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Abstract Irrational and rapid global human societal

development has culminated to a condition of environ-

mental deterioration. Accidental leakage and deliberate

use of organic and inorganic chemicals have contami-

nated the environment up to the level of ecosystem.

Advancements have been made in the field of research

on bioremediation of the hazardous contaminants espe-

cially in last three decades. Microbial bioremediation

has been the most understood biotechnological process

of environmental restoration. Bacteria and fungi because

of their inherent ability to adapt and grow in extreme

environments have been employed for either removal or

degradation of the chemical contaminants. Researchers

all over the world are getting breakthroughs in finding

new bacterial strains having plasmid linked degradation/

reduction ability. Molecular biology and genetic engi-

neering helped in crafting the microbes for the desired

results on environment. Despite having favorable con-

ditions, microbial remediation largely depends on

environmental factors and on the basic biological char-

acters of microbes, especially bacteria being Gram-

positive or Gram-negative. Metagenomic studies

revealed the importance of microbial ecology as

microbes work well in community, i.e., consortia. This

review along with several other studies suggests the need

of precision during microbial community identification,

substrate specificity and the designing of microbes.
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Introduction

Environmental degradation signifies the damages of

varying degrees to the soil, water and air characterized

by substantial physicochemical alterations. Several

remedies (natural and man-made) have been suggested

in last three decades to mitigate the pollution from the

environment. The literature is vast and is far beyond the

capacity to be included here, however, e.g., Lovely

(2003), Paul et al. (2005), Singh et al. (2006), Wei et al.

(2007), Badri et al. (2009), Chojnacka (2010), Magan

et al. (2010), Rajkumar et al. (2010), Glick (2010),

Maphosa et al. (2012) and Zhang et al. (2012), delin-

eating latest and upgraded techniques involving

living organisms, specifically plants and microbes, for

the removal and/or immobilization of contaminants,

known as bioremediation. Phytoremediation (remedia-

tion through plants) is a novel approach (Shukla et al.

2009), however; it has certain technical shortcomings

such as management of biomass (Wei et al. 2007) and

the growth conditions as plants are restricted only to
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certain geographical regions. As far as the microbial

species are concerned, only 5 % microbial diversity is

known to date and 95 % is yet to explore. Successful

microbial bioremediation is achieved when microbes

interact within their niche, under the most favorable

conditions (Riccardi et al. 2005). Biostimulation

(enhancing the activity of native microbes), bioaug-

mentation (increasing the viable microbial counts), bio-

accumulation (storage of toxic or nontoxic elements by

the microbes) (Vasudevan et al. 2001; Tyagi et al.

2011), biosorption (removal of elements from the

environment through adsorption) (Gupta et al. 2000)

and the use of biofilms (Singh et al. 2006) are some of

the examples of recent advancements in microbial

bioremediation techniques. Bioremediation involves a

number of species of microbes having different mech-

anisms depending upon the environmental factors and

the nature of chemicals (Boopathy 2000) either to

degrade or to remove the toxic contaminants from the

environment. Elevated ambient atmospheric temperature

(a climate change factor) may have impacts on the

microbial activity (Margesin and Schinner 2001),

especially on the upper layers of soils subjected to the

contamination. In addition, such extreme environmental

conditions may change microbial count and the diver-

sity as well. In the present review, the current state of

knowledge regarding microbial remediation along with

the brief review of the factors influencing the processes

has been reviewed.

Microbial bioremediation

Microbial bioremediation is the natural way to mitigate

environmental pollution. The process includes the

activities of aerobic and anaerobic microorganisms.

Despite having different nutritional requirements, both

life forms have basic need of organic carbon and a

source of energy. There are several regions other than

the typical ones, such as soil, water and sediments,

which can be identified as the potential site of microbial

actions. Such regions include the rhizospheric zone of

plants, gravel-associated community, aquatic shorelines,

subsurface layer of marshland and the weathered rocks.

Higher microbial counts and diversity is directly asso-

ciated with the higher content of organic matter in soil

(Boopathy 2000), however; the presence of organic

substances of high molecular weight such as polycyclic

aromatic hydrocarbons (PAHs) may limit the microbial

activity (Nam et al. 2001). On the contrary, Hesham

et al. (2012) reported the degradation of chrysene and

benzo(a)pyrene (PAHs of high molecular weight) by the

yeast fungi (Table 2) up to 98.5 and 95.2 %,

respectively, in soil. In addition to this, several recent

reports (Zhuang et al. 2012; Torres-Bojorges and Buitron

2012; Chiang et al. 2012; Yassine et al. 2013) suggest

that the nature and occurrence of chemicals hardly dis-

turb the bioremediation process. Generally, organisms

rely upon associations with their neighbors for the sus-

tenance of life (Badri et al. 2009). Microbes also interact

with other organisms within their surroundings for

organic carbon, energy and shelter, such as arbuscular

mycorrhizal fungi (Harrison 2005) and plant-growth-

promoting rhizobia (Bais et al. 2006), protecting the host

organisms from several environmental toxic chemicals

(Arriagada et al. 2007; Srivastava et al. 2010). Microbes

have wider range of growing conditions and can with-

stand higher concentrations of chemical contaminants.

For better understanding, microbial bioremediation can

be classified on the basis of the nature of substrate

undergoing either removal or degradation into two, viz.,

(1) microbial remediation of inorganic contaminants and

(2) microbial remediation of organic contaminants

(OCs).

Microbial remediation of inorganic contaminants

Major inorganic contaminants include toxic heavy met-

als and their compounds originated from various indus-

trial processes, such as mining, metallurgy, power plants

and chemical manufacturing processes (Goyal et al.

2003). In general, toxic elemental pollution is one of the

major concerns of environmentalists and biologists

because the disposal of toxic metals to the surface,

subsurface soils and waters causes unacceptable health

risks (Kaewsarn and Yu 2001). Microbiological removal

of metal ions from the environment is a new biotech-

nique (Shukla et al. 2009) and the most cost-effective

approach in mitigation of elemental pollution. Heavy

metals and their removal are well-researched issues as

evident from the existing research literatures (Lovely

and Coates 1997; Lovely and Lloyd 2000; Garbisu and

Alkorta 2003; Malik 2004; Shukla and Rai 2006; Ka-

bata-Pendias and Mukherjee 2007; Kim et al. 2007;

Srivastava et al. 2008; Badri et al. 2009; Rajkumar et al.

2013) and the references therein. It is imperative to

know that microbes in any case cannot degrade the metal

ions and are only able to transform metallic ions from

higher to lower oxidation states to stabilize them (Gar-

bisu and Alkorta 2003). Further microbes are able to

metabolize, detoxify and accumulate metals mostly in

cell wall like any other nutrient element. Table 1 pre-

sents few examples of toxic metal-remediating microbes.

Microbes releasing chelating agents and acids altering

physicochemical properties such as redox potential (Eh)

of surroundings (Abou-Shanab et al. 2003) bring
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substantial changes by increasing the bioavailability of

metal ions (Abou-Shanab et al. 2006). In addition,

physicochemical reaction such as biosorption is the first

step in the interaction between microbial cell and metal

ions (Han and Gu 2010) followed by the physical

adsorption, ion exchange and complexation (Fig. 1).

Biochemical reactions during microbial transformation

of metal ions involve the action of specific enzymes for

oxidation, reduction, methylation, dealkylation and pre-

cipitation (Han and Gu 2010). Microbes have diversified

conditions for their growth with ability to adapt to the

changing environmental conditions, e.g., Naraian et al.

(2012) reported that the multiple-drug-resistant strain of

Pseudomonas aeruginosa T-3 isolated from tannery

effluent had plasmid-encoded chromate ion resistance,

exhibiting the adaptability feature of microbes. Plasmid-

encoded copper and cadmium metal resistance has also

been reported in Pseudomonas putida PhCN (El-Deeb

2009). Advancements in microbial remediation tech-

niques and studies on plasmid-encoded biochemical

information and genetic engineering helped in designing

new strains of known bacterial species for targeted

bioremediation, e.g., recombinant Escherichia coli

expressing metallothionein gene (Neurospora crasa) for

Cd uptake, which was more rapid than the gene donor

microbial species (Pazirandeh et al. 1995). Staphylo-

coccus xylosus and Staphylococcus carnosus were

designed by the introduction of polyhistidyl peptides

encoding genes conferring Ni-binding capacity to these

microbes (Samuelson et al. 2000).

Microbial remediation of organic contaminants (OCs)

Widespread and massive applications of organic com-

pounds such as biocides, flame retardants, polymers,

solvents, crude oil, explosives and chlorinated organic

compounds have contaminated the environment, causing

threats to most of the life forms on earth. Microbes have

proven ability to degrade most of the OCs such as PCBs,

PAHs and polybrominated biphenyl ethers (PBEs) in the

environment (Hiraishi 2008; Fennell et al. 2011). Bio-

remediation of OCs in environment is the most studied

field of microbiology. Biodegradation of OCs refers to

the catabolic activity of microbes transforming them into

less or completely nontoxic residues (Margesin et al.

2000). The organic substrate is used by the microbes as

the source of organic carbon and energy. Some of the

important findings on bioremediation of hazardous

Table 1 Microbes (bacteria and fungi) and the remediated elemental pollutants

Microbial species Gram ± Occurrence Remediated metal References

Pseudomonas putida Gram (-ve) Soil and sediments Cu Wood and Wang (1985)

Ralstonia eutropha Gram (-ve) Soil and sediments Ni resistant Mergeay (1991)

Acenetobacter sp. Gram (-ve) Sediments Cyanide salts Finnegan et al. (1991)

Helicobacter pylori Gram (-ve) Soil and sediments Ni Hendricks and Mobley (1997)

Pseudomonas stutzeri Gram (-ve) Soil and sediments Ni Joerger et al. (2001)

Staphylococcus carnosus Gram (?ve) Soil and sediments Cd and Ni Samuelson et al. (2000)

Pseudomonas spp. Gram (-ve) Soil and sediments U accumulator Sar and D’Souza (2001)

Aspergillus niger Fungi Soil and sediments Cr(VI) Goyal et al. (2003)

Saccharomyces cerevisiae Fungi Sediments Cr(VI) Goyal et al. (2003)

Gallionella ferruginea,

Leptothrix ochracea

Gram (-ve)

Gram (-ve)

Sediments As (adsorption) Katsoyiannis and Zouboulis (2004)

Lentinus sajor-caju Fungi Sediments U Bayramoğlu et al. (2006)

Salmonella spp. Gram (-ve) Sediments Zn(II) Nweke et al. (2007)

Desulfovibrio spp., Geobacter spp, Gram (-ve)

Gram (-ve)

Soil U(VI) Cardenas et al. (2008)

Acidovorax spp. Gram (-ve) Soil U(VI) Cardenas et al. (2008)

Pseudomonas spp. Gram (?ve) Wastewater Cr(VI) Srivastava et al. (2008)

Aspergillus flavus Fungi Soil Cr(III) Han and Gu (2010)

Cenarchaeum spp. Gram (-ve) Sediment and soil NH4
? oxidizing Hong et al. (2012)

Trichoderma asperellum Fungi Sediment Cu (II) Tan and Ting (2012)

Geobacter bemidjiensis Gram (-ve) Sediment Fe(III) Luef et al. (2013)

Desulfovibrio vulgaris (ATCC 29579) Gram (-ve) Waste water Cr(VI) reduction Mabbett et al. (2002)
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organics and their mechanisms have been well reported

by Watanabe et al. (2000); Widada et al. (2002); Li et al.

(2004); Fragoeiro and Magan (2008); Magan et al.

(2010); Fennell et al. (2011); Torres-Bojorges and Bui-

tron (2012); Maphosa et al. (2012) and Weber and Leqqe

(2013). Table 2 presents a brief index of some microbial

species and their strains capable of degrading OCs. In

general, single microbial species hardly degrades any

organic substrate in isolation (Pieper and Reineke 2000)

and works well in community. Interactions between

microbes in the community ensure the exchange of

genetic information between microbial species confer-

ring resistance, tolerance and chemical-degrading abil-

ity. Most often the microbial species that are able to

degrade OCs are misidentified owing to the lack of

standard microbial identification techniques and labora-

tory practices in most of the parts of the world (Endy

2005), signifying the importance of researches on the

microbial consortia via the tools of metagenomics and

the standard genetic engineering protocols. In general,

microbes can degrade a variety of organic substances

depending upon the plasmid-encoded catabolic processes

(Table 3) and chromosomal genes (in case of bacteria) or

the extracellular enzymatic activity (fungal degradation

process). These processes are further subjected to the

varying environmental conditions influencing the growth

pattern of microbes (Watanabe 2001) (Fig. 2). In scien-

tific perspective, genetic engineering is one of the elite

biotechnological branches offering infinite combinations

of genetic codes imparting the knowledge of designing

of potentially degrading and substrate-specific microbes

(Chaloupkova et al. 2003; Li et al. 2004; Ang et al.

2005; Wood 2008). For a successful bioengineered

microbe, it is mandatory to identify the relevant species

and their substrate-specific strains (Wood 2008). In

addition, genetic modification with DNA reshuffling has

provided enormous combinations enabling microbial

cells to degrade even the most recalcitrant organic

compounds. Apart from recombinant, microbes naturally

degrade the recalcitrant OCs by triggering cometabolic

Fig. 1 Most preferable bioremediation mechanisms followed during the interaction between microbes and metal
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processes utilizing other readily available sources of

organic carbon and energy present in the vicinity. To

find the optimum conditions for growth, microbes utilize

the change of chemical gradients in the vicinity. Bacte-

rial chemotaxis is one of the best examples whereby the

bacterial cells move with the change of chemical gra-

dients (Pandey and Jain 2002), e.g., Pseudomonas putida

G7 is attracted by naphthalene (Grimm and Harwood

1997). Technological advancements in microbial biore-

mediation include the conversion of slow biodegradation

process into a rapid by means of several modern meth-

ods including microbial fuel cells (MFCs) (Rabaey and

Verstraete 2005; Moris and Jin 2012), bioreactors (Ro-

bles-González et al. 2008), biofilms (Singh et al. 2006)

and the use of microbial consortia for the degradation of

recalcitrant organic compounds (Torres-Bojorges and

Buitro 2012).

Fungi have, however, several advantages over bacte-

rial degrading processes as the former can grow at higher

concentrations of toxic organics (Fragoeiro 2005), e.g.,

Phanerochaete chrysosporium (a white rot fungi)

metabolize lignocellulosic compounds by the activity of

degrading enzymes such as laccase (LAC), lignin per-

oxidase (Lip) and manganese peroxidase (Schmidt et al.

Table 2 Potentially hazardous organic chemicals and their degrading microbes (bacteria and fungi)

Microbial species Gram ± ve Occurrence Organic substrate References

Pseudomonas putida (G7) Gram (-ve) Soil Naphthalene (PAH) Grimm and Harwood (1997)

Pseudomonas putida (GJ31) Gram (-ve) Soil Chlorobenzenes Mars et al. (1997)

Klebsiella pneumonia (RS-13)

Acetobacter liquifaciens (S-1)

Gram (?ve)

Gram (-ve)

Water N,N-dimethyl-p-

phenylenediamine

Wong and Yuen (1998)

Pseudomonas stutzeri Gram (-ve) Soil Naphthalene Bosch et al. (2000)

Burkholderia spp. Gram (-ve) Soil Polycyclic aromatic

hydrocarbons

Grosser et al. (2000)

Kluyveromyces marxianus (IMB3) Yeast

(fungi)

Waste water Remazol Black B Meehan et al. (2000)

Agrobacterium radiobacter (S2) Gram (-ve) Waste water Sulfonate benzene or

Naphthalene

Contzen and Stolz (2000)

Phanerochaete chrysosporium Fungi Soil 4,4 dibromodiphenyl ether Mikulasova et al. (2001)

Vibrio cyclotrophicus sp. nov. (ATCC

700982)

Gram (-ve) Soil Polyaromatic hydrocarbons Hadlund and Staley (2001)

Pseudomonas putida (F1)

Ralstonia picketti (POK 01)

Burkholderia cepacia (G4)

Gram (-ve)

Gram (-ve)

Gram (-ve)

Soil Toluene and its derivatives Leahy et al. (2003),

Parales et al. (2000)

Gliocladium virens Fungi Waste water Lignocellulosic compounds Murugesan, 2003

Myceliophthora thermophila Fungi Soil Polycyclic aromatic

hydrocarbons

Bulter et al. (2003)

Acenetobacter sp. (OK1) Gram (-ve) Water and

soil

Hydrocarbons (Petroleum) Koren et al. (2003)

Dechloromonas sp. (RCB) Gram (-ve) Water and

soil

Benzene, Toluene, Xylene Chakraborty et al. (2005)

Rhodococcus spp. Gram (?ve) Soil Naphthalene Alquati et al. (2005)

Phanerochaete chrysosporium Fungi Soil Polyethylene, polypropylene Zhou et al. (2007)

Pleurotus sajorcaju (MTCC 141) Fungi Waste water Decoloration of effluent Yadav and Yadav (2008)

Sinorhizobium meliloti (P221) Gram (-ve) Soil Polycyclic aromatic

hydrocarbons

Golubev et al. (2009)

Stenotrophomonas maltophilia (WZ2) Gram (-ve) Soil Quinclorac (Herbicide) Lü et al. (2009)

Pseudomonas fluorescens Gram (-ve) Waste water Direct orange 102 dye Pandey and Upadhyay

(2010)

Mycobacterium gilvum Gram (?ve) Sediments Pyrene, benzo(a)pyrene Toyama et al. (2011)

Saccharomyces cerevisiae Gram (-ve) Soil Chrysene, Benzo(a)pyrene,

Methyl red (azo dye)

Hesham et al. (2012),Jadhav

et al. (2007)

The strains mentioned in front of corresponding microbes have been adopted from the duly acknowledged literatures
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Table 3 Some typical examples of plasmids encoded with the genes capable of catabolic degradations of organic compounds

Plasmid Isolated from microbes Organic substrate References

pMFB1 Pseudomonas pseudoalcaligens KF707 Biphenyls, toluene, benzene Furukawa and Miyazaki (1986)

bphA Burkholderia sp. LB400,

Rhodococcus globerulus P6

PCBs, biphenyls, toluene, benzene Barriault et al. (2002)

IsoILR1 Burkholderia sp. V106 A (Tom green) Cis-1,1,dichloroethylene Rui et al. (2004a)

IsoLR1 Rhodococcus sp. AD45 Epoxypropane, cis-DCE Rui et al. (2004b)

pNL1 Sphingomonas aromaticivorans F199 Naphthalene, biphenyls, m-xylene, p-cresol Romine et al. (1999)

pADP-1 Pseudomonas sp. ADP Atrazine Martı́nez et al. (2001)

pWWO Pseudomonas putida PaW1 Toluene, Xylene Greated et al. (2002)

pCAR-1 Pseudomonas resinovorans CA10 Carbazole Maeda et al. (2003)

pCAR-3 Sphingomonas sp. KA1 Carbazole Shintani et al. (2007)

NAH-7 Pseudomonas putida G7 PAHs, e.g., naphthalene Yen and Serdar (1988)

pDTG1 Pseudomonas putida NCIB9816 PAHs, e.g., naphthalene Yen and Serdar (1988)

pND6-1 Pseudomonas sp. ND6 Naphthalene Li et al. (2004)

pPhCN-1 Pseudomonas putida PhCN Phenol El-Deeb (2009)

pENH91 Alcaligenes eutropha NH-9 3 CBA Ogawan and Miyashita (1999)

RP4::Tn4371 Enterobacter agglomerans DK3 Biphenyl De Rore et al. (1994)

pTOM8 Alcaligens xylosoxidans 31A Nickel resistance Schmidt and Schlegel (1994)

NikD Helicobacter pylori Nickel resistance Hendricks and Mobley (1997)

Fig. 2 Organic compounds

degradation strategy followed

by microbes

1792 Int. J. Environ. Sci. Technol. (2014) 11:1787–1800

123



2005); similarly, catechol 2,3-dioxygenase (C-23O)

produced by yeast fungi cleaves the benzene ring (He-

sham et al. 2012). Table 2 presents few more examples

of fungal degradation of OCs. The details of fungal role

in bioremediation have been extensively reviewed by

Gadd (2001). The study of factors influencing bioreme-

diation by white rot fungi has been broadly described by

Magan et al. (2010).

Role of Gram-positive and Gram-negative bacteria

in bioremediation

It is interesting to understand the behavior of Gram-

positive and Gram-negative bacteria during their inter-

action with toxic organic and inorganic pollutants in

environment. Gram-positive bacteria are metabolically

diverse and grow on the sites contaminated with aro-

matic hydrocarbons and toxic metals (Narancic et al.

2012). Tables 1 and 2 show certain examples of Gram-

positive bacteria, e.g., Staphylococcus sp. and Rhodo-

coccus sp., remediating environmental pollution. In

addition to this, member of Rhodococcus, Bacillus,

Arthrobacter, Gordonia, Streptomyces and Nocardia

genus can degrade a variety of OCs, such as biphenyls,

benzene (Narancic et al. 2012) and naphthalene (Al-

quati et al. 2005). Studies show that few other Gram-

positive bacteria such as Corynebacterium and Myco-

bacterium sp. withstand the anaerobic and extreme

toxic conditions such as oil sludge (Lăzăroaie 2010).

Typical examples of toxic metal tolerance in Gram-

positive bacteria include Bacillus megaterium MB1

resistant to mercury because of TnMERI1-resistant

transposon (Huang et al. 1999). A comparative study of

zinc toxicity on particular strains of Gram-positive and

Gram-negative bacteria, viz., Bacillus sp., Arthrobacter

sp. and Salmonella sp., by Nweke et al. (2007) showed

that Gram-positive bacterial species are sensitive as

compared with the Gram-negative species for the tox-

icity of zinc. In general, Gram-negative bacteria have

better tolerance against metallic pollution (Minz et al.

1996; Nweke et al. 2007). Binding affinity with the

metallic cations hardly differs between Gram-positive

and Gram-negative bacteria, however; findings of

Churchill et al. (1995) showed the different specificity

in sorption of metal cations by Gram-positive bacteria

(Micrococcus luteus) and Gram-negative bacteria

(Escherichia coli), whereby Co2? was observed to be

sorbed more than Ni2? by both M. luteus and E. coli in

a binary mixture of cations. Lăzăroaie (2010) also

reported Gram-negative bacteria to be more tolerant to

toxic mixture of saturated hydrocarbons, monoaromatic

hydrocarbons and polyaromatic hydrocarbons as

compared with the Gram-positive bacterial cells. As

evident from Tables 1 and 2, Gram-negative bacteria

have wider range of toxicity tolerance of OCs and

metal pollutants, however; few studies (Zahir et al.

2006; Segura et al. 2008) support that Gram-positive

bacteria are even more tolerant for certain pollutants,

such as hydrocarbons and PAHs, Although mechanis-

tically Gram-negative bacteria are more tolerant

because of the presence of an outer membrane made of

lipopolysaccharide and proteins imparting it imperme-

ability for toxic compounds, e.g., hydrocarbons that

may be associated with the protection of microbes from

being exposed to toxic elemental pollutants and OCs.

Factors affecting microbial remediation

Various biotic and abiotic factors affect the behavior

and the growth of microbial cells, thereby affecting

various biological processes occurring in a microbial

community. Bioremediation process is subjected to the

multiphasic heterogeneous surroundings (Boopathy

2000) influencing the rate of the reactions. Lack of

information regarding the factors influencing the process

often reduces the efficacy of process when implemented

(Lovely 2003). Microbes have inherent ability of first

rate to get adapted to the changing environment though

they have certain limitations. In-depth understanding of

microbial ecology is required for the improvement in

the microbiological action and to predict the successful

bioremediation process (Watanabe 2001). Figure 3

shows the environmental challenges that microbes face

in their life. Three types of factors affecting the

microbial processes have been shown in Fig. 3, viz., (1)

physicochemical characteristics of environment or the

abiotic factors, (2) biological factors or biotic factors

and (3) climatic conditions whereby physicochemical

and climatic conditions are among the major factors

affecting the metabolic rates in microbes.

Physicochemical factors affecting bioremediation

Physicochemical factors include a set of parameters

such as redox potential (Eh), pH, ionic strength, solu-

bility, presence or absence of electron acceptors and

donors, temperature and age of organometalic ions.

Biosorption, a primary step in toxic metal removal by

microbes, is a pH-dependent phenomenon whereby pH

value influences the isoelectric point in a solution,

affecting the net negative charge on the microbial cell

surface. Additionally, this change brings changes in

ionic state of ligands, e.g., a carboxyl residue, phos-

phoryl residues, S–H groups and amino acid groups
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(Sag et al. 1995). Bioremediation techniques involve

reduction of metal ions to insoluble form by the

microorganisms from higher to lower oxidation sate

(pH dependent) as soluble metal ions can only undergo

enzymatic reduction. Higher oxidation states of metals

are generally soluble (Garbisu and Alkorta 2003).

Solubility plays an important role in degradation of

OCs as hydrophobic or sparingly soluble compounds

persist in the environment for long lime and are bio-

unavailable (Pieper and Reineke 2000). pH values

affect the solubility of metal ions, which increases with

the decrease in pH of medium, thereby affecting

adsorption by microbial cells (Blázquez et al. 2008). In

addition, lower pH values are required for metal ions to

get attached on the microbial cell surface (Rajendran

et al. 2002; Han and Gu 2010), whereas alkaline

medium favors precipitation of metal ions. Organic

acid-producing microorganisms Pseudomonas sp. and

Burkholderia cepacia produce gluconic acid and Rhi-

zobium sp. and Bacillus firmus produce ketogluconic

acid (Robles-Gonzalez et al. 2008), which lower the pH

of the system, which increases the solubility of metal

ions. Organometalic compounds increase mobilization

of metal ions (Puzon et al. 2005). Bioremediation is

strongly inhibited by toxic metal ions, such as Zn2?,

which acts as a respiratory inhibitor in microbes (Beard

et al. 1995). The presence of electron acceptors, e.g.,

oxygen in aerobic microbes and NO3
1-, SO4

2- and

Fe(III) oxides in case of anaerobic microbes, also

affects the biodegradation processes (Lovely 2003).

Biological factors affecting bioremediation processes

Biological factors are not as such very obvious, however;

the importance of these factors is often realized while

implementing bioremediation technique. There are several

inherent characters of microbes that affect the substrate

degradation, e.g., plasmid-encoded genes provide speci-

ficity for substrates and encode the specific enzymes

(proteins), but it has been observed in nature that microbes,

especially bacterial cells, have diversified specificity for

different substrates (Mars et al. 1997). Bacterial chemo-

taxis is an advantageous behavior of bacteria for the deg-

radation of recalcitrant organic compounds (Pandey and

Jain 2002). As already mentioned earlier in this review,

single microbial cell cannot achieve complete degradation

of chemicals. Microbial communities required for biore-

mediation most often depend on complex multispecies

Fig. 3 Simple layout showing factors influencing the microbial ecology, thereby influencing microbial bioremediation processes
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interactive networks as shown in Fig. 3. Organohalide

respiratory bacteria thrive only in consortia, and their iso-

lation and culture is very difficult. Maphosa et al. (2010)

defined it as a function of metagenomics or community

genomics whereby the metagenomics sequencing helps

providing data of member species of consortia that support

substrate degradation. Moreover, the optimum growth

conditions of microbes are unpredictable (Ingham et al.

2007). Microorganisms are vital for the efficient func-

tioning of ecosystems on earth, and factors affecting

metabolism, composition and abundance of microbes and

microbial communities may disturb the ecosystems

(Nweke et al. 2007). Allelopathic response of terrestrial

plants on the microbial community (Chakraborty et al.

2012) may negatively influence the degradation potential

of soil microbes. Solubility of OCs and the absence of

oxygen cause reduction in aerobic microbial activity.

Certain microbes, however, utilize other sources of organic

carbon, electron acceptor and energy as cometabolic sub-

strate and degrade the recalcitrants, e.g., Mycobacterium

gilvum reportedly degrade pyrene aerobically in the rhi-

zospheric zone of Phragmites australis simultaneously

with the degradation of benzo(a)pyrene (Toyama et al.

2011). Initiation of microbial degradation of xenobiotics

depends on the toxic pressure exerted by the contaminants

on the microbes that induce enzymatic modifications

(Pandey and Jain 2002).

Climate change and bioremediation processes

Global climate change is characterized with the factors

such as elevated CO2 and atmospheric temperature. Soil

microbial community plays an important role in cycling

of carbon (C) as microbes exhibit increased ability to

decompose soil organic matter at elevated CO2 (Nie

et al. 2013) and nutrients in ecosystems which are

largely influenced by biotic and abiotic factors (Fig. 3).

There is no direct evidence of any likely impacts of

climate change on the bioremediation process, however;

researches on soil microbes and climate change (Sow-

erby et al. 2005; Castro et al. 2010; Nie et al. 2013)

suggest changes in the physicochemical properties of

the microbial niche, which may alter microbial meta-

bolic processes and thereby the bioremediation.

Microbial extracellular enzyme production is linked to

microbial activity as well as soil physicochemical

properties (Sowerby et al. 2005), which are influenced

by climatic conditions. One of the breakthrough find-

ings belongs to Frey et al. (2013), whereby increased

utilization efficiency of recalcitrant substrate in soils by

the microbes at higher temperature as a positive

feedback to climate has been reported although the

feedbacks from ecosystems to the climate have report-

edly been regulated by microbial communities (Bardg-

ett et al. 2008). Elevated ambient CO2 level has been

found associated with the increase in bacterial abun-

dance (Castro et al. 2010) and decreased fungal abun-

dance (Frey et al. 2008). Decrease in fungal biomass at

warm and dry conditions decreases the fungal/bacterial

biomass ratio in soil (Sowerby et al. 2005), indicating

decreased magnitude of carbon cycling in an ecosystem

which further disturbs the natural degradation process

by naturally occurring microbes capable of degrading

the hazardous chemicals cometabolically facilitated by

the naturally available carbon. It has been predicted

that if temperature of soil increases due to the global

climate change, microbial enzymatic activity will rise

substantially (Baldrian et al. 2013).

Future studies in bioremediation

Issues related to the metagenomics (community structure),

identification of microbes and their implementation on the

bioremediation under altered environmental conditions

may be the main thrust of future studies. Since the

urbanization is a global phenomenon, the urban waste

treatment with naturally occurring and genetically modi-

fied microbes is not a cost-effective process as it needs a

proper facility requiring extensive economic support.

Although commercial use of waste treatment is now a

realization, the incurred input of money is far greater than

the output. Scientists are continuously making efforts to

get the economical gains of microbial remediation of

waste generated. These include the environmentally safe

energy production from the waste through microbial

activity, production of biofertilizers and recycling of

material. Several other issues including mechanistic

approach of degradation/removal, microbial response to

changing environment, recalcitrant metabolites, proteo-

mics and the chemistry of new xenobiotic compounds are

some of the endless studies yet to investigate compre-

hensively. Adaptability features of microbes make it more

difficult for the researchers to ascertain the specific pol-

lution remediation technique; therefore, more precise

techniques are required to identify microbes and the sub-

strate specificity as well. Microbial resistance development

for various organic chemicals through transformation of

genetic information between microbes and the rate of this

exchange may need a scientific surveillance study to

ensure the complete safety of the living world from the

extensively resistant strains.
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Conclusion

Organic and inorganic contaminants deteriorated the

environment on the earth because of their deliberate

and accidental leakage or production and generation in

the form of waste. Microbial bioremediation of these

contaminations has attracted the researchers all over the

world as microbes naturally offer plenty of opportuni-

ties for the cleaning-up of the polluted sites.

Advancements in this field of science have widely been

made. With the genetic engineering know-how,

microbes are being designed precisely termed as

‘‘synthetic biology’’ by Endy (2005) whereby particular

genes responsible for the degradation of contaminants

are transferred to the microorganisms of common

occurrence provided the correct identification and cul-

turing of isolates. Thanks to metagenomics that provide

information of the microbial community structure act-

ing upon environmental pollutants. There are several

biomolecular techniques available to identify microbes

in consortia and to ascertain the degradation of xeno-

biotic compounds. We are now able to understand the

degradation processes of most commonly used xenobi-

otics including polyaromatic hydrocarbons (PAHs),

e.g., naphthalene (Alquati et al. 2005), benzene (Xiong

et al. 2012), chrysene and benzo(a)pyrene (Hesham

et al. 2012). For a successful bioremediation, knowl-

edge of factors influencing the biological as well as

physicochemical processes is must. Tools of molecular

biology are being used to identify the target-specific

microorganisms and their mechanisms of chemical

degradation and still an open opportunity to understand

the natural bioremediation process. Future prospects of

researches in microbial bioremediation have still a lot

of opportunities for the imminent scientists. Since

climate is changing along with its associated impacts

that can alter the microbial communities, it is pre-

dicted that climate change will alter the earth’s eco-

system as a whole, however; reports indicate the

increased microbial activity at elevated CO2 and

temperature. The climate change and microbial pro-

cesses in nature will certainly be the interesting field

of future research.

Acknowledgments The authors wish to appreciate all who sup-

ported this work.

References

Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum

P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial

effects on nickel extraction from soil and uptake by Alyssum

murale. New Phytol 158:219–224

Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants

affecting nickel uptake by Alyssum murale from low, moderate

and high Ni soils. Soil Biol Biochem 38:2882–2889

Alquati C, Papacchini M, Riccardi C, Spieaglia S, Bestetti G (2005)

Diversity of naphthalene degrading bacteria from a petroleum

contaminated soil. Ann Microbiol 55(4):237–242

Ang EL, Zhao H, Obbard JP (2005) Recent advances in the

bioremediation of persistent organic pollutants via biomolecular

engineering. Enzyme Microb Technol 37:487–496

Arriagada CA, Herrera MA, Borie F, Ocampo JA (2007) Contribution

of arbuscular mycorrhizal and saprobe fungi to the aluminum

resistance of Eucalyptus globulus. Water Air Soil Poll

182:383–394

Badri DV, Weir TL, Van-der-Lelie D, Vivance JM (2009) Rhizo-

sphere chemical dialogues: plant-microbe interactions. Curr

Opin Biotechnol 20:642–650

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role

of root exudates in rhizosphere interactions with plants and other

organisms. Annu Rev Plant Biol 57:233–266
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