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Abstract Previous urban sprawl studies have typically

taken a cross-sectional approach without examining how

sprawling urban areas are performing over time. Longitu-

dinal studies of individual or household travel behavior and

built-environment preference have made some progress in

this direction, but very few studies have explored the

longitudinal interaction of urban form with transportation

and environmental outcomes. This study begins to fill this

gap by evaluating the transportation and environmental

impact dynamics of several key dimensions of urban

sprawl: density, land use mix, centrality, and street con-

nectivity. The central hypothesis is that while the built

environment is durable and development patterns change

slowly, the impacts of urban sprawl are dynamic rather

than static and are accelerated in more sprawling cities

relative to less sprawling cities. To test this hypothesis, a

panel dataset of 7 years (2000–2007) was developed for 60

Metropolitan Statistical Areas of the US and a hybrid

modeling framework that incorporates fixed and random

effects is applied to evaluate different transportation and

environmental outcomes over time. We found that the

influence of urban centrality or the strength of urban sub-

centers on the travel pattern of commuters and transit users

is dynamic. This suggests that people living in cities with

stronger centers drive less and use public transportation

more over time. For environmental outcomes, we found

that cities with higher density have experienced a signifi-

cant decrease in ambient ozone and PM2.5 concentrations

after controlling city-specific variables.

Keywords Air quality � Congestion � Sprawl � Transit �
Urban form

Introduction

The relationship between urban form and transportation is

one of the most extensively studied topics in the urban

planning literature. However, with increased attention on

sustainable development and climate change adaptation

throughout the world, the links between urban form and

transportation demand more scrutiny as a means of

informing more effective public policy. Whether compact

urban development is the most sustainable urban form

remains a hotly debated topic among urban planning

scholars (Neuman 2005; Echenique et al. 2012). A signif-

icant amount of research has been conducted to define and

quantify urban sprawl (Wassmer 2000; Galster et al. 2001;

Tsai 2005); to evaluate its impact on environment, society,

transportation, economy, and energy efficiency (Stone

2008; Brueckner and Largey 2008; Carruthers and Ulf-

arsson 2003; Holden and Norland 2005), and to evaluate

alternative policy measures for achieving sustainable urban

form (Nelson and Moore 1996; Song and Knaap 2004).

However, what currently draws the most attention from

researchers in this arena is the connection between trans-

portation and climate change. In the USA, transportation is

responsible for about 30 % of the total carbon dioxide

(CO2), which is the primary contributor to the greenhouse

effect (EPA 2006). In addition to climate change, the

impacts of transportation on urban air quality and pollution

are also widely recognized (Frank et al. 2000, 2006; Grazi

et al. 2008; Tuzkaya 2009). With rapid urbanization

throughout the world, these concerns resonate in the

planning processes of a growing number of cities that are
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developing strategies for sustainable urban development

(Runhaar et al. 2009; Yigitcanlar and Teriman 2014). By

shaping the spatial settings for human activities through

tools like zoning, land use planning is considered a fun-

damental- and long-term approach for mitigating the

environmental impact of transportation (Hong et al. 2013).

Promoting high density, compact, and mixed-use urban

development is widely viewed as an effective planning

strategy for increasing the efficiency of public transporta-

tion, decreasing dependence on automobiles, and subse-

quently reducing vehicle miles traveled (VMT) and

emissions. But, these propositions are also widely debated

(Gordon et al. 1989; Malpezzi 1999; Neuman 2005) and

the limitations of present methodological approaches are

also generally accepted (Handy 2005; Brownstone 2008;

Cao et al. 2009). This study contributes to these ongoing

debates by leveraging innovative statistical methods to

model the nonlinear impacts of sprawling development on

transportation and environmental outcomes over time. A

total of 60 metropolitan areas of the USA are explored in

this study over a period of 7 years (2000–2007).

Most of the previous studies on urban form have taken a

cross-sectional approach by evaluating alternative devel-

opment patterns and their outcomes at one time period,

without considering how the impacts of those development

patterns change over time (e.g. Zolnik 2011; Hong et al.

2013; Bereitschaft and Debbage 2013). We explored these

longitudinal impacts and considered sprawl as different

patterns of density, land use mix, urban centrality, and

street pattern (Ewing et al. 2002). Sprawling development

is not monolithic and exhibits variation across each of these

four dimensions, which suggests differential impacts on the

environment and transportation (Ewing et al. 2003). We

hypothesize that changes in population and transit invest-

ment mediate the impacts of sprawling development and

employ an innovative statistical modeling approach to test

this proposition.

Urban sprawl: definitions and quantifications

Urban sprawl is often described as low density, leapfrog

development occurring at the edge of a city (Ewing 1997),

but due to the complex and multifaceted nature of this

phenomenon there is no universally accepted definition

(Knaap et al. 2005). Despite its diverse and pliable nature,

there have been numerous attempts to establish a unified

definition of this elusive phenomenon. According to The

Sierra Club (1999), sprawl is ‘low-density development

beyond the edge of service and employment, which sepa-

rates where people live from where they shop, work,

recreate and educate—thus requiring cars to move between

zones.’ Other researchers have broadened this basic defi-

nition based on the spatial separation of activities to

include the spatial characteristics of land ownership or

development control (e.g. Richmond 1995; Peiser 2001).

Plurality of both focus and intent when defining urban

sprawl is an enduring theme in the literature (Ewing 1997;

Gordon and Richardson 1997; Ewing et al. 2003). The

search for a more precise definition of sprawl becomes even

more difficult when differences in patterns and processes of

urban growth in various countries and regions are consid-

ered. Despite these variations, there have been efforts to

establish a definition that is abstract and flexible, yet useful

for research and practice. Sprawl can be viewed both from

aggregate and disaggregate standpoints. The former indi-

cates attention to the overall three-dimensional structure of

the urbanized area (settlement size and density) and the

latter emphasizes spatial pattern within the urbanized area.

To date, a significant number of studies have been con-

ducted to identify measures and indices to quantify sprawl,

but disagreement remains as to which techniques are best.

The most widely used measure of urban form is density,

measured by the land consumption per capita. Pioneering

work by Torrens and Alberti (2000) determined the density

level at which urban form can be considered sprawling, but

density or settlement size can only provide an aggregate

measure of urban form. In addition to density, Galster et al.

(2001) suggested seven other measures including continu-

ity, concentration, clustering, centrality, nuclearity, mixed

uses, and proximity. Tsai (2005) suggests the Gini coeffi-

cient and Moran coefficient (also called Moran’s I) to

measure the distribution and clustering of development,

respectively. Ewing et al. (2002) used 22 variables to

evaluate urban sprawl across four indicators: residential

density, neighborhood land use mix, strength of activity

centers, and accessibility of street network. This study

makes use of the sprawl measures calculated by Ewing et al.

(2002) due in part to data availability constraints, but also

because of the ease of interpretation and widespread

implementation of this approach.

Impacts of sprawl on urban transportation

Urban sprawl can negatively impact urban transportation

system in many ways. Sprawling development patterns—

due to sparsely located housing, employment, and other

facilities—reinforce dependence on private automobiles.

However, the causal relationships between sprawling

development and its transportation impacts are more

complex. The relatively low cost of fuel and automobiles

coupled with heavy investment in road construction make

it easier to travel longer distances, which encourages

sprawling development. On the other hand, as public

transport cannot effectively serve low density, scattered

development people have no choice but to rely on their

automobiles. These issues have already been evaluated by a
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number of studies. Newman and Kenworthy (1989) pub-

lished one of the most influential studies in this area by

showing how automobile dependency and gasoline con-

sumption are highly correlated with urban density. Diel-

eman et al. (2002) also concluded that compact urban form

reduces car dependency in the context of Netherlands. In

an effort to illuminate the underlying drivers of this effect,

Ewing et al. (2003) showed how different urban transpor-

tation characteristics (walking, transit use, etc.) are influ-

enced by urban sprawl, finding that higher residential

density and greater centrality were associated with higher

transit and walk shares of commute trips, but not with

greater average commute times.

The transportation impacts of sprawl, particularly in

terms of the location of employment centers and commuting

times, are still a debated issue. Some researchers found that

higher density employment may be associated with higher

commuting times (Gordon et al. 1989; Malpezzi 1999), and

low-density workplace locations are associated with lower

commute times (Sultana 2000; Crane and Chatman 2003),

while others found mixed results or did not find any relation

to commuting at all (Gordon et al. 2004; Sarzynski et al.

2006). This ‘commuting paradox’ was explained by the

likelihood that households and firms were rationally relo-

cating to reduce commuting times, and that this spatial

adjustment can be more easily made in dispersed metro-

politan space with many alternative employment centers

and residential location choices (Gordon et al. 1991; Lev-

inson and Kumar 1994; Sultana 2000). Dubin (1991), Crane

and Chatman (2004), Zhao et al. (2011) all found that the

decentralization of employment to the suburbs decreased

commuting times. On the other hand, Sultana and Chaney

(2003) and Weber and Sultana (2007) showed that com-

muting times are higher in areas with low density. Overall,

sprawl is argued to be associated with longer travel times

because sprawl development is spread out over larger land

areas and destinations are farther away than in compact

development (Zolnik 2011).

Recent studies on commuting patterns have examined

fast-growing areas with low-density development (sprawl)

and their commuting characteristics. Weber and Sultana

(2007) found that low-density and fast-growing areas are

associated with longer commutes. Sarzynski et al. (2006)

also found that faster-growing cities have longer commute

times. Sultana and Weber (2013) studied the concept of

growth wave and found that recent housing developments

have longer commuting time than older part of the cities,

but this commuting time will subside as these areas age.

Studies have also examined the relations between popula-

tion density and transit ridership; most of them confirm that

areas with lower population densities have fewer journeys

by public transport. Higher population density was found to

have a significant positive relationship with use of public

transport and significant negative relationship with auto-

mobile use (Levinson and Kumar 1997; Filion et al. 2006).

It can be seen here that the debate concerning sprawling

development and its impact on transportation is far from

settled. While some researchers have found a definite link

between urban form and travel behavior (Ewing et al.

2003; Dieleman et al. 2002; Handy et al. 2005; Bhat and

Guo 2007), there are others who did not find any significant

relationship (Crane and Crepeau 1998; Eid et al. 2008).

However, the familiar adage ‘correlation is not causality’

applies here and while most of the studies to date have

focused on correlation, causality is yet to be established.

This article evaluates the dynamics of impacts created by

urban form and in so doing, clarifies the causal relation-

ships between sprawl and its transportation and environ-

mental outcomes.

Environmental impacts of sprawl

Studies of urban form and the environment have well

documented the mechanisms by which urban form and land

use change might influence air quality, air pollutant emis-

sions, and the release of CO2 (Lariviere and Lafrance 1999;

Borrego et al. 2006; Stone 2008; Marshall 2008; Liao et al.

2013). A limited number of studies have empirically

evaluated the direct associations between urban form and

the emission or concentration of air pollution (Stone 2008;

Schweitzer and Zhou 2010; Bechle et al. 2011; Clark et al.

2011). Although it is generally assumed that the relation-

ship between land use and vehicle travel holds implications

for tailpipe emissions and air quality, only a handful of

studies has sought to statistically link urban form to vehicle

emissions directly (Stone 2008). Frank et al. (2000) found

statistically significant relationships between household

density, employment density, street connectivity, and tail-

pipe emissions. A recent study concluded that metropolitan

areas exhibiting higher levels of urban sprawl, generally

exhibited higher concentrations and emissions of air pol-

lution and CO2 when controlling for population, land area,

and climate (Bereitschaft and Debbage 2013).

Urban form can also affect air quality by influencing

local meteorology, including the urban heat island (UHI)

effect, and the energy efficiency of buildings (Weng 2003;

Ewing and Rong 2008). Urban spatial structure can influ-

ence ozone formation through two distinct mechanisms—

the quantity of precursor emissions from vehicle travel and

the meteorological effects of urban heat island formation

(Stone 2008). Ewing et al. (2003) and Stone (2008)

observed that the large US cities with higher levels of

urban sprawl (i.e., lower densities, less street connectivity,

less mixed land use), experienced significantly higher O3

precursor emissions, higher O3 concentrations, and signif-

icantly more O3 exceedances.
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But studies at smaller scales sometimes yield mixed

results. Schweitzer and Zhou (2010) took a finer scale

approach and found that neighborhoods in less sprawling

US metropolitan areas, generally exhibited lower concen-

trations of O3, but higher O3 and PM2.5 exposures due to a

greater concentration of people living in areas with higher

air pollutant concentrations. Through an analysis of 111

U.S. Census defined urban areas, Clark et al. (2011) found

that those with more centralized populations were associ-

ated with lower population-weighted PM2.5 and O3 con-

centrations, whereas those with higher population densities

were associated with significantly higher population-

weighted PM2.5 concentrations. So, in the case of envi-

ronmental outcomes also we see conflicting results on the

impacts of urban sprawl. Further, most of the relevant

studies have evaluated these impacts using a cross-sec-

tional approach, without considering how urban form

influences air quality over time.

Gaps in existing urban form studies

The previous two sections summarized existing studies of the

impacts of urban form on the environment and transportation

and highlighted key points of debate as well as important

inconsistencies. By applying a cross-sectional design, most of

the existing studies offer a snap shot of travel behavior and

environmental outcomes in different places at one point in

time and while these studies reveal the correlation between

urban form and its impacts, they do not prove causality

(Handy 2005). In the case of sprawl and transportation,

researchers have argued about the possibility of a ‘self-

selection’ bias which is particularly ignored in a cross-sec-

tional framework (Brownstone and Golob 2009; Hong et al.

2013). The idea is that individuals who would prefer to walk

or take transit than drive choose to live in more compact

neighborhoods that are conducive to walking and taking

transit (Handy 2005). In this case, urban form does not

influence their transportation pattern, rather their desire to live

in certain lifestyle (i.e. drive less, walk more, or vice versa)

may have influenced the observed transportation outcomes.

A few studies have attempted to address the self-selec-

tion issue. Handy and Clifton (2001) found that residents

with a higher frequency of walking to the store (compared

to other neighborhoods) did in fact choose their neigh-

borhood because they like to walk to the store. On the other

hand, the travel impacts of neighborhood characteristics are

found to be significant in many studies even after con-

trolling for the influence of residential self-selection (Cao

et al. 2009; Hong et al. 2013). After reviewing possible

methodologies that can be adopted to relieve the self-

selection impact, Mokhtarian and Cao (2008) developed

six categories: direct questioning, statistical control,

instrumental variable models, sample selection models,

other joint models (joint discrete choice models and

structural equations models), and longitudinal designs. A

more realistic approach is to employ a longitudinal

research design, following the same households or indi-

viduals over time (Hong et al. 2013). This would allow the

dynamic processes to be explored by tracking individuals,

households, and businesses over time. However, this

approach is infeasible in most cases because few metro-

politan organizations (MPOs) maintain panel data on

household location and travel.

Excluding individual or neighborhood level analysis, the

literature still lacks studies with an adequate focus on the

longitudinal interaction patterns between urban form and

its impacts on transportation and the environment. Sar-

zynski et al. (2006) significantly advanced cross-sectional

research on commuting by using more elaborate urban

form variables (sprawl indices) and addressing potential

endogeneity and time-lag effects between urban structure

and congestion. However, this study also did not take a

fully longitudinal approach that would have revealed how

different urban form patterns have performed over time. In

response to this gap, this article adopts an explicitly lon-

gitudinal approach and explores the dynamic impacts of

urban form on transportation and environment in US cities.

Although we are also not controlling the issue of residential

self-selection (partly due to data unavailability, and con-

sidering multi-city focus of this study), we believe that our

methodological approach is a valuable contribution to

present debates on sprawl impacts.

Materials and methods

The primary data sources used in this study are sprawl

measures for major metropolitan areas of the USA calcu-

lated by Ewing et al. (2002) and the Texas Transportation

Institute’s (TTI) 2012 Annual Urban Mobility Report,

which provides transportation data for major metropolitan

areas for the period 1982–2011. Control variables are based

on data collected from other sources and described below.

Urban sprawl measures

Ewing et al. (2002) were the first to develop a multidimen-

sional metric of the sprawl phenomenon, using 22 variables

that represent different aspects of development patterns.

Using principal components analysis, they grouped these

variables into four factors1 or dimension of sprawl:

• Residential density (density factor)

1 Ewing et al. (2002) also calculated an overall sprawl score

combining the four measures of sprawl, but this composite index is

not used in this study.
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• Neighborhood mix of homes, jobs, and services (mix

factor)

• Strength of activity centers and downtowns (centers

factor)

• Accessibility of the street network (street factor)

The 83 Metropolitan Statistical Areas (MSAs) included

in their analysis captured nearly half of the US population

and the Ewing et al. (2002) database remains one of the

most comprehensive assessments of metropolitan devel-

opment patterns available to date. We used these sprawl

measures, but only 60 MSAs were selected for analysis due

to data availability constraints and a concern about outlier

effects from some of the larger MSAs (Fig. 1). For the sake

of comparability, Ewing et al. (2002) standardized the four

sprawl factors so that the average of each factor is repre-

sented by a score of 100, so metro areas with scores above

100 are more compact than metro areas with scores below

100. Ewing et al. calculated these four sprawl measures for

the year 2000, and in this study, we assumed that urban

sprawl pattern would not change significantly within the

study time period (2000–2007). Changes in land use or

urban form usually affect transportation outcomes more

slowly than shifts in demographic characteristics or pref-

erences (Sarzynski et al. 2006). Because causality requires

temporal precedence, it is more appropriate to consider

urban form as measured at a base time period rather than at

the current period to statistically control the effect of urban

form. These considerations, coupled with the fact that

annual versions of the multidimensional sprawl index are

not available, were the basis for our decision to hold urban

form constant over the 7 year study period. The built

environment is durable, and past development decisions are

not easily undone, particularly in the short term. Also, the

onset of the foreclosure crisis and economic recession in

2008 and its implications for suburban neighborhoods in

particular (Niedt and Martin 2013) may have biased our

results, and so the study period was restricted to the years

2000–2007.

Transport and environmental outcomes

Transport outcome variables considered in this study are

taken from the 2012 Annual Urban Mobility Report pre-

pared by the Texas Transportation Institute (TTI). This

report compiled and calculated data from different sources

and provided a comprehensive database of different

transportation parameters for large metropolitan areas of

the USA over the period of 1982–2011. All of the trans-

portation measures considered in this report for each year

and every city are compiled in a spreadsheet that can be

downloaded from the TTI website.2 A total of three

transportation measures are considered in this study and

two of these focus on overall travel patterns by automobiles

and transit—daily vehicle miles traveled (DVMT) per

capita and annual unlinked passenger trips per capita in

public transportation. The third transportation outcome

variable is related to congestion—percent of congested

travel (as percentage of peak VMT).

Two environmental outcome variables are considered

and both are concerned with air quality—ambient con-

centration of O3 (highest fourth daily maximum 8-h con-

centration in ppm) and highest weighted annual mean

concentration of PM2.5 (lg/m3). Tropospheric ozone (O3)

and fine particulate matter (PM2.5) are known contributors

to life-threatening cardiovascular and pulmonary illnesses

(Laden et al. 2006; Jacobson 2008; Jerrett et al. 2009) and

although ozone is not strictly related to transportation, the

maximum ozone level in the metropolitan area is closely

linked to motor vehicle use (Ewing et al. 2003). These data

were collected from the U.S. Environment Protection

Agency’s (US EPA) air trend database,3 which contains

data from 1990 to 2012. Because this study focuses on the

2000–2007 period, not all of the available information was

used. We also chose to use nonpoint source emissions in

the analysis and to exclude emissions by large point-source

industrial facilities, which are not expected to be affected

significantly by urban form.

Control variables

Control variables used in this study include estimated

population (2000–2007), average state fuel cost ($/gallon),

percentage of workers 16 years and over who did not work

at home, per capita personal income, average temperature

Fig. 1 Study cities in the USA

2 These data can be accessed at http://tti.tamu.edu/documents/ums/

congestion-data/complete-data.xls.
3 These data can be accessed at http://www.epa.gov/airtrends/pdfs/

AirQualityTrendsbyCity2000-2012.xlsx.
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of metropolitan areas, total fund for transit (operating and

capital), and directional route miles (fixed-guideway and

mixed-traffic when applicable) for transit. Data on the first

two control variables were collected from the Urban

Mobility Report of TTI, while data on working commuters

come from American Community Survey (2005–2009) and

data on per capita personal income come from the Survey

of Current Business compiled by the U.S. Bureau of Eco-

nomic Analysis.4 Data on public transit funding and

infrastructure are collected from National Transit Database

(NTD) managed by the Federal Transit Administration.

The historic data files of NTD include some key data ele-

ments on the transit system in different US cities reported

to the National Transit Database Annual Module from

1991 to 2011. Total funds for transit include all funds from

federal, state, local, and other sources, which are applied to

transit (operating and capital). The directional route miles

(DRM) includes the mileage in each direction over which

public transportation vehicles travel while in revenue ser-

vice. These measures are included considering the fact that

investments and the availability of public transit should

influence the transportation outcomes of different cities.

Table 1 shows descriptive statistics of the variables used in

this study.

Table 2 presents the correlation coefficients for each of

the dependent variables with the four urban sprawl mea-

sures. A significant negative coefficient for daily VMT per

capita (DVMTperCapita) across all four measures of

sprawl indicates that with decreasing levels of sprawl,

people are driving shorter distances. Similarly, correlations

of annual passenger trips per capita in public transport

(AnnualtripperCapita) across different measures of urban

sprawl indicate a significant influence of the density factor

and street factor. The correlation coefficient of the mix

factor and centers factor indicate no significant influence of

mixed use and very small negative influence of urban

centrality. The result of the centers factor is counterintui-

tive, because we usually believe that cities with stronger

sub-centers should facilitate transit usage (or vice versa,

transit developments promote stronger sub-centers). The

problem here is that these correlations are measured for all

cities irrespective of their level of transit development. As

we will see later through the regression analysis, after

controlling transit availability, population, and other fac-

tors, the centers factor becomes a significant predictor of

transit usage.

For congested travel (as a percentage of peak VMT),

each of the sprawl factors was found to have a significant

effect, with the exception of the mix factor. In this case,

different sprawl measures are indicating different trends.

The significant positive correlation coefficient for the

density factor (0.527) indicates that higher density increa-

ses congestion during peak period travel. But on the other

hand, a significant negative coefficient of the centers factor

(-0.480) indicates that cities with stronger sub-centers (i.e.

higher value of centers factor) experience less congestion

during peak travel periods. For the level of ozone con-

centration (O3ppm) across different measures of urban

sprawl, negative coefficients of density and street factor

indicate that lesser level of ozone concentration is corre-

lated with lesser level of sprawl. Correlations for annual

mean concentrations of PM2.5 across the different sprawl

measures shows trends similar to ozone concentration.

Regression modeling framework

In order to estimate the dynamic impacts of urban form on

transportation and environmental outcomes, we applied a

hybrid modeling framework (Allison 2009) that combines

both fixed effects and random effects for panel data ana-

lysis. Fixed effects models can evaluate the effects of time-

varying factors on certain time-varying outcomes, con-

trolling for unmeasured year-specific and case-specific

effects (England et al. 1988). One important assumption of

fixed effects models is that the time-invariant characteris-

tics of the individual cases are unique to those cases and

they are allowed to be correlated with other time-varying

individual characteristics. However, fixed effects models

cannot evaluate the influence of time-invariant character-

istics on the time-variant outcomes. On the other hand,

random effects models can accommodate time-invariant

predictors and be used to analyze their influence on the

outcomes. The estimates of random effects models are

more efficient, but those estimates can be biased if the

restrictions of the model are not met (Allison 2009). In this

case, the unobserved variables are assumed to be uncor-

related with all observed variables. The hybrid regression

approach adopted here combines the virtues of the fixed

effects model and the random effects model in that it can

estimate the effects of the time-invariant variables, but is

less prone to bias due to other unmeasured variables. This

study hypothesizes that the impacts of urban sprawl are

dynamic rather than static and increase in a nonlinear way

depending on the characteristics of each metropolitan area;

therefore, the estimation also needs to control for other

relevant variables. In order to test this hypothesis, it is

necessary to consider the influence of time-invariant fac-

tors (urban sprawl) on time-varying responses (i.e., trans-

portation and environmental outcomes) controlling for

different other time-varying and time-invariant character-

istics (e.g., population, fuel cost, per capita income, aver-

age temperature, transit availability, etc.). With this aim in

mind, we applied a hybrid regression approach which can

4 Accessed at http://www.census.gov/compendia/statab/2012/tables/

12s0683.xls.
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estimate both the time-variant and time-invariant explan-

atory variables.

In its most general specification, the dependent variable

is measured on an interval scale and is assumed to be

linearly dependent on a set of predictors. In the present

case, we have a set of metropolitan areas (i = 1,……,60),

each of which is measured at different time periods

(t = 2000, ……, 2007). Let yit be the dependent variable,

xit be a set of predictor variables that vary over time and zi

be another set of predictors that do not vary over time.

Therefore, the basic model for y is given in (1).

yit ¼ lt þ bxit þ czi þ ai þ eit ð1Þ

Here, lt is an intercept for each period, and b and c are

vectors of coefficients. The two error terms, ai and eit,

behave somewhat differently from each other. There is a

different eit for each metropolitan area at each point in

time, but ai only varies across metropolitan areas, not over

Table 2 Correlation matrix for sprawl factors and transportation and environment outcomes

Sprawl factors DVMTperCapita PassTripperCapita CongstTravel O3 ppm PM2.5 W

Mix factor -0.355***

(0.000)

0.024

(0.607)

-0.023

(0.622)

0.086

(0.065)

-0.127**

(0.008)

Density factor -0.407***

(0.000)

0.644***

(0.000)

0.598***

(0.000)

-0.290***

(0.000)

-0.316***

(0.000)

Centers factor -0.226***

(0.000)

-0.009

(0.840)

-0.472***

(0.000)

-0.030

(0.528)

-0.064

(0.179)

Street factor -0.250***

(0.000)

0.369***

(0.000)

0.463***

(0.000)

-0.291***

(0.000)

-0.342***

(0.000)

Numbers in parentheses below coefficients are p values

* 0.05 probability level, ** 0.01 probability level, *** 0.001 probability level

Table 1 Descriptive statistics (60 MSAs, 480 observations)

Description Variable name Mean SD

Dependent variables

Daily vehicle miles of travel (VMT) per capita (2000–2007) DVMTperCapita 19.26 2.83

Annual unlinked passenger trips per capita in public transportation (2000–2007) PassTripperCapita 25.97 22.98

Congested travel (% of peak VMT) (2000–2007) CongstTravel 48.87 18.95

Highest fourth daily maximum 8-hour concentration (ppm) (2000–2007) O3 ppm 0.08 0.01

Highest weighted annual mean concentration of PM2.5 (lg/m3) (2000–2007) PM25 W 12.34 2.92

Independent variables

Density factor for 2000 den_f 95.28 12.41

Mix factor for 2000 mix_f 101.99 20.35

Centers factor for 2000 cent_f 103.5 20.24

Street factor for 2000 str_f 96.86 22.28

Control variables

Total funding for transit (operating and capital) per capita ($) (2000–2007) Fundshr

(Mfundshr, Dfundshr)a

119.6 109.04

Directional route miles for transit per capita (miles) (2000–2007) DRMshr

(Mdrmshr, Ddrmshr)a

0.001 0.0005

Estimated population (thousands) (2000–2007) Pop

(Mlnpop, Dmlnpop)a

1642 1287

Average state fuel cost ($/gallon) (2000–2007) fuel_cost

(Mgas, Dgas)a

2.003 0.579

Percentage of workers 16 years and over who did not work at home (thousands) wrk_16 62.29 0.09

Per capita personal income ($)(2000–2007) pcinc 35358.52 7506.68

Average temperature (1971–2001) avg_temp 57.19 7.79

a These variables are taken as both MSA-specific mean over study years (2000–2007) and deviation from their respective means
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time. Here, ai is regarded as representing the combined

effect on y of all unobserved variables that are constant

over time. On the other hand, eit represents purely random

variation at each point in time which is assumed to be with

mean zero and with constant variance (for all i and t). It is

considered here that eit at any one period is independent of

xit at any other period, which means that xit is strictly

exogenous. Fixed effects analysis allows for any

correlation between ai and xit, but random effects

analysis considers that they are uncorrelated. In fixed

effects model, the coefficients and errors of time-invariant

variables (c and ai) are eliminated and so, we cannot

estimate the influence of those time-invariant factors.

Under the hybrid regression framework, time-varying

regressors are transformed into deviations from their MSA-

specific means, but the dependent variable remains

untransformed. Then, a random effects model is estimated

to ensure that the standard errors reflect the dependence

among the multiple observations for each MSA. According

to Allison (2009), inclusion of means for time-varying

variables in addition to the mean deviations of those vari-

ables is based on two rationales. Firstly, it produces better

estimates of the effects of other time-invariant variables.

Secondly, by comparing their coefficients with those of the

mean-deviation variables, it helps to test the assumption of

the random effects model (i.e., whether ai term is uncor-

related with other observed variables). If the assumptions

of random effects model are correct, then the mean-devi-

ation coefficient should be the same as the mean coefficient

for each variable (apart from sampling variability). This

test was conducted in Stata (using a Wald test) after

applying the random effects model.

Results and discussion

As discussed in the previous section, the means and mean

deviations of the time-varying variables were calculated for

each of the MSAs when estimating a model using the

hybrid regression approach. So, instead of the actual time-

varying variables (as shown in Table 1), the model now

contains their means and mean deviations (e.g., fuel cost

becomes Mfuel and Dfuel, etc.). Also, some of the variables

were transformed to improve the normality of their

Table 3 Estimation results of the hybrid regression model for travel pattern outcomes

Dependent variables

lnDVMTperCapita lnPassTripperCapita lnCongstTravel

Independent variables (sprawl measures)

Mix factor (mix_f) 0 (0.001) -0.001 (0.003) 0 (0.002)

Density factor (den_f) -0.002 (0.003) 0.001 (0.01) 0.001 (0.007)

Centers factor (cent_f) -0.002 (0.001)* 0.009 (0.003)** -0.003 (0.003)

Street factor (str_f) 0 (0.001) -0.004 (0.003) 0.005 (0.002)*

Control variables

wk16rt 0.663 (0.219)** -0.679 (0.68) 0.993 (0.553)

Pcinc 0 (0) 0 (0) 0.00001 (0)***

avg_temp 0.001 (0.002) 0.009 (0.008) 0.009 (0.006)

Mlnpop 0.021 (0.037) 0.42 (0.152)** 0.332 (0.088)***

Dmlnpop -0.443 (0.048)*** -0.455 (0.255) 0.648 (0.105)***

Mgas -0.18 (0.184) 0.773 (0.712) 0.701 (0.496)

Dgas -0.007 (0.025) 0.002 (0.091) -0.016 (0.056)

Mfundshr 0.0001 (0.0003) 0.004 (0.001)*** -0.0004 (0.0006)

Dfundshr 0.0002 (0.0001)** 0.001 (0.0002)*** -0.0002 (0.0001)

Mdrmshr -70.877 (40.686) 184.016 (139.475) -38.143 (115.052)

Ddrmshr 11.348 (7.348) 13.162 (36.035) 2.305 (18.247)

_cons 3.159 (0.553)*** -2.811 (2.162) -1.732 (1.401)

R-sq:

Within 0.5082 0.1208 0.2272

Between 0.4659 0.7624 0.6466

Overall 0.4684 0.7504 0.6384

Estimation based on hybrid models (robust standard error in parenthesis)

* 0.05 probability level, ** 0.01 probability level, *** 0.001 probability level
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distribution. The results of the regression analyses dis-

cussed here under the broad categories of the dependent

variables: (1) travel pattern and congestion and (2) envi-

ronmental outcomes.

Travel patterns and congestion

Table 3 presents the estimation results from the hybrid

regression model applied to three of the variables related to

travel pattern and congestion.

The natural log of daily vehicle miles traveled (DVMT)

per capita (lnDVMTperCapita), annual unlinked passenger

trips per capita in public transportation (lnPassTripperCapi-

ta), and percent of congested travel (lnCongstTravel) are the

dependent variables for these three models. In both DVMT

and transit usage, the center factor was found to be signifi-

cantly influencing the travel patterns, but other sprawl mea-

sures did not indicate any statistically significant influence.

This suggests that people living in cities with stronger centers

drive less and use public transportation more over time.

Beside the centrality measure, increase of population

(Dmlnpop), percentage of 16 years and above age working

population (wk16rt), and per capita share of transit mile

(Ddrmshr) were found to be significantly influencing the

driving trends in different cities. It can be generally expected

that increase of population will increase population density

and thereby reduce per capita driving of a city, although it

depends on availability of other transport modes (i.e. walking,

transit etc.). More working population can also be expected to

increase driving, but it is not clear why an increase of transit

miles would increase VMT per capita (although the influence

is too small). It can potentially be due to investments which

are yet to come into operation. For transit ridership, popula-

tion (Mlnpop) and investment for public transit were found to

be significant predictors, in addition to the centers factor of a

city. It follows general expectation that larger population will

increase number of transit riders and increased investments

for transits will attract more people to use transit service

instead of driving. In the case of congestion, only the street

factor was found to be significantly influencing peak travel

congestion (lnCongstTravel), which suggests that cities with

higher street connectivity have experienced higher conges-

tion during peak period travel over time. The control variables

provide further useful insight into which factors are signifi-

cantly affecting congestion in the cities. In this case, base

population (Mlnpop) and increase of population (Dmlnpop)

were two of the significant predictors associated with

increasing congestion over time.

Environmental outcomes

For environmental outcomes, the level of land use mixing

(mix factor) and density (density factor) were found to

have a significant influence (Table 4) on air quality. This

result suggests that cities with higher density have expe-

rienced lower concentrations of ozone and PM2.5 over time.

On the other hand, cities with higher land use mix (mix_f)

were found to be experiencing higher ozone concentra-

tions, although the influence is much smaller than that of

the density factor. While prior cross-sectional studies give

mixed results on environmental impacts of different sprawl

measures (Stone 2008; Clark et al. 2011; Bereitschaft and

Debbage 2013), our longitudinal analysis shows another

dimension of this pattern and suggests that cities with

higher density are having better air quality over time.

Although our finding supports the arguments in favor of

policy measures to encourage more compact development

as a means of improving urban air quality, we also have to

be careful about other implications of dense developments.

Schweitzer and Zhou (2010) and Clark et al. (2011) suggest

that increasing density may raise the air pollutant exposure

to some urban residents. While increased population den-

sity can reduce automobile dependency, it can also con-

centrate people in urban neighborhoods with poor air

Table 4 Estimation results of the hybrid regression model for envi-

ronmental outcomes

Dependent variables

O3 ppm PM25 W

Independent variables (sprawl measures)

Mix factor (mix_f) 0.0001 (0.0001)* -0.007 (0.021)

Density factor (den_f) -0.0006 (0.0002)** -0.141 (0.068)*

Centers factor (cent_f) 0 (0.0001) -0.013 (0.022)

Street factor (str_f) -0.0001 (0.0001) -0.021 (0.018)

Control variables

wk16rt -0.0163 (0.012) -7.654 (4.788)

Pcinc 0 (0) 0 (0)

avg_temp 0.0001 (0.0001) -0.106 (0.059)

Mlnpop 0.006 (0.0023)** 1.102 (1.007)

Dmlnpop 0.0029 (0.0089) -0.522 (1.835)

Mgas 0.008 (0.0107) -0.127 (4.606)

Dgas 0.0062 (0.0052) 0.478 (0.624)

Mfundshr 0 (0) 0.006 (0.007)

Dfundshr 0 (0) 0.001 (0.002)

Mdrmshr -2.2055 (2.5449) -969.013 (914.026)

Ddrmshr 0.3743 (1.4109) -41.373 (226.886)

_cons 0.0706 (0.0294)* 34.81 (12.983)**

R-sq:

Within 0.338 0.448

Between 0.398 0.355

Overall 0.374 0.365

Estimation based on hybrid models (robust standard error in

parenthesis)

* 0.05 probability level, ** 0.01 probability level, *** 0.001 proba-

bility level

Int. J. Environ. Sci. Technol. (2014) 11:2233–2244 2241

123



quality (Schweitzer and Zhou 2010). So, we should look

for innovative policy measures that will be sensitive to the

concerns of social vulnerability and environmental justice,

but will also ensure sustainable urban development.

Conclusion

Considerable efforts have been devoted to defining and

quantifying urban sprawl so that this pattern of urban

development and its associated negative consequences can

be better understood (Song and Knaap 2004; Weber and

Sultana 2007). However, there has been little consistency

as to exactly what this phenomenon is and how it can be

defined. Also, urban form studies at the city or metropol-

itan area scale continue to ignore or inadequately address

the temporal aspects of sprawl and its many impacts. Many

of the currently available analyses are based on cross-

sectional data, allowing a view of one ‘snapshot’ in time.

This study begins to fill this gap by evaluating the

dynamics of impacts created by urban form on the envi-

ronment and transportation over time using a hybrid

regression modeling framework. Our findings suggest that

most of the sprawl measures considered—density, land use

mixing, and street connectivity—are not exerting a sig-

nificant longitudinal influence on daily vehicular travel or

transit ridership. However, there is clear evidence that the

sprawl measure capturing urban centrality and the strength

of sub-centers is significant in understanding these rela-

tionships. Specifically, metropolitan areas with stronger

sub-centers experienced a lower increase in daily driving

mileage by commuters, relative to metropolitan areas that

were more dispersed. At the same time, those metropolitan

areas are also seeing transit ridership increase over time,

even after controlling for population growth. Although our

results did not indicate a significant role for density, land

use mixing, or street connectivity this does not mean that

these factors have no effect on transportation. Rather their

impacts may have been offset by other time-varying factors

(e.g., increase of population, per capita income, or fuel

prices) and future research should investigate these rela-

tionships. The consistently significant influence of the

centers factor is consistent with prior studies and suggests

an important causal relationship between urban centrality

and transportation outcomes at the metropolitan level. Our

study also shows the efficacy of compact development for

improving air quality of cities over time.

This study identified several key dynamics of urban

sprawl impacts which were not evaluated by previous

studies. One of the implications of these findings is that in

order to reduce the negative impacts of sprawl on urban

transportation we should focus more on the strengthening

sub-centers within metropolitan areas. While the potential

benefits of polycentric urban form are not a new idea, our

findings offer more specific insight into how land use

planning might facilitate intra-regional development pat-

terns that are more compatible with transportation effi-

ciency and environmental quality. While the longitudinal

approach and hybrid regression framework adopted here

are novel, this foundation can be enhanced by increasing

the number of metropolitan areas included in the analysis

and by incorporating more control variables. Future studies

can contribute to ongoing debates on the impacts of urban

sprawl and provide more specific direction for policy

responses by further examining its temporal aspects and the

methods applied in this article offer a way forward.
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