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Abstract Fuel consumption and greenhouse gas emis-

sions in the transportation sector are a result of a ‘‘three-

legged stool’’: fuel types, vehicle fuel efficiency, and

vehicle miles travelled (VMT). While there is a substantial

body of literature that examines the connection between the

built environment and total VMT, few studies have focused

on the impacts of the street environment on fuel con-

sumption rate. Our research applied structural equation

modeling to examine how driving behaviors and fuel effi-

ciency respond to different street environments. We used a

rich naturalistic driving dataset that recorded detailed

driving patterns of 108 drivers randomly selected from the

Southeast Michigan region. The results show that, some

features of compact streets such as lower speed limit,

higher intersection density, and higher employment density

are associated with lower driving speed, more speed

changes, and lower fuel efficiency; however, other features

such as higher population density and higher density of

pedestrian-scale retails improve fuel efficiency. The aim of

our study is to gain further understanding of energy and

environmental outcomes of the urban areas and the road-

way infrastructure we plan, design, and build and to better

inform policy decisions concerned with sustainable

transportation.

Keywords Street environments � Fuel efficiency �
Structural equation modeling � Naturalistic driving

Introduction

In 2012, a total of 32,113 million metric tons of carbon

dioxide were emitted into the Earth’s atmosphere, 36 % of

which came from oil use. The USA accounted for 17.5 %

of the world’s carbon dioxide emissions in the same year.

Transportation sector, the biggest carbon dioxide genera-

tor, generated over 30 % of total carbon dioxide in the

USA (followed by industrial sector and residential sector)

(U.S. Department of Energy 2013; U.S. Environmental

Protection Agency 2013). The environmental impact of

automobile travel is well-known and has drawn significant

attention in recent years as intensive automobile travel in

many places across the world has exacerbated oil depen-

dency and increased greenhouse gas (GHG) emissions that

contribute to global warming.

Fuel consumption and emissions from the transportation

sector are a result of a ‘‘three-legged stool’’: fuel types,

vehicle fuel efficiency, and vehicle miles travelled (VMT)

(Ewing et al. 2008). While policies and strategies such as

alternative fuels (Rassafi et al. 2006) and fuel-efficient
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vehicles aim to improve the first two ‘‘legs of the stool,’’

many studies show evidence that land use and urban design

solutions, such as compact development, smart growth, and

new urbanism (Duany et al. 2001; Congress for the New

Urbanism 2013), could induce fewer automobile trips,

reduce vehicle miles of travel, and decrease transportation-

related fuel consumption and emissions (Banister et al.

1997; Newman and Kenworthy 1989; Frank et al. 2006;

Cervero and Kockelman 1997; Cervero and Murakami

2010). According to a recent US Department of Trans-

portation Report to the Congress, land use strategies could

reduce GHG emissions by 28–84 million metric tons car-

bon dioxide equivalent per year in the US and this benefit

would grow over time to a substantial amount by 2050

(U.S. DOT 2010). Recognizing the benefits of compact

land use patterns, the US Environmental Protection Agency

(EPA) now encourages state and local government to

account for air quality benefits of compact land use strat-

egies in state air quality plans (EPA 2001).

Our understanding about energy and environmental

outcomes of the built environment is not complete. While

there is a substantial body of literature that examines the

potential of reducing VMT and GHG emissions through

changes in land use patterns and roadway design (Ewing

and Cervero 2001; 2010), few studies have focused on the

impacts of the street environment on fuel efficiency (Liu

and Shen 2011). Ewing et al. (2008), in research that

estimates CO2 emissions (a product of fuel consumption)

for future urban development, suggested that we might

need to apply an emission ‘‘penalty’’ for compact devel-

opment when estimating emission outcomes of such

development, as such development could have secondary

effects on emission rates by lowering average vehicle

speeds (Ewing et al. 2008). However, whether and how

much penalty should be imposed on compact development

is not known, partially because few existing studies have

empirically examined the influence of street environments

on fuel efficiency and emission rates. The primary goal of

this paper is to fill this gap by examining the relationship

between street environments and fuel efficiency. Our study

aims to contribute to discussions on the trade-offs between

the amount of vehicle travel and the fuel efficiency of

vehicle travel.

For a given vehicle type/technology, fuel efficiency is

primarily determined by driving styles, such as average

speed, acceleration/deceleration, idling, and cruising,

which are, in turn, influenced by the built environment

along streets. Studies showed that low-speed driving, fre-

quent stop-and-go behaviors, and excessive idling, which is

the state of a vehicle when its engine is running but the

vehicle is not moving, decrease vehicle fuel efficiency

(Brundell-Freij and Ericsson 2005; Ericsson 2001). Com-

pact streets that are characterized by narrow travel lanes,

low posted speed limits, pedestrian-oriented retail stores,

and ample sidewalks provide promising design solutions

for promoting walking and public transit use that induce

fewer automobile trips and fewer vehicle miles of travel

(Duany et al. 2009; McCann and Rynne 2010). However,

the impacts of compact streets on fuel efficiency are not

clear. Drivers who travel along compact streets may drive

at slow speeds, make frequent stops at traffic lights, wait at

stop signs, and yield for pedestrians. Such driving behav-

iors may contribute to higher vehicle fuel consumption on a

per-mile basis. On the contrary, if compact streets promote

smooth traffic with modest driving speed and with mini-

mum interruption, driving on such streets could mean

higher fuel efficiency.

In order to empirically test the connections between

street environments and fuel efficiency, researchers need to

overcome two major challenges: (1) quantifying the street

environment, and (2) measuring fuel efficiency of vehicle

driving. The first challenge stems from the multifaceted

nature of the street environment, which includes not only

features of the roadway itself but also those of the roadside.

Features of the road such as its width, the number of lanes,

speed limit, and traffic signals influence the way drivers

behave on the road, and subsequently affect the fuel effi-

ciency of their driving. In addition to buildings near the

road, businesses, setbacks, driveway, land uses, and other

features along roads are part of the overall street environ-

ment and also affect how drivers behave. Existing research

has focused on the influence of individual on-road features

such as intersection (Pandian et al. 2009; Malakootian and

Yaghmaeian 2004), roundabout (Várhelyi 2002), and traf-

fic calming devices (Ahn and Rakha 2009) on driving

behaviors, fuel efficiency, and emission rates (Fitzpatrick

et al. 2001; Malakootian and Yaghmaeian 2004), while

studies that examined the relationships between fuel effi-

ciency and multi-dimensional road features have been rare

(Nesamani et al. 2011).

The second challenge of studying the influence of street

environment on fuel efficiency is to measure street-level

fuel efficiency so that it can be related to street environ-

ment. Fuel efficiency data are difficult to collect; fuel

efficiency measured for every driver traveling on each

street is even harder to obtain. Since the 1950s, some on-

road studies have used vehicles instrumented with multiple

sensors to collect driving information and study the effects

of different driving patterns on fuel consumption and

emissions. Advanced techniques such as portable emis-

sions measurement system (PEMS) made second-by-sec-

ond emission data collection possible (Coelho et al. 2009;

Frey et al. 2010; Wang et al. 2013). Although instrumented

vehicles and PEMS provided the necessary tools for

studying the connections between driving behaviors and

fuel use, using instrumented vehicles to study the effects of
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street environments on fuel consumption is challenging. In

past studies, a sample of drivers usually drove instrumented

vehicles on a set of pre-defined routes on a variety of road

types at different times of days (Ericsson 2000; Kenworthy

et al. 1992). However, driving patterns and emissions were

typically measured for broadly defined road types, such as

freeways and arterials, and were not sensitive to land use

patterns and other roadside features which may vary for a

given type of road. Another limitation is that the monitored

driving of the sample drivers may not reflect their natural

driving behaviors and, as a result, the fuel use data col-

lected might be biased.

In this study, we addressed the first challenge by mea-

suring the street environment from several dimensions. We

measured on-road features such as number of lanes, speed

limit, and number of intersections, and roadside features

such as pedestrian-scale retail businesses, population den-

sity, and employment density. To estimate street-level fuel

efficiency, our study used a rich naturalistic driving dataset

that recorded detailed driving behaviors of 108 randomly

selected drivers from Southeast Michigan. Drivers were

recruited with the assistance of the Office of the Secretary

of State, the driver licensing authority in Michigan. Each

driver was given an instrumented vehicle for 40 days and

was asked to use it the same way as he/she would use their

own personal vehicles (hence, the term ‘‘naturalistic’’

driving). The vehicle was equipped with multiple sensors

that collected, among other measures, information on fuel

use, vehicle speed, positions (in latitude and longitude),

and time. Using this dataset, we derived a fuel efficiency

measure that quantified fuel efficiency for each street

segment traversed during each vehicle trip. We also

derived driving measures such as average speed and speed

variation, which would allow us to test the intermediate

effects of driving behavior on fuel efficiency. We then used

structural equation modeling (SEM) to test the direct and

indirect effects of street environments on fuel efficiency by

controlling for trip characteristics, drivers’ attributes, and

weather conditions. The study was carried out in Mount

Pleasant, MI, between 2013 and 2014, while the natural-

istic driving dataset used in this study was collected

between April 2009 and April 2010.

Materials and methods

Study area and research data

The study area in our research covers six counties in

Southeast Michigan region (as shown in Fig. 1). The region

includes the city of Detroit, which is one of the most

sprawling regions in the USA (Galster et al. 2001). Most of

the residents in the region rely on automobiles to meet their

daily travel needs. Based on the 2001 National Household

Travel Survey, 90 % of all trips made in the Detroit

metropolitan area were by private vehicles (NHTS 2004).

Although sprawling as a whole, the region hosts a few

employment sub-centers, which have relative high job

density and employment accessibility (Grengs 2010). The

region offers a variety of roads that vary in size and

functions and that run through different types of environ-

ments ranging from low-density subdivisions, strip malls,

to compact and diverse communities.

The naturalistic driving data used in this study were part

of the integrated vehicle-based safety systems (IVBSS)

program data collected by the University of Michigan

Transportation Research Institute’s (UMTRI) between

April 2009 and April 2010. Sixteen 2006–07 Honda

Accord LX sedans instrumented with IVBSS sensors were

driven by 108 volunteer drivers, who were randomly

selected and recruited from licensed drivers in Southeast

Michigan area. The sample of drivers was equally divided

by age groups (20–30, 40–50, and 60–70 years) and by

gender. Each driver was asked to use the vehicle as his/her

own personal vehicle for a period of 40 days. The IVBSS

program collected information, among others, on fuel use,

vehicle speed, positions (in latitude and longitude), head-

ing, and time, at the frequency of 10 Hz. To obtain a

desirable resolution and to maintain a reasonable work

load, we used data extracted at 1 Hz from the original

dataset. The resulting data captured a total of 213,309

miles, 22,657 trips, equaling to 6,164 hours of driving.

Road and built environment data came from several

sources. Road information in 2011 was obtained from the

Southeast Michigan Council of Governments (SEMCOG)

and was structured by road segments. The road dataset

provided information such as segment length, road func-

tional classification, number of lanes, and posted speed

limit. But the dataset only contains information for roads

which are eligible for receiving federal funds. Information

related to local roads which are maintained by local com-

munities was not included in the dataset. Due to data

availability, we only considered federal-aid roads in our

study. Intersection information was extracted from the

TIGER road file from the US Census 2010. Business

establishment data were purchased from the private vendor

InfoUSA that contains information such as location, the

number of employees, and sale records for more than

76,000 business establishments in the study area in 2006.

The data categorized business establishments based on a

six-digit Standard Industrial Classification (SIC) code. We

also obtained population data from US Census 2010.

We excluded road segments of all interstates and other

freeways because the road and roadsides interaction on

these limited access roads is different than on other types of

roads and the mechanism through which road environments
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influence fuel efficiency is likely to be different. To ensure

the accuracy of the fuel efficiency estimation, we only

selected road segments that were traversed by at least five

different drivers in the study period.

Structural equation modeling approach

There are four major categories of influential factors that

affect fuel efficiency, which include the built environment

(both roadway and roadside environment), driver charac-

teristics, weather, and vehicle/fuel types. Possible variables

under each category are summarized in Fig. 2. While fac-

tors such as speed and speed change directly influence fuel

efficiency, other factors including street environments

affect fuel efficiency indirectly through driving behaviors.

In order to disentangle the relationships among different

variables, we applied the SEM technique to measure the

direct and indirect effects between street environments and

fuel efficiency while testing the intermediate effects of

driving behavior on fuel efficiency.

A SEM comprises endogenous variables and exogenous

variables in one linear structural modeling framework and

represents multiple regressions among these variables

(Hayduk 1988). Exogenous and endogenous variables in a

SEM are equivalent to independent and dependent vari-

ables in regular regression models, respectively. Different

from other statistical models, a SEM estimates inter-rela-

tionships between endogenous variables as well as between

endogenous and exogenous variables in a simultaneous

equation system. It can be applied to confirm the direc-

tional influences among these variables. SEM also allows

for the decomposition of total effects into direct and indi-

rect effects. While direct effects represent the direct links

between exogenous variables and endogenous variables, an

indirect effect accounts for an effect which an exogenous

variable has on an endogenous variable through the

mediation of at least one additional variable. While there

are many advanced SEM models, our current SEM struc-

ture applies a parsimonious approach to investigate the

most important relationships between the built environ-

ment and fuel efficiency.

The mathematic equations of the endogenous and

exogenous variables and the disturbance terms are speci-

fied as the form below:

Y ¼ BYþ CXþ f ð1Þ

where Y ¼ ðNY � 1Þ column vector of endogenous vari-

ables (NY is the number of endogenous variables including

fuel efficiency and driving behavior measures), X ¼ ðNX �
1Þ column vector of exogenous variables (NX is the number

of exogenous variables including street environment mea-

sures, traffic conditions, drivers’ demographic features, and

Fig. 1 Study area: Southeast Michigan Region
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weather condition), B ¼ ðNY � NYÞ coefficient matrix

relating endogenous variables (represents the direct effects

from endogenous variables on other endogenous variables),

C ¼ ðNY � NXÞ coefficient matrix relating exogenous and

endogenous variables (represents the direct effects from

exogenous variables on endogenous variables), f ¼ ðNY �
1Þ column vector of disturbance terms.

The B and C are the structural matrices that represent

the relationships between the variables. The patterns of the

elements in these matrices are predefined by the hypothe-

sized statements. The SEM is estimated using maximum

likelihood estimation with variance–covariance analysis.

Let variance–covariance matrix Var(X) = U for exogenous

variables X and variance–covariance matrix Var fð Þ ¼ W
for disturbance terms f. The model-implied variance–

covariance matrix R̂ of observed variables X and Y is

obtained in terms of the B, C, U and W. The goal of model

estimation is to minimize the discrepancy between the

estimated variance–covariance matrix R̂ and the sample

observed variance–covariance matrix S. The estimation

equation is specified as below:

s2
1 s12

s21 s2
2

 !
�

r̂2
1 r̂12

r̂21 r̂2
2

 !
¼

s2
1 � r̂2

1 s12 � r̂12

s21 � r̂21 s2
2 � r̂2

2

 !

S - R̂ ¼ ðS - R̂Þ

Some of the variables shown in Fig. 2 were more

heavily studied than others: for instance, intersection

(Pandian et al. 2009; Malakootian and Yaghmaeian

2004), roundabout (Várhelyi 2002), and traffic calming

devices (Ahn and Rakha 2009). Although we believe the

variables listed in Fig. 2 are comprehensive, they are not

exhaustive. Information on other road and road side

characteristics that may influence fuel efficiency such as

grades, road surface, and mixed-use development were not

available in our data and are not included in the current

study. However, it should be added that the area is

relatively flat without major vertical curvature or large

grades and all the road surfaces are paved. The

instrumented vehicles used by the study subjects were

almost identical (2006–07 Honda Accord LX sedans) and

thus preclude any analyses of different vehicle types or

alternative fuels. To reduce the complexity of the model,

we characterized driving behaviors using two most

important driving behavior variables: average speed and

speed change. Driving behaviors can be characterized by

other variables such as detailed measures of sudden stops

and cruising, which can be incorporated in future studies.

Variables included in our study were highlighted with stars

in Fig. 2.

Dependent variable: fuel efficiency

Fuel efficiency was defined as the ratio of VMT per unit

of fuel consumed. The IVBSS dataset provided vehicle

fuel use and vehicle position in latitude and longitude.

The trips were spatially joined to a network of road

segments. Fig. 3 shows an illustration of second-by-sec-

ond IVBSS data points of five trips from two drivers,

which were matched to three road segments. We then

used Eq. (2) to obtain fuel efficiency for every road

segment for every vehicle trip.

Fig. 2 Research framework:

factors that affect fuel efficiency
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Based on Eq. (2), we calculated the fuel efficiency for

each road segment (i) traversed by a vehicle trip (j), by

summing the distance travelled for every second (m) of

travel on the segment (represented by dijm in Eq. (2)) and

dividing it by total fuel consumption on the same segment

from vehicle trip j (represented by Rfijm).

Eij ¼
P

dijmP
fijm

ð2Þ

where Eij represents the fuel efficiency calculated for the

ith road segment during the jth trip; fijm represents fuel

consumption for the mth second moving on the ith road

segment during the jth trip; dijm represents distance trav-

elled during the mth second moving on the ith road seg-

ment during the jth trip.

Our study subjects travelled on 8,978 segments from

18,371 trips, resulting in a total of 125,054 observations for

fuel efficiency. Each road segment in our sample has been

travelled, on average, by 11 drivers during 71 trips. Each

trip contains about seven unique road segments. The mean

fuel efficiency for all observations is 20.81 miles per gal-

lon, which is comparable to the 21 mpg fuel economy

standard released by EPA for the instrumented vehicles

used in our study (2006 Honda Accord, six cylinder, auto

transmission).

A graph demonstration of spatial distribution of mean

fuel efficiency averaged over all trips travelled on each

segment in the city of Ann Arbor, MI is shown in Fig. 4. In

general, streets in downtown Ann Arbor have relatively

low fuel efficiency (highlighted in red and orange color)

compared with other streets.

Exogenous variables

Street environment variables

The street environment was measured from several

dimensions. Based on past studies, we tried to balance

several factors when selecting street environment mea-

sures. On-road features including road function, speed

limit, number of lanes, intersection density, and traffic

characteristics were shown to influence driving behaviors

and fuel economy (Ericsson 2000; Brundell-Freij and

Ericsson 2005; Nesamani et al. 2011), and hence wereFig. 3 Illustrations of IVBSS data points

Fig. 4 Spatial distribution of fuel efficiency (mpg), the city of Ann Arbor, MI
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included in the current study. As our goal in this study is

to contribute to explorations of trade-offs between VMT

and fuel efficiency, we also included street features that

have close relationships with VMT; although these fea-

tures might not have been tested in previous fuel effi-

ciency studies. Roadside features including population

density, employment density, and pedestrian-scale retails

were included in the study, serving as indicators of

compact development and pedestrian-oriented design

which were shown to promote non-motorized transporta-

tion means and reduce vehicle miles of travel. Roadside

street environment variables used in this study were

measured from features within a quarter-mile buffer of a

road segment. We tested various buffer sizes, and street

environments within a quarter-mile buffer of road seg-

ments produced the-best-fitted SEM models. Each street

environment variable is defined and summarized as

follows:

Road function: Road function classification is based on

the classification code of the Highway Performance Mon-

itoring System (HPMS). Roads in our database were clas-

sified as three types: principal arterial (NFC3), minor

arterial (NFC4) and major collector (NFC5). All the road

segments were categorized into two dummy variables in

the model (using major collector as the reference group).

We hypothesized that lower-level roads such as major

collector roads are related to lower fuel efficiency due to

lower driving speed and more intersections with traffic

lights or stop signs.

Posted speed limit: Speed limit is incorporated as one of

the exogenous street environment variables. Posted speed

is closely related to driving speed, although in reality

drivers may not drive according to the speed limit.

Number of lanes: The number of lanes is also a deter-

minant of driving patterns and fuel efficiency. Generally, a

multi-lane road implies higher speed, less heavy braking,

and higher fuel efficiency. However, there are periods of

time when the traffic volumes on these roads approaches or

exceeds capacity resulting in congestion, which could

reduce fuel efficiency.

Intersection density: Intersection density was calculated

by dividing the number of intersections along a segment by

the length of the segment. Higher intersection density leads

to more stop-and-go driving and is likely to reduce fuel

efficiency.

Traffic count: Busy streets with heavy traffic may

decrease fuel efficiency, as drivers may drive at low

speeds and make more stop-and-go activities. We uti-

lized the traffic count information included in the IVBSS

dataset. The number of cars in front of a subject vehi-

cle was detected by the vehicle’s frontal radar on a

second-by-second basis. We derived the traffic count

variable by averaging the number of cars in front of a

subject vehicle for every second of travel on a road

segment. It should be noted that, this variable is not the

traditional traffic volume measure which reflects the total

number of vehicles passing a point for some period of

time.

Population density: Population density was calculated

for every segment by dividing total number of popula-

tion within the quarter-mile buffer by the buffer area.

Block-level census population data were merged to our

road buffers based on the assumption that population is

evenly distributed and that total population is propor-

tionate to land area. We applied log transformation to

the derived population density to account for non-nor-

mality. Streets in denser neighborhoods may be associ-

ated with more stop-and-go traffic and lower fuel

efficiency.

Employment density: Employment density was calcu-

lated for every segment by dividing total number of busi-

ness employees per segment by the buffer area. Point-level

business data were joined to the segment only if the busi-

ness was located within the quarter-mile buffer of the

segment. We also applied a log transformation to

employment density. We hypothesized that streets with a

lot of businesses would likely have lower fuel efficiency

due to busy traffic induced by employees or business

customers.

Pedestrian-scale retails: Pedestrian-scale retail com-

mercial land use is generally found on small size lots with

on-street parking and small store setbacks that encourage

walking. This type of land use may decrease fuel effi-

ciency, as drivers may need to watch for pedestrians and

may have to make frequent stops. In this study, pedestrian-

scale retail is defined as a commercial use of 9,999 square

feet or less. The resulting variable, pedestrian-scale retails,

measures the logarithm of the number of pedestrian-scale

retails per segment length.

Control variables

Our study included three control variables: gender, age,

and weather. Gender is a dummy variable, which differ-

entiates male (1) and female drivers (0). We created three

dummy variables to represent three age groups: younger

group (20–30 years), middle-aged group (40–50 years),

and older group (60–70 years). Detailed weather informa-

tion is not provided in the IVBSS dataset. We used tem-

perature and the usage of wipers as proxies for weather

conditions. Temperature variable measures the average

temperature outside the subject vehicle. Wiper usage var-

iable measures the number of seconds that wipers were

used when traveling through a road segment. Higher
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numbers indicate it is more likely to be adverse weather

condition such as raining or snowing.

Intermediate variables

In order to fully understand how the influence of street

environments on fuel efficiency is channeled through

driving behaviors, we constructed two intermediate vari-

ables, average speed, and average speed change, to char-

acterize driving behaviors.

Average speed

Speed has been shown in existing literature to be one of the

most important determinants of fuel efficiency. The rela-

tionship between speed and fuel efficiency is not linear. As

speed increases, fuel efficiency increases until it reaches an

optimum, and then, fuel efficiency starts to decrease

(Ericsson 2001). The optimal speed varies with vehicle

types, but it is in general in the range of 50–55 mph (EPA

2010). Since our study excluded interstates and other

freeways, most of the driving included in our sample (90 %

of total driving) was below the optimal range. We explored

our data and made the assumption that the log-transformed

average speed is linearly related with fuel efficiency and

that an increase in average speed is associated with an

increase in fuel efficiency. We calculated average speed by

taking the mean of the second-by-second speed for all data

records on a road segment during a trip.

Average speed change

Speed variation is another important factor that influences

fuel efficiency. A higher degree of speed change (e.g.,

sudden stops) could decrease fuel efficiency significantly

(Ericsson 2001). We averaged the second-by-second speed

change for all driving on each road segment for each trip.

We also applied the log transformation to the average

speed change.

Descriptive statistics for all variables are provided in

Table 1.

Results and discussion

Our model results are summarized in Table 2 (direct

effects) and Table 3 (total effects). Direct effect shows the

initial response of the ‘‘effect’’ variable (e.g., driving speed

or fuel efficiency) to the change of a ‘‘cause’’ variable (e.g.,

environment variables such as intersection density) (Hay-

duk 1988). The indirect effect shows the effect that a

variable exerts on another variable through one or more

endogenous variables. The total effect of one variable is the

sum of direct effect and indirect effect. Although the total

effects are our focus, direct effects (summarized in Table 2

and illustrated in Fig. 5) help to understand the paths

through which important variables influence driving

behavior and fuel efficiency. We tested the performance of

different variable combinations to lessen the multi-colin-

Table 1 Descriptive statistics of exogenous and endogenous vari-

ables (N = 125,054)

Variable Name Descriptive statistics

Minimum Maximum Mean SD Variance

Young 0 1 0.38 0.48 0.24

Middle-aged 0 1 0.35 0.47 0.23

Gender 0 1 0.55 0.49 0.24

Temperature

(�C)

-16.54 44.81 14.18 10.89 118.55

Wiper usage

(seconds)

0 754 4.25 22.53 507.77

Posted speed

(miles per

hour)

25 70 39.78 9.97 95.15

Number of

lanes

1 8 3.42 1.45 2.1

NFC3 0 1 0.54 0.49 0.25

NFC4 0 1 0.33 0.47 0.22

NFC5 0 1 0.13 0.33 0.11

Traffic count 0 3 1.34 0.5 0.25

Intersection

density

(intersections

per mile)

0 150.9 3.93 6.18 38.14

Employment

density (ln

employees per

acres)

-1.21 11.66 6.22 1.62 2.63

Population

density (ln

persons per

acres)

-1.25 9.59 6.81 1.38 1.92

Pedestrian-scale

retail (number

of businesses

per segment)

0.00 5.19 2.62 1.10 1.20

Average speed

(ln meters per

second)

-0.31 3.61 2.56 0.47 0.22

Absolute speed

change (ln

meters per

second)

-4.40 1.41 -0.83 0.71 0.51

Fuel efficiency

(miles per

gallon)

0.20 139.64 20.81 9.38 87.98
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earity issue. The model fit indexes (as shown in Appendix

‘‘1’’) indicate that our final model has a good model fit. We

have also tested the sensitivity of the model by separating

our samples into two random groups and conducted SEM

analysis for each group. Our model results for these sam-

ples are not significantly different from those reported in

this paper. The correlation matrix between all exogenous

and endogenous variables and the VIF index (an indicator

for the severity of multi-collinearity) are listed in Appendix

‘‘2’’.

Among all the variables, both speed and speed change as

intermediate variables, have the strongest direct effects on

fuel efficiency. The coefficient of direct effect of average

speed on fuel efficiency is 5.045 while the coefficient of the

total effect is 11.884. It indicates that average speed is a

strong predictor of fuel efficiency and that an increase in

speed significantly increases fuel efficiency. The direct

effect of speed change on fuel efficiency is -7.908, which

is the same as the total effect. Lower level of speed change

is associated with higher fuel efficiency. The result is

consistent with the finding in Ericsson’s study (2001),

which showed that aggressive driving (defined as sudden

and high acceleration and heavy breaking, i.e., higher

speed oscillation) was found to cause more power demand

of the vehicle and lower fuel efficiency than calm driving.

The interaction between two intermediate variables (aver-

age speed and speed change) has expected signs for both

direct effect and total effect (both coefficients are -0.865

in the model). The result suggests that when driving at

relatively high speeds, driving behavior is usually stable

and speed variation decreases.

The effect of street environments on driving behaviors

and fuel efficiency

Our results showed that both on-road and roadside street

environment variables have significant direct and total

effects on driving speed and speed variations. The coeffi-

cients of road functional type dummies are positive for

average speed, and negative for speed change, for both

direct and total effects. The results show that, major col-

lectors (the reference group) have the lowest driving speed

and the highest speed variation. The total effects of road

type dummies on fuel efficiency are all positive, indicating

Table 2 Direct effect standardized coefficients

Endogenous variables Average speed (R2 = 0.22) Absolute speed change (R2 = 0.37) Fuel efficiency (R2 = 0.61)

Exogenous variables

Socio-demographics

Young 0.028 (0.003) 0.025 (0.004)

Middle-aged 0.017 (0.003) -0.006 (0.004)

Gender 0.032 (0.003) -0.026 (0.004)

Weather related

Temperature 0.03 (0.002)

Wiper usage 0.00001 (0.00001) -0.001 (0.0001)

On-road street environment

Posted Speed (miles per hour) 0.015 (0.00001) 0.004 (0.000001)

Number of lanes -0.018 (0.001) 0.032 (0.001)

NFC3 0.154 (0.034) -0.428 (0.047)

NFC4 0.109 (0.034) -0.413 (0.046)

Traffic conditions 0.121 (0.003) -0.181 (0.004)

Intersection density -0.009 (0.000001) NS (NS)

Roadside street environment

Employment density -0.029 (0.001) 0.017 (0.001)

Population density 0.003 (0.000001) -0.006 (0.001)

Pedestrian-scale retail -0.001 (0.000001) -0.002 (0.001)

Driving behavior

Average speed (meter per second) -0.865 (0.004) 5.045 (0.047)

Absolute speed change (meter per second) -7.908 (0.031)

All coefficients except ones indicated with ‘‘NS’’ are statistically significant at the 0.05 level. ‘‘NS’’ indicates that the variable is not statistically

significant. Model fit indices are in Appendix 1. Standard Errors are included in the parentheses
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that major collectors also have the lowest fuel efficiency

due to low-speed driving and high speed changes.

Higher intersection density is associated with lower

driving speed and higher speed change, although the

total effect coefficients are rather modest (-0.009 and

0.007, respectively). The total effect of intersection

density on fuel efficiency is -0.099, indicating that an

increase in intersection density leads to a reduction in

fuel efficiency.

Posted speed limits have a positive direct effect on

average driving speed (the coefficient is 0.015), which is

intuitive. The effects of posted speed limits on speed

change are interesting: while posted speed limit has a

positive direct effect on speed change (0.004), the indirect

effect is negative. The indirect effect of posted speed on

speed change is primarily channeled through driving speed.

Higher speed limit increases driving speed which is asso-

ciated with more stable driving patterns (fewer speed

changes). The intermediating effect of driving speed on

speed change is stronger than the direct effect of posted

limit on speed change, which makes the combined effect

on speed change negative (-0.009). The positive effect on

driving speed and the negative effect on speed change both

lead to higher fuel efficient, generating a total positive

effect (0.144).

Roadside street environment variables all have significant

effects on driving behaviors and fuel efficiency. Higher

employment density is associated with lower driving speed,

higher speed change, and subsequently, lower fuel efficiency.

The total effect of employment density on driving speed,

speed change, and fuel efficiency is -0.029, 0.042, and -

0.481, respectively. Drivers traveling on roads with high

business/employment concentration are likely to encounter

traffic signals, stop signs, and also congestion, so driving in

such areas entails lower speed and more speed variations

(i.e., decelerations, accelerations, stops and starts).

Compared with employment density, population density

has completely different effects on driving behaviors and

fuel efficiency. Controlling for the effects of other roadside

variables, especially employment density, higher popula-

tion density leads to higher driving speed, lower speed

variations, and higher fuel efficiency. The total effect of

population density on driving speed, speed change, and

fuel efficiency is 0.003, -0.009, and 0.084, respectively.

Different from busy commercial streets, streets with higher

number of residents may have less complicated traffic flow

Table 3 Total effect standardized coefficients

Endogenous variables Average speed (R2 = 0.22) Absolute speed change (R2 = 0.37) Fuel efficiency (R2 = 0.61)

Exogenous variables

Socio-demographics

Young 0.028 (0.003) 0.003 (0.005) 0.157 (0.051)

Middle-aged 0.017 (0.003) -0.021 (0.005) 0.253 (0.052)

Gender 0.034 (0.002) -0.054 (0.004) 0.586 (0.041)

Weather related

Temperature 0.037 (0.002)

Wiper usage 0.00001 (0.0000001) -0.001 (0.00001)

On-road street environment

Posted speed (miles per hour) 0.015 (0.00000001) -0.009 (0.000001) 0.144 (0.002)

Number of lanes -0.016 (0.001) 0.047 (0.002) -0.445 (0.016)

NFC3 0.154 (0.004) -0.197 (0.007) 2.331 (0.547)

NFC4 0.109 (0.004) -0.139 (0.006) 1.65 (0.546)

Traffic count 0.121 (0.003) -0.285 (0.004) NS (NS)

Intersection density -0.009 (0.000001) 0.007 (0.000001) -0.099 (0.003)

Roadside street environment

Employment density -0.029 (0.001) 0.042 (0.001) -0.481 (0.01)

Population density 0.003 (0.000001) -0.009 (0.001) 0.084 (0.006)

Pedestrian-scale retail -0.001 (0.00000001) NS (NS) 0.004 (0.007)

Driving behavior

Average speed (meter per second) -0.865 (0.004) 11.884 (0.05)

Absolute speed change (meter per second) -7.908 (0.031)

All coefficients except ones indicated with ‘‘NS’’ are statistically significant at the 0.05 level. ‘‘NS’’ indicates that the variable is not statistically

significant. Model fit indices are in Appendix ‘‘1’’. Standard errors are included in the parentheses
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which allows for faster but more stable driving which leads

to higher fuel efficiency.

The total effect of pedestrian-scale retail on speed is

negative (-0.001) which is consistent with that of

employment density, indicating that higher number of

pedestrian-scale retails might decrease driving speed,

possibly due to narrower lanes, more traffic signals, or

other traffic calming measures. Different from that of

employment density, the direct effect of pedestrian-scale

retails on speed change is negative meaning that drivers

have lower speed variations when driving on such streets.

Streets with more pedestrian-scale retail commercial use

might attract more pedestrians. Anticipating and watching

for pedestrians, drivers might drive more cautiously, and

hence make less sudden acceleration and heavy braking.

The reduced speed change further improves fuel efficiency

and makes the coefficient of pedestrian-scale retails on fuel

efficiency positive (0.004).

Higher number of lanes is shown to have a negative

direct effect on speed (-0.018) and a positive direct effect

on speed change (0.032). In general, roads with multiple

lanes imply higher driving speed and less heavy braking.

However, our results showed the opposite: a multi-lane

road is associated with lower-speed driving and more speed

variations. Our results might reflect congestion conditions

on multi-lane roads. When traffic volumes exceed road

capacity, the resulting congestion could reduce driving

speed, induce more stop-and-go driving behavior, and

hence reduce fuel efficiency. The total effect of number of

lanes on fuel efficiency is negative (-0.445).

Fig. 5 Direct effects
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Traffic count has a negative direct effect on speed

change (-0.181) and a positive direct effect on speed

(0.121). It shows that drivers maintain relatively higher

driving speeds with fewer driving variations when there is

a lot of traffic, which is counterintuitive. One explanation

of this result may be that our traffic count variable does not

measure traffic volume but is a proxy of local traffic den-

sity. The traffic count data used in this study were collected

from the front radar of the subject vehicle, which can only

detect the number of vehicles in the front. More vehicles in

the front do not necessarily mean a heavy traffic condition

such as congestion. It simply indicates that there are sev-

eral vehicles surrounding the subject vehicle which is

moving with the traffic. A different traffic measure based

on this variable could be developed in the future research.

The effect of control variables on fuel efficiency

Social-demographic and environmental control variables

are also the significant determinants of driving speed, speed

change, and fuel efficiency. Relative to older drivers, both

young and middle-aged drivers have positive total effects

on average speed, meaning that they drive faster than older

drivers. As discussed early, higher speed generally increase

fuel efficiency. Because of their higher driving speed,

young and middle-aged drivers have higher fuel efficiency

(their total effects are 0.157, and 0.253, respectively).

Younger drivers have lower fuel efficiency compared with

middle-aged drivers, due to more aggressive accelerations

and frequent stops: the total effect of young drivers on

speed change is much higher than middle-aged. Gender

also has significant and positive direct and total effect on

fuel efficiency. The results show that female drivers are

less fuel efficient than male drivers, which is due to lower

driving speed and more speed changes.

Among the environmental control variables, wiper usage

was used to indicate the weather condition of the day.

Either rainy or snowy conditions lead to higher speed and

fewer speed variations, which is possibly due to more

cautious but hastily driving behaviors under weather.

Outside temperature has a positive relationship to fuel

efficiency. When controlling other factors, fuel economy

drops when the outside temperature decreases.

Conclusion

Our research used SEM to examine how driving behaviors

and fuel efficiency respond to different street environ-

ments. We capitalized upon a rich naturalistic driving

dataset that recorded detailed driving patterns of 108 ran-

domly selected drivers from the Southeast Michigan

region. Results indicate that both on-road and roadside

street environment variables have statistically significant

total effects on fuel efficiency. Significant indirect effects

of street environment variables indicate that effects of

street environment on fuel efficiency are channeled through

driving speed and speed variation. Driving behavior vari-

ables, speed and speed change, were found to be strongly

related to fuel efficiency: higher speed and lower speed

change lead to better fuel efficiency. Street environment

features that decrease driving speed and increase speed

variations will most likely reduce fuel efficiency. The

results show that roads that have lower functional classi-

fication, lower speed limit, higher intersection density, and

higher employment density are associated with lower

driving speed, more speed change, and lower fuel effi-

ciency. Our results suggest that, when estimating fuel

consumption and emission for urban development, there is

a reason to apply for a ‘‘penalty’’ for streets that have

aforementioned features. While compact streets generally

encourage shorter trips and greater shares of non-motorized

modes, they may also result in higher fuel consumption per

unit of driving distance.

In addition, we found some features of the compact

streets that might be exempted from the ‘‘penalty.’’ For

instance, higher density of pedestrian-oriented retail

commercial use might be associated with lower level of

speed change and hence increased fuel efficiency. Streets

with higher population density are similarly associated

with better fuel efficiency when controlling for the

effects of other roadside variables. There might be other

street features that can improve fuel efficiency and that

are not captured in our study. Nonetheless, our study

illustrates how to find these features and how to gauge

their effects.

Since fuel efficiency is primarily determined by driving

behaviors such as speed and speed change, policy makers

and transportation planners need to focus on changing the

built environment in a way that does not promote extreme

low-speed driving and sudden speed changes. For example,

roundabouts in a compact area might increase fuel effi-

ciency due to the fact that it promotes constant traffic flow

at a reasonable speed. Pedestrian malls, business streets

designed for pedestrians and closed off to vehicle traffic,

could improve fuel efficiency in that the separation

between pedestrian and vehicles could reduce the pedes-

trian-vehicle conflict and ensure a smooth travel for all

road users. Identifying strategies that can lessen the fuel

efficiency ‘‘penalty’’ for compact streets might be a

potential research topic.

Our findings show that while there is clear potential for

further research using the naturalistic driving dataset, there

are also some data and methodology challenges that need

to be addressed for modeling relationships among street

environment, driving patterns and fuel efficiency. We

2302 Int. J. Environ. Sci. Technol. (2014) 11:2291–2306

123



characterized driving behaviors using average speed and

speed change. Although these two variables are the most

important variables influencing fuel efficiency, driving

behaviors can be characterized by other variables such as

detailed measures of sudden stops and cruising. Future

studies could incorporate a more comprehensive set of

driving behavior measures. Moreover, it would be bene-

ficial to develop and incorporate more on-road and road-

side street environment variables such as road grades,

pavement condition, traffic calming devices, traffic lights,

stop signs, and traffic volume. Categorization of street

environments using factor analysis and cluster analysis

could provide insights on how different environmental

features are mixed and combined and how such mixtures

influence fuel efficiency. It might also be informative to

include detailed activity-related trip information in the

analysis. For example, the purpose of the trip, time of the

day, trip origin, and destinations may influence where

people drive and how they behave while driving. Future

research directions should also consider the changes in

fuel-efficient vehicles. As these vehicles (such as plug-in

hybrid electric vehicles) become more prevalent, it is

important to conduct similar analysis that examines the

interconnections between the vehicle technology, land use,

and fuel efficiency.

The current study applied a parsimonious SEM model-

ing technique. It might be also useful to analyze these

data with more advanced modeling techniques. Recent

developments in advanced statistical methods have

improved the SEM modeling capacity in various aspects.

For instance, multilevel structural equation modeling (ML-

SEM) allows for a full-integration of SEM and multilevel

modeling (MLM) (Kline 2011). Application of this mod-

eling technique would allow us to model the built envi-

ronment nested at different geographies and to better

capture the role that built forms play in travel behavior

analysis. Recent developments in data mining techniques

for ‘‘big data’’ provide researchers with unprecedented

opportunities to extract important patterns and trends from

vast amounts of data (Hastie et al. 2009). The naturalistic

driving data together with the road and roadside informa-

tion certainly can be considered as ‘‘big data’’. Thus, data

mining could offer an innovative way of further exploring

to the relationships between the on-road, roadside, driving,

and fuel efficiency in data from naturalistic driving.
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Appendix 1

See Table 4.

Table 4 Model fit indices

Model fit indices Formula Description Recommended

cutoff value

Model value

v2(df) (N - 1)Fmin Measuring the discrepancy between the

observed and model-implied covariance

matrices. v2 depends on sample size.

Smaller the values indicate better model fit.

P \ 0.05 v2 = 372.197

df = 13

p = 0.000

RMSEA (root

mean square

error of

approximation)

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max½v2=df Þ�1

n�1
; 0�

q
Measuring the amount of error of

approximation per model degree of

freedom, while controlling for sample size.

Smaller values indicate better model fit.

\0.05 0.015

SRMR

(standardized

root mean

square residual)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
1 ðem�ebÞ2

q
where l = p(p ? 1)/2 is the number of

unique variances/covariances among

the p variables in the model

Measuring the overall discrepancy between

observed and model-implied covariances

\0.05 0.003

CFI(comparative

fit index)
CFI ¼ 1� max½ðv2

model
�dfmodelÞ;0�

max½ðv2
model
�dfnullÞ;ðv2

model
�dfmodelÞ;0�

Assessing the improvement of the

hypothesized model M compared with the

base model with unrelated variables

[0.9 0.99

TFL (Tucker-

Lewis index)

v2
b

dfb
�v2

m
dfm

v2
b

dfb
�1
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