 031 -27.41 -26.41 531

Pass 057 -28.01 -26.73 531

Pass 133 -27.91 -26.96 531

Pass 209 -28.27 -27.32 531

Fig. 2 Caspian Sea level anomalies of pass 092 from 1993 to 2008

Table 2 Correlation coefficients of sea level anomalies between pass

092 and other passes

Ground track Pass 016 Pass 031 Pass 057 Pass 133 Pass 209

Correlation 0.91 0.81 0.77 0.88 0.83

P value* \0.001 \0.001 \0.001 \0.001 \0.001

* P values \0.05 are considered statistically significant

Table 3 RMSE and R for training and testing data sets using different MLP networks

Model Training Testing

No. of neurons in hidden layer No. of epoch RMSE (m) R RMSE (m) R

MLP (5,4,1) 4 10 0.065 0.90 0.086 0.85

MLP (5,6,1) 6 50 0.045 0.92 0.061 0.90

MLP (5,8,1) 8 36 0.084 0.86 0.107 0.80

MLP (5,10,1) 10 100 0.106 0.82 0.124 0.78

MLP (5,6–3,1) 6–3 15 0.074 0.88 0.085 0.85

MLP (5, 16–6,1) 12–6 60 0.057 0.91 0.063 0.90

MLP (5,8–4,1) 8–4 110 0.097 0.83 0.111 0.79

MLP (5,16–8,1) 16–8 42 0.039 0.93 0.054 0.91

MLP (5,16–8,1) 16–8 42 0.042 0.93 0.060 0.91
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obtained. The last two network structures in Table 3 are an

example of this situation. The results of the estimations for

the training and testing periods of the best MLP (5, 16–8,

1) compared with the observed sea level values are illus-

trated in Fig. 3. For the training period, the RMSE of the

estimated and observed sea level anomalies were 0.039 m

with an R of 0.93 and well-fitted seasonal and interannual

signals. For the testing period, the RMSE was 0.054 m

with a high R of 0.91, indicating that the model works

excellently for sea level forecasting.

Different numbers of hidden layer neurons and spread

constants were examined for the RBF and GRNN network

models (Table 4).The optimal RBF model was found to be

the one that gave the minimum RMSE of 0.042 m and the

highest R of 0.92 for the testing period with a spread

constant of 0.45 and 22 neurons in the hidden layer. The

estimations obtained from the RBF (5, 22, 1) network agree

well with the observed sea level data (Fig. 4). Generally,

the RBF model has better performance than the MLP. The

most important advantage of the RBF model compared

with the MLPs is its capability of obtaining the same

forecast values for the same network architecture.

For the GRNN model, the network architecture of

GRNN (5, 0.3, 1) with a spread parameter of 0.3 offered

the best performance with the lowest RMSE of 0.059 m

and the highest R of 0.90 for the testing period, as shown in

Table 4 and Fig. 5.

To demonstrate the capability of the model to predict

Caspian Sea level anomalies, a comparison was also made

between the artificial network approaches and the convenient

ARMA model, which is a traditional model based on the

probability theory and statistical analysis. The model consists

of two parts, namely, an autoregressive (AR) and a moving

average (MA). This model is thus usually referred to as the

ARMA (p, q) model, where p is the order of the AR, and q is

the order of the MA (Box et al. 1991). Table 5 provides the

error statistics of estimates using ARMA models during the

testing period. The ARMA (3,3) model provides the optimal

result for Caspian Sea level prediction (Fig. 6).

The statistics of the optimal model of neural networks and

the ARMA models for validation are presented in Table 6.

The RBF (5, 22, 1) networks with a spread constant of 0.45

were found to have the best performance, given the minimum

RMSE and the maximum R during the training and testing

periods. The ARMA model cannot surpass the ANNs in

Caspian Sea level prediction, whereas the MLP, RBF, and

GRNN models have similar accuracies. The RMSE obtained

from the ANN method is reduced by about 50 %, and

R increases more than 15 % compared with the values

obtained from the ARMA method. This difference can be

attributed to the fact that the ARMA model belongs to the
Fig. 3 Observed and estimated sea level anomalies of optimal MLP

model during the a training and b testing periods

Table 4 RMSE and R for training and testing data sets using different RBF and GRNN networks

Model Training Testing

No. of neurons in hidden layer Speed parameter RMSE (m) R RMSE (m) R

RBF (5, 11, 1) 11 0.50 0.087 0.85 0.095 0.82

RBF (5, 8,1) 8 0.55 0.055 0.91 0.063 0.90

RBF (5, 22, 1) 22 0.45 0.030 0.95 0.042 0.92

RBF (5, 33, 1) 33 0.65 0.065 0.90 0.083 0.85

GRNN (5,0.05,1) 0.05 0.087 0.85 0.102 0.80

GRNN (5, 0.5, 1) 0.50 0.069 0.89 0.091 0.83

GRNN (5, 0.3, 1) 0.30 0.047 0.92 0.059 0.90

GRNN (5, 0.1, 1) 0.10 0.098 0.83 0.127 0.78
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class of linear models that do not guarantee prediction

accuracy, especially if the investigated phenomenon is

nonlinear. The main advantages of ANN models are their

flexibility and ability to model nonlinear relationships

without any priori assumptions about the nature of the gen-

erating processes (ASCE Task Committee 2000). However,

the ANN model requires a massive amount of data.

Conclusion

We applied approximately 15-year SSHs from T/P and J-1

satellite missions with highly accurate measurements and

optimal spatial coverage over the Caspian Sea to predict

the sea level in the area. Different ANN methods were

employed to investigate the applicability of ANN algo-

rithms in estimating Caspian Sea level anomalies and to

examine the performance of each model.

The ANN method appeared as a powerful tool in pre-

dicting the Caspian Sea level depending on the correlation

between the SSHs of different satellite ground tracks. The

RBF method, as the best presented model in this study, has

two advantages compared with others: saves computation

time and provides the same forecast values while using the

same network architecture.

We conclude that sea level anomalies can be predicted

quickly and successfully without the use of any topo-

graphical details or other meteorological data as long as the

required altimetric measurements are available. Using

ANN models also provides significantly better and more

precise predictions compared with the regression models.

Fig. 4 Observed and estimated sea level anomalies derived by the

optimal RBF model during a the training and b testing periods
Fig. 5 Observed and estimated sea level anomalies derived by the

optimal GRNN model during the a training and b testing periods

Table 5 Testing statistics of estimates using ARMA models

Type of model Statistics of ARMA models

RMSE (m) R

AR (1) 0.138 0.76

AR (2) 0.137 0.76

AR (3) 0.126 0.78

ARMA (1,1) 0.127 0.78

ARMA (1,2) 0.123 0.78

ARMA (2,1) 0.125 0.78

ARMA (3,1) 0.121 0.78

ARMA (1,3) 0.125 0.78

ARMA (3,2) 0.121 0.78

ARMA (2,3) 0.121 0.78

ARMA (3,3) 0.119 0.79

ARMA (2,2) 0.121 0.78
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