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Abstract The BASINS model, developed by the United

States EPA, is a popular simulation tool for predicting

watershed responses, such as runoff, pollution exports, and

water quality. It requires large amounts of data to set

parameters. Many studies state that model input is a major

source of model uncertainty. Thus, improvements to the

quality and completeness of the data will improve the

certainty of the model. The objective of this study is to

discuss the effects of spatial data, including digital eleva-

tion models (DEMs) and spatial rainfall records, on pre-

dictions of runoff from the BASINS model. The result

shows that both DEMs and rainfall data can significantly

influence peak flow and runoff volume. Rainfall input has

more influence on the curve shape of hydrograph than

DEM resolution. DEM resolution can have more impact on

peak flow predictions than rainfall input. Because the

model uncertainties from DEMs and rainfall records

influence each other, the prediction error does not always

decrease when DEM resolution increases. The present

results show that the BASINS model produces reliable

answers in the case area when the grid size is less than

100 m 9 100 m and the precipitation records from the

Bihu Rainfall Station are correct and complete.
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Introduction

Simulation plays an important role in environmental

management. Most water resource management strategies

depend on hydrologic simulations. Runoff prediction can

help us understand the risks of floods and droughts. To

avoid wasteful and misguided environmental strategies, we

must improve the reliability of our models (Lung 2001).

The sources of model uncertainty include model structure,

observations, model inputs, initial values, and boundary

conditions (Troutman 1983; Klepper 1997). Model struc-

ture should enable the description of relevant environ-

mental phenomena. Initial values and boundary conditions

are usually determined by calibration and validation of

parameters. Model inputs should accurately represent

environmental properties. This study considers model

uncertainties caused by model inputs; in particular, this

study considers a model of runoff in the Fei-tsui reservoir

watershed.

Most inputs for environmental models involve spatial

variation, and hydrologic models are particularly sensitive

to spatial variation of properties such as rainfall. The

reliability of simulation results for an environmental model

depends on how well it represents the spatial variability of

environmental properties (Lopes 1996; Chaubey et al.

1999; Chaplot 2005). When measured records are limited,

data interpolation plays a significant role in improvement

of model inputs and presentation of the spatial variability

of environmental properties (Bartier and Keller 1996;

Nalder and Wein 1998; Price et al. 2000). Numerous pre-

cipitation interpolation methods, such as the Kriging

method, the optimal interpolation method, and the weigh-

ted method, have been developed and are commonly

applied to estimate precipitation and to present spatial

variation of rainfall when actual rainfall records are limited
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(Dirks et al. 1998; Chang et al. 2005, 2006). Interpolation

errors can seriously impair the simulation results of spa-

tially distributed models (Donald and Danny 1996).

Digital elevation models (DEMs) can represent topog-

raphy and stream networks in a watershed. The resolution

of DEMs varies with the accuracy of watershed delinea-

tion. To map a single area, a low-resolution DEM must

have a small number of large subbasins, whereas a high-

resolution DEM must have a large number of small sub-

basins. Typical simulation practice is to assume that all

properties are homogeneous in a subbasin. If a single

subbasin covers a wide area, however, this assumption is

incorrect because terrain varies within that subbasin (Jha

et al. 2004). The effect of subbasin scaling on a watershed

simulation is related to the sources of heterogeneity, which

include rainfall characteristics, land-use, soil, and topog-

raphy (Arnold et al. 1998).

Although interpolation methods can be applied to esti-

mate spatial data when measured data are insufficient, they

cannot avoid the uncertainty caused by interpolation errors.

On the other hand, simplified watershed delineation can

also result in simulation errors due to assumptions of

homogeneity (Kalin et al. 2003; Chaubey et al. 2005;

Chang 2009). This study focuses on DEMs and spatial

rainfall data in order to assess the effects of spatial data on

the prediction of hydrologic responses in a watershed.

Small uncertainties from spatial data tend to exacerbate

each other. A high-resolution DEM can divide a watershed

into many subbasins. It can minimize the uncertainty due to

assumptions of homogeneity. However, because each

subbasin within a high-resolution DEM requires complex

data preparation and model calculation, a high-resolution

DEM necessarily has high uncertainty from its model

inputs (Bingner et al. 1997; Gandolfi and Bischetti 1997).

The Daiyuku Creek and the Qupoliao Creek in the Fei-tsui

reservoir watershed provided the setting for this case study.

Materials and methods

Site description

There are six rainfall gauging stations in the Fei-tsui res-

ervoir watershed, but only one rainfall station—the Bihu

station—is located in the case area. The area immediately

around the Bihu station, labeled P4 in Fig. 1, is the case

area. The Jiuqionggen station (labeled P2) and the Pinglin

station (labeled P3) are outside the case area. The Daiyuku

Creek and the Qupoliao Creek are both within the Fei-tsui

reservoir watershed of Taiwan. The Fei-tsui reservoir

supplies most domestic water used in northern Taiwan. The

site area is about 79 km2. There is more than 90 % forest in

this area. One must choose some resolution for one’s DEM

before one can divide the case area into subbasins; the

precipitation in a subbasin is assumed to be uniform and is

given by a single value. The average precipitation for each

subbasin is determined by the nearest rainfall station.

BASINS model

The United States Environmental Protection Agency (EPA)

developed the BASINS model as a geographically based

watershed assessment tool that can simulate such things as

stream flows, pollution exports, water quality, and the like.

This study applies BASINS to predict hydrologic respon-

ses. BASINS is also an integrated decision-making system

(Laroche et al. 1996; Jacomino and Fields 1997; Whitte-

more and Beebe 2000; Luzio et al. 2002; Albek et al. 2004;

Hsieh and Yang 2006). Because most environmental data

involve spatial variability, many studies use geographic

information systems (GISs) (Helmlinger et al. 1993;

Montgomery and Foufoula-Georgiou 1993; Chang and Lo

2006). The BASINS model itself can be integrated with a

GIS, and most of the data can be analyzed within and

extracted from that GIS. The BASINS software integrates

several modules in a single-window interface. HSPF, one

of these modules, can predict hydrologic responses and

pollution exports in a watershed. This study applies HSPF

to predict hydrologic responses, such as daily runoff, peak

flow, and hydrographic response, in the case area and uses

meteorological and geographical data from 2007 and 2008

for model calibration and validation, respectively.

Scenario design

Input-related model uncertainties are always caused by

incorrect descriptions of the spatial properties of the

Fig. 1 Case area: Daiyuku Creek and Qupoliao Creek. Note: P1,

Shisangu Rainfall Station; P2, Jiuqionggen Rainfall Station; P3,

Pinglin Rainfall Station; P4, Bihu Rainfall Station; P5, Taiping

Rainfall Station; P6, Feitsui Rainfall Station
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environment. To assess the model uncertainties due to

improper model inputs, this study discusses 72 scenarios

with various DEM resolutions and rainfall inputs. DEM

resolution is described in terms of grid size, from

20 m 9 20 m to 2,000 m 9 2,000 m. Twelve levels of

DEM resolution and six levels rainfall input accuracy are

combined to produce 72 scenarios. Figure 2 illustrates the

treatment levels that are combined to make each scenario.

The grid size influences the resolution of DEMs. The more

land area a grid square contains, the lower the DEM res-

olution is. The completeness of rainfall records decreases

from case 1 to case 6. Over-simplification of DEM reso-

lution introduces one kind of model uncertainties; incom-

plete rainfall gauging records introduce different

uncertainties, and the mutual influence of these two types

of uncertainties is a noteworthy phenomenon.

Results and discussion

Model calibration and validation

The typical BASINS model requires many parameters, and

various studies have discussed the sensitivity of parameters

in BASINS models. Simulated hydrologic responses are

more sensitive to the parameters INFILT (index to the

infiltration capacity of the soil), LSUR (length of the

assumed overland flow plane), UZSN (upper zone nominal

storage), and LZS (initial lower zone storage) than to other

parameters (Jacomino and Fields 1997; Al-Abed and

Whiteley 2002). The scenario with grid size of

20 m 9 20 m and rainfall records from the Jiuqionggen

station, the Pinglin station, and Bihu station (case 1) were

used for model calibration and validation. Our model was

calibrated and validated as shown in Fig. 3. The process of

parameter calibration decreases differences between pre-

dicted values and observed values. The R-squared (R2)

between predicted and observed runoff is about 0.7, and the

absolute value of relative error of peak flow prediction is

less than 7 %. Runoff predictions from this BASINS model

are reliable when the quality and completeness of model

inputs have been calibrated.

Uncertainty due to simplified DEMs

Table 1 shows the results of scenarios with complete

rainfall records and various DEM resolutions. The differ-

ences in DEM resolution are the only factor that can cause

different hydrologic responses in these scenarios. The

results show that DEM resolution can greatly affect the

predicted peak flow and the predicted runoff volume. For

grid sizes smaller than 300 m 9 300 m, the absolute value

of relative error of peak flow prediction is less than 30 %.

However, the prediction error of peak flow is very large

when the grid size is larger than 500 m 9 500 m.

Figure 4 displays stream networks in the case area, as

depicted by models with different DEM resolutions. A

large grid necessarily delineates the watershed in a very

different fashion than a small grid. The boundaries of

subbasins and stream networks cannot be identified by

watershed models with grids larger than 500 m 9 500 m.

Models with large grids alter the boundary of the case area

Fig. 2 Scenario design. Note:

P1, Shisangu Rainfall Station;

P2, Jiuqionggen Rainfall

Station; P3, Pinglin Rainfall

Station; P4, Bihu Rainfall

Station; P5, Taiping Rainfall

Station; P6, Feitsui Rainfall

Station
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and underestimate both the peak flow and the runoff vol-

ume. The predicted peak flows for simulations with grid

sizes of 20 m 9 20 m and 2,000 m 9 2,000 m are about

396 and 33 cm, respectively. These predicted peak flows

differ by more than an order of magnitude.

A large R2 value between predicted and observed runoff

values indicates that the model accurately predicts the trend

of hydrologic responses. The R2 between predicted and

observed runoff is always larger than 0.8 when the rainfall

inputs are complete. Our BASINS model can simulate hyd-

rograph curves accurately, although the error of predicted

peak flow is large for scenarios with low DEM resolutions.

Uncertainty due to incomplete rainfall records

When DEM resolution is held constant at 20 m 9 20 m and

different rainfall levels are considered, striking hydrologic

responses can be seen, as shown in Table 2. Rainfall records

can also influence the predicted peak flow and the predicted

runoff volume. For peak flow predictions, however, the effect

of rainfall is less than that of DEM resolution.

Table 1 Runoff predictions under scenarios with different DEM

resolutions

Grid size (m2) Predicted

peak flow

(cm)

Predicted

runoff

volume

(m3)

Absolute

value of

relative

error of

peak flow

prediction

(%)

R2

between

predicted

and

observed

runoff

20 9 20 396.43 274,466,487 6.67 0.84

50 9 50 382.27 264,752,206 10.00 0.85

100 9 100 353.96 270,007,890 16.67 0.80

200 9 200 297.32 210,291,459 30.00 0.82

300 9 300 317.15 225,548,160 25.33 0.82

500 9 500 154.33 110,106,115 63.67 0.82

800 9 800 12.86 9,009,674 96.97 0.83

1,000 9 1,000 13.73 9,112,919 96.77 0.87

1,500 9 1,500 41.91 27,494,357 90.13 0.87

1,600 9 1,600 20.93 14,926,172 95.07 0.82

1,800 9 1,800 41.63 29,245,354 90.20 0.83

2,000 9 2,000 33.41 24,234,081 92.13 0.81

Fig. 3 Results of model

calibration and validation
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The rainfall records at the Bihu Rainfall Station are very

important. When the Bihu Rainfall Station records are not

used, the absolute value of relative error of predicted peak

flow is larger than 30 %. When the records from the Bihu

and Pinglin stations are both omitted, the absolute value of

relative error of predicted peak flow is larger than 50 %,

due to interpolation errors. The R2 between predicted and

observed runoff is also influenced by rainfall inputs. When

rainfall inputs cannot represent rainfall properties in the

case area, both peak flow and the hydrograph curve cannot

be simulated accurately by our BASINS model.

Mutual uncertainties from model inputs

Uncertainties from inadequate rainfall inputs and DEM

resolutions influence each other. Figure 5 shows mutual

uncertainties from inputs that include spatial rainfall data

and DEMs. When the rainfall data are complete and can

sufficiently represent the rainfall properties in the case

area (case 1), the absolute values of relative error of

predicted peak flow are about 10 and 17 % for the

scenarios with grid sizes of 50 m 9 50 m and

100 m 9 100 m, respectively. This result shows that the

simulation error of hydrologic responses can be lowered

when the DEM resolution is increased.

20x20m2 50x50 m2 100x100 m2

200x200 m2 300x300 m2 500x500 m2

800x800 m2 1000x1000 m2 1500x1500 m2

1600x1600 m2 1800x1800 m2 2000x2000 m2

Fig. 4 Stream networks

delineated by different DEM

resolutions

Table 2 Runoff predictions under scenarios with different rainfall

inputs

Case Rainfall
inputs

Predicted
peak flow
(cm)

Predicted
runoff
volume
(m3)

Absolute
value of
relative
error of
peak flow
prediction
(%)

R2

between
predicted
and
observed
runoff

Case 1 P2, P3, P4 396.4 274,466,487 6.67 0.84

Case 2 P2, P3 294.5 248,138,402 30.67 0.77

Case 3 P2, P5 194.3 237,718,046 54.27 0.63

Case 4 P1, P5 230.2 245,984,458 45.80 0.61

Case 5 P5, P6 188.9 359,328,340 55.53 0.51

Case 6 P6 192.6 387,131,941 54.67 0.65

P1, Shisangu Rainfall Station; P2, Jiuqionggen Rainfall Station; P3,
Pinglin Rainfall Station; P4, Bihu Rainfall Station; P5, Taiping Rainfall
Station; P6, Feitsui Rainfall Station
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When the rainfall records from some stations are

omitted, the inputs cannot describe the spatial variability

of rainfall in the case area (case 2 to case 6). The sce-

narios without sufficient rainfall inputs have such com-

plex uncertainties that reliability levels are not improved

even when DEM resolutions are increased. For example,

the absolute values of relative error of predicted peak

flow are about 33 and 30 % for scenarios with 50 m 9

50 m and 100 m 9 100 m grids, respectively, when

the rainfall records from the Bihu station are omitted

(case 2).

Conclusion

Researchers must understand the sources of uncertainty

in models and simulations. This study discusses the

influences of spatial data, including DEMs and spatial

rainfall records, on simulated hydrologic responses. Both

rainfall inputs and DEM resolution can be sources of

model uncertainty. If DEM resolution is low or if rainfall

information is incomplete, the BASINS model cannot

accurately simulate peak flows and runoff volumes.

Rainfall input has more influence on the curve shape

of hydrograph than DEM resolution. DEM resolution can

have more impact on peak flow predictions than rainfall

input. The uncertainties from insufficient DEM resolution

and rainfall inaccuracy tend to influence each other; thus,

a simulation with high DEM resolution can still have

gross errors. For reliable hydrologic predictions with the

BASINS model in this case area, it is recommended that

the grid squares should be smaller than 100 m 9 100 m,

and complete precipitation records from the central

rainfall station (the Bihu station) should be included.
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Fig. 5 Mutual uncertainties

from model inputs
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