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Abstract Evidence has shown a strong association

between ambient particulate matter and adverse health

problems. In urban areas, most of households are located

near arterial roads, which are exposure to fine particulate

matter directly. Hence, it is critical to understand the near-

road fine particulate matter concentration and distribution

for the purpose of health risk analysis. This paper applies

artificial neural network to estimate the near-road fine

particulate matter concentration. Factors influencing the

detected concentration are classified into four categories:

traffic-related, weather-related, detection location-related

and background-related. The estimated values are com-

pared with concentrations detected by monitoring cam-

paigns in Gainesville, FL and Shanghai, China.

Distinguished from previous research, this study illustrates

the fine particulate matter dispersion and distribution

within 50 m near road with portable fine particulate matter

detectors and weather instruments. The results indicate that

artificial neural network approach is capable of producing

accurate estimation of pollutant dispersion near road.

Besides, fine particulate matter concentration decayed

about a half at 30 m distance from an arterial road in

Gainesville, FL. Background contributes to more than 2/3

of the detected value at roadside in Shanghai, and the

distance–decay pattern is not as obvious as that in

Gainesville, which is different from previous studies

reported in the literature. An artificial neural network

model performs better after removing the background

concentration and with higher concentration value of fine

particulate matter.

Keywords Fine particulate matter � Artificial neural

network � Dispersion prediction model � Monitoring

campaign

Introduction

Vehicular exhaust emission is one of the major sources of

air pollution within urban area. The combustion processes

in diesel and gasoline engines contributes significantly to

particulate matter (PM), especially to particles with diam-

eters smaller than 2.5 lm (fine particulate matter, PM2.5)

(Lighty et al. 2000; US Department of Energy 2010). It is

reported that the health problems associated with PM2.5

and other pollutions accounts for 2 % of cardiorespiratory

mortality and 5 % of respiratory cancers (World Health

Organization 2002). The connection between PM2.5 expo-

sure and increasing adverse health problem is under

increasing scrutiny of the general public (Abdullah et al.

2007; Zhao et al. 2013). It is reported that approximately

11 % of US households are located within 100 m of four-

lane highways; more than half of living neighborhoods

locates within the 3 km of urban arterials in China (Brugge

et al. 2007; Cai et al. 2009). Hence, using appropriate

models with vehicle and meteorological information to

understand near-road PM2.5 concentration and its disper-

sion is critical and essential to neighbors nearby.

Cai et al. (2009) indicated that the dispersion charac-

teristics of PM2.5 near road are highly nonlinear and are
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closely related with traffic emission, background concen-

tration, meteorological and geographical conditions, and

some other local characteristics. Due to its complexity,

widely studied models, such as CALINE4, CAL3QHC and

AERMOD showed limitation when applying for near-road

prediction (Chen et al. 2009; Yura et al. 2007). On the

other hand, artificial neural network (ANN) is particularly

suitable for modeling multifactor, uncertainty and nonlin-

earity (Kukkonen et al. 2003). Hence, ANN-based models

are widely used to estimate air pollutant concentrations

such as NO2, PM10, SO2, ozone and PM2.5 (Bandyopad-

hyay and Chattopadhyay 2007; Nagendra and Khare 2006;

Ordieres et al. 2005).

In this research, with the portable PM detector and

weather station, the local weather information and PM2.5

dispersion concentrations in various detecting points have

been obtained, which provides better observation data

comparing with previous research reported in the literature.

Meanwhile, monitoring campaigns were run in US and

China to compare the estimation performance of different

ANN model structures.

This paper presents the results of on-site monitoring

campaigns of near-road PM2.5 concentrations in Gaines-

ville, United States and Shanghai, China. The monitoring

campaigns run from January to July, 2013, which is

detailed in materials and methods section. Then, the ANN-

based models are established and analyzed for near-road

PM2.5 estimation in results and discussion section. Finally,

in the last section, conclusion and limitations of this

research are discussed.

Materials and methods

Methodology

Artificial neural networks are computational models based

on biological neural network. Consisting of mutual con-

nected neurons hidden in the system, they process the

information through a step-learning phase. Different from

other modeling methods, ANNs make no prior assumptions

about the variable distribution; besides, the inherent pro-

pensity for storing empirical knowledge and abilities of

learning and generalizing about massive amount of data

make ANNs capable of modeling highly nonlinear rela-

tionship (Gardner and Dorling 1998; Karlaftis and Vlah-

ogianni 2011). There are several kinds of ANN-based

models, among which back-propagation (BP) neural net-

work is one of the powerful and most widely used ones

(Rumelhart et al. 1986). BP algorithm is a supervised

learning approach by computing the error gradient for a

feed-forward network. Feed-forward networks own one or

more hidden layers of sigmoid neurons followed by an

output layer of linear neurons, which are desirable for

solving nonlinear problem. Figure 1 showed the ANN-

based neural network structure used in this paper. Input

layer, hidden layer and output layer were connected by

synaptic weights.

In this paper, a widely-recognized sigmoid transfer

function was adopted:

yj ¼ f ðnetjÞ ¼
1

1þ e�netj
ð1Þ
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Fig. 1 Architecture of the proposed ANN-based prediction model
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where, netj was the state of the j-th neuron in the hidden

layer, and

netj ¼
X

i

wjixi � hj ð2Þ

where, wjiwas the weight of the i-th neuron of the input

layer to the j-th neuron in the hidden layer; xi is the output

of the i-th neuron of the input layer; hj is the bias invariant

of the j-th neuron of the hidden layer. Consequently, the

input and output of the hidden layer and the output layer

could be obtained:

hihðkÞ ¼
Xn

i¼1

wihxiðkÞ � bh; hohðkÞ ¼ f ðhihðkÞÞ

¼ 1=ð1þ expð�
Xn

i¼1

wihxiðkÞ � bhÞÞ ð3Þ

yioðkÞ ¼
Xp

h¼1

whohohðkÞ�bo; yooðkÞ ¼ f ðyioðkÞÞ

¼ 1=ð1þ expð�
Xp

h¼1

whohohðkÞ�boÞÞ ð4Þ

where, hih(k) and hoh(k)were the input and output of the

hidden layer;yio(k) and yoo(k)were the input and output of

the output layer.

The total error of the neural network could be expressed

as follows:

E ¼
X

k

Ek; Ek ¼ 1=2½doðkÞ � yooðkÞ�2 ð5Þ

where, do(k) was the desired value of the k-th sample.

According to the total error, the modified increments

Dwho(k) of the weight between k-th hidden neuron and the

output neuron could be determined:

DwhoðkÞ ¼ �l
oEk

owho

¼ ldoðkÞhohðkÞ ð6Þ

where, l was the learning rate; do(k) was the partial

derivative of the error Ek to yio(k). The modified weight

could be determined aswNþ1
ho ¼ wN

ho þ udoðkÞhohðkÞ.
Similarly, the modified increment Dwih(k) of the weight

between the i-th input neuron and the k-th hidden neuron

could be determined:

DwihðkÞ ¼ �l
oEk

owih

¼ �l
oEk

ohihðkÞ
ohihðkÞ
owih

¼ dhðkÞxiðkÞ

ð7Þ

and the modified weight wNþ1
ih ¼ wN

ih þ udh kð ÞxiðkÞ:
In Eqs. (6) and (7), learning rate l and u controlled the

convergence speed to the minimum of errors. In this paper,

l = u = 0.3 were adopted in the BP neural network based

on previous research results (Cai et al. 2009).

Influential factors selection

Factors that influenced the dispersion and concentrations of

air pollutants near urban arterials could be classified into

four aspects: traffic-related, weather-related, location-rela-

ted and background-related. Based on the classification, ten

factors were selected into the input layer of ANN-based

prediction model, as shown in Fig. 1.

Traffic-related factors

Vehicular emission is one of the major reasons that con-

tribute to near-road PM2.5 pollution. Previous studies

indicated that traffic volume, speed, vehicle type and other

factors have a significant impact on near-road PM2.5 con-

centration (Kam et al. 2012). In this research, factors such

as traffic volume and vehicle type were considered based

on on-site video recording. Fleet composition was obtained

by calculating the ratio of heavy-duty vehicles to total

number of vehicles including both light-duty and heavy-

duty vehicles. The vehicle types used in this research were

defined by the governments of both United States and

China (National Research Council 2000; Ministry of

Housing and Urban–Rural Construction of the P.R. China

2012). The vehicle speed was not taken into consideration

because the average vehicle speed profiles across times of

the day were pretty stable in both roads selected for

monitoring. Therefore, traffic-related factors included in

this research contained traffic volume and fleet

composition.

Weather-related factors

Meteorology factors could directly influence the air pol-

lutant dispersion. Factors such as temperature, relative

humidity, wind speed, wind direction, air pressure were

usually used in the previous research about pollutant dis-

persion. With the portable weather station, micro-level

meteorology data could be obtained, which could reflect

the local weather condition during the monitoring

campaigns.

Location-related factors

The geographical location of monitoring site was another

factor for pollutant concentration. Air pollutant caused by

transportation near urban arterials belongs to line source

dispersion problem. Hence, the relation between wind

direction and road coordinate system is important for pre-

dicting PM2.5 concentration. Besides, there was a distance–

decay gradient in PM2.5 concentration near urban arterials

(Beckerman et al. 2008). Therefore, factors of distance to
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road centerline and street direction were included in loca-

tion-related factors for the model.

Background-related factors

Previous researches indicated that background concentra-

tion accounted for the majority of the observed concen-

tration. Hence, removing the background concentration

was one effective approach to analyze other influential

factors’ impact on air pollution (Cai et al. 2009). In this

research, instead of traditional fixed station detection, a

micro-level background concentration could be obtained

and used as input variable based on portable PM2.5

measures.

Case study: field experiments

Study areas

Data collected from two monitoring sites were used to

evaluate the capabilities of the ANN-based prediction

model in this research. One site is near the SW Archer Rd.

in Gainesville, Florida (Fig. 2a); the other is near the Ji-

anchuan Rd. in Shanghai (Fig. 2b). Sites were selected

based on the following criteria: (1) road with relative high

traffic volume; (2) open road without buildings and barriers

nearby; and (3) places without pollutant influence from

surroundings, such as park lots and industrial plants.

SW Archer Rd. is a four-lane road (both direction) with

a total width of 25 m. The average annual daily traffic

volume on this road was 19,200 passenger car units (PCUs)

based on 2012 Traffic Report of Alachua Country (Florida

DOT 2013). As shown in Fig. 2a, angle a was 45�, and six

detecting points were set in perpendicular direction along

the road in order to monitor the distance decay without

significant influence from surrounding roadways or sta-

tionary emission sources.

Jianchuan Rd. is an arterial in the southwestern Shang-

hai with four lanes in total. The total width is 30 m with an

average traffic volume of approximately 1,500 vehicles per

hour in the daytime during the monitoring campaigns. Six

detecting points were selected away from the arterial, as

shown in Fig. 2b, angle was 30�.

For both monitoring campaigns, one portable PM2.5

detector was used for measuring the PM2.5 concentration

along perpendicular direction with the distance to road

centerline of: 15, 20, 25, 30, 40 and 50 m. A fixed interval

measurement was conducted for each detecting point. The

local background concentration was monitored by other

two detectors located more than 100 m away from the ar-

terials, avoiding impacts of surroundings such as parking

lots, industrial plants et al. The average value of the two

detectors was adopted as the local background

concentration.

Data collection

The monitoring campaigns ran from January to July, 2013.

For both sites, data were collected in three time periods,

morning (9.00–12.00 a.m.), afternoon (1.00–4.00 p.m.) and

evening (5.00–7.00 p.m.)

The PM2.5 concentrations were measured using TSI

Sidepak AM510 Detector, a portable device designed to

monitor and record fine PM concentrations on a second-by-

second basis (Fig. 3a). With light-scattering techniques, it

is capable of measuring PM2.5 concentrations between 1

Fig. 2 Study areas and monitoring sites in a Gainesville, FL and b Shanghai, China
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and 20,000 lg/m3 with an accuracy of 1 lg/m3. Weather-

related parameters, such as temperature, wind speed, wind

direction, air pressure et al., were measured and collected

by Davis Vantage VUE Weather Station, as shown in

Fig. 3b. Details of the instruments for each parameter were

listed in Table 1. All sensors used in the experiments were

factory calibrated within 6 months prior to the start of the

experiments.

The traffic condition of both sites were recorded by

video and counted by volume counting software afterward.

One-minute traffic volumes during the monitoring period

were counted by light-duty vehicles and heavy-duty vehi-

cles, respectively. The fleet composition was reflected by

the percentage of heavy-duty vehicles.

On-site monitoring campaigns lasted for more than

5 months. Observed concentrations from 21 days were

collected and used for model estimation, including 15

weekdays and 6 weekends. Table 2 presented the back-

ground and increment concentrations during the monitor-

ing campaign. The monitoring in US was conducted in

January and February in Gainesville, FL. The average

temperature during this period was 16 �C, ranging from 5

to 23 �C. The other part of experiments was taken place in

Shanghai from March to July, 2013, with an average

temperature of 20 �C, ranging from 4 to 33 �C.

Exploratory analyses

During the monitoring campaign, more than 1,200 records

were obtained, including traffic volume, PM concentration,

weather conditions and background concentration. The

data collected in Gainesville indicated that 82.2 % of total

samples in US had the value less than 20 lg/m3, while the

data in Shanghai showed that 93.6 % of the total sample

had the concentration higher than 50 lg/m3. The average

concentration of all samples collected in Gainesville is

16.2 lg/m3, while in Shanghai, the average value is

108.6 lg/m3. General conclusion from the recorded sample

is that regardless of influence from all other factors, the

overall air quality in Gainesville is more than six times

better than that of Shanghai.

Additionally, the percentages of background concen-

tration to observed concentration are various for both sites.

Background concentration accounts for 28.9 % of the

average detected concentration in Gainesville during the

monitoring days, while, in Shanghai, it accounts for 70.8 %

of average concentration of the total detected.

Figure 4 showed the observed PM2.5 concentration

near road. The concentration decay from the road cen-

terline was obvious in Gainesville’s case. Such findings

are consistent with previous research (Beckerman et al.

2008), indicating a distance–decay in pollutant dispersion

near expressways. The detector in 30 m away from the

road centerline showed a 50 % decay in PM2.5 concen-

tration. On the contrary, concentration data in Shanghai

show rather weak relationship of distance–decay. The

reason came from relative high background concentration

in Shanghai, which reduced the pollution impact from the

Fig. 3 Monitoring instruments:

a Portable PM2.5 detector;

b Weather station; c On-site

monitoring campaign

Table 1 Details of the monitoring instruments

Parameter Range Resolution Accuracy Unit

PM2.5 1–20,000 1 ±1 lg/m3 lg/m3

Wind speed 1–67 0.5 m/s ±5 % m/s

Wind direction 0–360 1� ±3� Degree

Temperature -40–65 0.1 ±0.5 �C �C

Relative

humidity(RH)

0–100 1 % ±3–4 % %

Barometric pressure 540–1,100 0.1 hPa ±1.0 hPa hPa
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traffic volume. Turbulence caused by wind was another

reason leading to the slightly lower concentrations

observed near road.

The pattern in Fig. 4 was consistent with past studies

(Lowenthal et al. 2013), showing average PM2.5 con-

centrations in the morning were found to be significantly

higher than those in the afternoon or evening. In

Gainesville, the monitor campaigns were held in peak

hour (17:00–19:00) with relative high traffic volume

compared with monitoring in the morning or afternoon

(the average traffic volume is 3,388 vehicles per hour,

40 % higher than that of other monitoring periods). The

monitoring campaign’s data in Shanghai indicated that

traffic volume in the morning is 1,833 vehicles per hour,

which is 28 and 15 % higher than those in the afternoon

and in the evening. Conclusion could be obtained that

traffic-related influence is one of the dominant factors

leading to high observed PM2.5 concentrations within

15 m to 30 m near road when ignoring the background

concentration’s influence.

Results and discussion

Sample classification and normalization

The valid dataset contained 973 samples, which were fur-

ther divided into three subsets, namely training set (75 %

of the samples), evaluation set (10 % of the samples) and

testing set (15 % of the samples). The training dataset used

for model self-learning process, then adjusted according to

the error; the evaluation dataset used to measure network

generalization and halted the training when model perfor-

mance stopping improving; testing set used to assess the

performance of the network after learning.

To avoid overflows of neural network because of extreme

weights and eliminate the influence of different dimensions

of data, the input variables of neural network needed to be

normalized (Gardner and Dorling 1998). In this paper, the

input variables were normalized as defined in Eq. (8).

Xi
norm ¼ ðXk

i � Xk
minÞ
�
ðXk

max � Xk
minÞ ð8Þ

Table 2 Background and increment PM2.5 concentrations in monitoring

Location Time Background

(lg/m3)

Increment (lg/m3)

15 m 20 m 25 m 30 m 40 m 50 m

SW Archer Rd., Gainesville,

United States

Feb. 12th, 09:00–10:00 8.7 17.07 14.91 10.05 9.30 5.48 3.27

Feb. 15th, 10:00–11:00 2.3 12.31 9.82 9.65 8.23 5.60 3.84

Feb. 17th, 12:45–13:45 1.36 8.96 5.99 5.47 4.04 2.82 1.64

Feb. 18th, 14:05–15:05 1.15 8.63 5.81 5.59 3.98 1.16 -0.24a

Feb. 20th, 17:00–18:00 10.3 –b 72.18 34.02 5.91 -2.21a 0.79

Feb. 21st, 17:00–18:00 9.2 –b 63.89 36.83 4.52 2.10 2.12

Jianchuan Rd., Shanghai, China Mar. 28th, 12:15–13:15 53.7 24.3 21.9 23.0 24.5 25.8 27.7

Mar. 29th, 13:40–14:40 62.1 14.2 9.8 13.4 11.7 14.1 9.5

Mar. 30th, 14:45–15:45 55.3 18.3 15.7 11.6 11.0 10.3 7.0

Apr.1st, 15:50–16:50 47.8 15.0 12.0 9.3 8.1 5.0 5.2

Apr.3rd, 16:45–17:45 39.2 13.0 18.5 11.1 8.3 7.7 4.7

Apr.20th, 9:05–10:05 78.1 57.1 61.0 54.6 64.8 58.1 58.4

Apr. 21st, 10:00–11:00 83.1 57.4 50.9 58.7 64.7 68.8 65.8

Apr. 22nd, 11:00–12:00 96.4 62.0 65.2 75.3 82.7 83.1 84.7

Apr.27th, 12:00–13:00 125.8 82.0 92.1 102.8 98.0 98.6 94.7

Apr. 30th, 13:00–14:00 158.2 68.9 62.0 69.0 81.1 95.6 97.0

May. 12th, 12:45–13:45 68.1 21.5 12.1 16.0 17.4 26.4 25.9

Jun. 8th, 13:45–14:45 81.2 24.8 17.4 13.7 10.6 8.7 5.2

Jun. 10th, 14:45–15:15 76.5 18.9 15.0 79.3 1.0 118.0 119.0

Jul. 14th, 12:15–15:15 21.2 10.4 9.2 9.1 9.1 8.5 8.4

Jul. 16th, 17:50–20:50 34.9 10.8 10.1 7.3 8.5 7.2 6.5

All data were collected minute by minute. The average concentrations during monitoring period were calculated for each detection point
a The increment were negative when the detected concentration minus the background. It indicated that the detected value was nearly the same

as background value or even lower that the background. In such case, local weather or other unpredicted factor might contribute to the detected

concentration
b Data were missing due to barrier’s occupying the desirable detection place
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where, Xi
norm was the normalized value, Xk

i was the original

input value of factor k, Xk
min and Xk

max were the minimum

and maximum values of factor k.

Building neural network

When building the feed-forward neural network, number of

hidden layers was one of significant factors. Research

indicated that a network with single hidden layer including

sufficiently large number of neurons could approximate

any measurable and smooth function between input and

output factors (Hornik et al. 1989). Hence, a single layer

neural network was introduced into this paper.

Neural network was sensitive to the number of neurons

in the hidden layers. Too few neurons could lead to under-

fitting, while, too many could contribute to oscillation of

fitting curve, thereby reducing the generalization capacity

of a network (Hagan et al. 1996). Considering the sur-

rounding diversity, in this paper, the number of hidden

neurons was determined respectively for both monitoring

sites. Mean relative error (MRE), mean absolute error

(MAE) and mean square error (MSE) were used to evaluate

the estimation results, which were shown in Table 3. It

could be found that with ten hidden neurons, the neural

network produces the best estimation in Shanghai. Mean-

while, best performance is observed with 12 hidden neu-

rons in Gainesville, FL (as shown in bold in Table 3).

Influence of background concentration on the ANN-

based model

From the exploratory analysis above, the data indicated

that background concentration accounted for more than 2/3

of detected concentration in Shanghai. Hence, it was crit-

ical to check the influence of background concentration to

the prediction model.

Factor-of-two plot is a classical method to reflect model

performance. Typically, if 80 % of the points fall inside the

factor-of-two envelope, the model results are considered

good in estimating true value (Yura et al. 2007). Figure 5

presented that, in Gainesville, 91.7 % of total points fell

inside the factor-of-two envelope when considering the

background influence, while 85.9 % were inside the

envelope if kicking off the influence of background con-

centration. The percentages falling insides the envelopes in

Shanghai case were 100 and 93.0 %, respectively. Results

showed that considering the background, the percentages

of inside points were higher for both cases. However, with

the limitation of factor-of-two analysis (for low increment

concentrations, a point with good estimation may lie out-

side the envelope), a conclusive argument for model

effectiveness could not be obtained (Cai et al. 2009).

The performance of ANN-based model could be assessed

numerically by descriptive statistics. Table 4 details the sta-

tistics measure of ANN-based model estimation compared

with observed concentrations. Except for ME, MAE, RMSE

mentioned above, measures as R2, T and Durbin-Watson (SD-

W) statistic were taken into consideration. R2 is one of the

major measures indicating the performance of prediction

model; Theil’s inequality coefficient (T), as shown in Eq. (9),

is a measure of a time series of estimated values compares to

observed values; SD-W, as expressed in Eq. (10), is used to

capture the existence of any pattern in the estimation errors (if

SD-W is close to two, the errors are essentially random).

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

t¼1

ðyt � ŷtÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

t¼1

y2
t

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

t¼1

by2
t

s ð9Þ

where, 0� T � 1, T ! 0 indicates that the model is good for

estimation; otherwise, the model is not suitable for estimation.

Fig. 4 Near-road observed concentrations: a Archer Rd., Gainesville; b Jianchuan Rd., Shanghai
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SD�W ¼

Pn

t¼2

ðet � et�1Þ2

Pn

t¼2

e2
t

ð10Þ
where, et ¼ yi � byi :

The results indicated that there were improved R2 and

SD-W for both Gainesville and Shanghai sites after

removing the background concentration. The Theil’s

Table 3 Performance of different number of hidden neurons applied for ANN-based model

Number of hidden neurons 6 8 9 10 11 12 13 14 16 32

Gainesville US

MRE (%) 22 36.5 68.1 33.5 25.4 23.6 29 64.8 38.2 36.5

MAE (lg/m3) 2.059 2.301 4.554 2.689 2.067 1.837 2.167 3.237 4.139 3.262

RMSE (lg/m3) 4.008 3.422 6.059 4.027 3.408 2.786 3.989 4.677 2.347 5.042

Number of hidden neurons 4 6 8 9 10 11 12 13 16 32

Shanghai China

MRE (%) 4.973 5.592 5.069 5.646 4.154 4.352 5.06 4.246 4.936 6.36

MAE (lg/m3) 5.175 5.949 5.164 5.585 4.293 4.408 5.259 4.392 5.248 6.626

RMSE (lg/m3) 7.048 8.065 7.007 7.431 6.084 6.229 7.083 6.097 7.428 8.86

Fig. 5 Factor-of-two plots (all concentrations in lg/m3): a Gainesville (with background); b Gainesville (without background); c Shanghai (with

background); d Shanghai (without background)
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inequality coefficient slightly increased, but is still rather

small which indicates a good estimation. R2 were 0.936 in

Gainesville and 0.954 in Shanghai after removing the

influence of background concentration. The RMSE showed

the same result that model performed better without con-

sidering background concentration. The performances in

various scenarios are consistent with exploratory analyses

above, indicating that background concentration is one of

dominant factors influencing the prediction model. Com-

paring Scenario 2 in Gainesville and Shanghai, R2 was

higher in Shanghai, indicating a better estimation perfor-

mance when predicting PM2.5 with relative high back-

ground concentration.

Conclusion

In this study, an ANN-based approach was proposed to

estimate PM2.5 dispersion near arterials. Different from

traditional prediction model, ANN showed capabilities in

predicting highly nonlinear relationship. Factors that

influenced the dispersion were classified into four aspects,

which were traffic-related, weather-related, location-rela-

ted and background-related, among which background

concentrations significantly counts for the ANN estimation.

The monitoring campaign detailed in this study showed

that there was an evident concentration decay along the

perpendicular direction from the road within 50 m in

Gainesville, FL., while in Shanghai the decay gradient was

smaller due to influence from high background concen-

tration. In Gainesville’s case, 82.2 % of total samples had

the concentrations less than 20 lg/m3, among which

background concentration accounted for 28.9 % of the

average detected concentration. The data of monitoring in

Shanghai demonstrated 93.6 % of the total samples had the

concentration higher than 50 lg/m3, and background

concentration accounted for 70.8 % of average concentra-

tion detected. Compared with previous researches (Shiva

Nagendra and Khare 2004; Cai et al. 2009), this study

provided the on-site observed concentrations of PM2.5

within 50 m near arterials. Both local weather condition

and traffic volume were recorded minute by minute, which

were used for ANN-based prediction and further analyses.

Different structures of models were established based on

Gainesville and Shanghai monitoring data. Hidden neurons

were determined for both sites by comparing the prediction

performance. Besides, both scenarios, with and without

background, were considered and analyzed. Results indi-

cated that, ANN-based model predicted more accurately

when kicking off the background influence. Meanwhile, the

higher increments of the detection point, the better pre-

diction of the model.

This study presents an improvement over previous

studies. The portable PM detectors and weather station

provide local-scale information, which are more accurate

and convincible for usage in local-scale dispersion pre-

diction. However, there are still challenges when applying

ANN-based model at a larger scale. (1) The monitor

campaign sites in this study were chosen by considering

open-type streets without considering the influence of

street types. The street canyon effect needs to be checked

when applying the ANN-based model to urban area. (2) To

improve the model performance, parameters in the input

layer still need to be further determined, such as street

slope, coverage of vegetation. (3) A large scale of on-site

monitoring campaign is necessary and essential for pre-

diction estimation. Longitudinal monitoring campaign

which could last for a year or longer is recommended to

analyze the inner relationship between PM2.5 dispersion

and seasonal variations.

Acknowledgments This research was supported and sponsored by

the Key Lab of Ocean Engineering of Shanghai Jiao Tong University

(Grant Number: JKZD010059). Any opinions, findings, and conclu-

sions or recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the sponsors. The

authors are also grateful for the strong support and valuable sugges-

tions from Dr. Daniel (Jian) SUN and Dr. Qing-Chang LU, as well as

great field data collection assistance from Jingjing CHANG, Yue YU

and Tian-Qi ZHANG in the Center for ITS and UAV Applications

Research, Shanghai Jiao Tong University.

References

Abdullah LC, Wong LL, Saari M, Salmiaton A, Rashid MA (2007)

Particulate matter dispersion and haze occurrence potential

studies at a local palm oil mill. Int J Environ Sci Technol

4(2):271–278

Annual average daily traffic report (2012) Florida Department of

Transportation. http://www2.dot.state.fl.us/FloridaTrafficOnline.

Accessed June 15, 2013

Table 4 Descriptive statistics of ANN-based models for estimation

Statistics

measure

Gainesville Shanghai

Scenario

1a
Scenario

2b
Scenario

1

Scenario

2

ME 0.697 0.113 -0.082 0.165

MAE 1.837 2.123 4.293 5.220

RMSE 2.786 3.658 6.084 7.008

R2 0.876 0.936 0.924 0.954

T 0.077 0.080 0.023 0.071

SD-W 0.709 1.368 1.577 1.604

a Scenario 1 indicated the ANN-based model considering the factor

of background concentration
b Scenario 2 indicated the ANN-based model after removing the

background concentration influence

Int. J. Environ. Sci. Technol. (2014) 11:2403–2412 2411

123

http://www2.dot.state.fl.us/FloridaTrafficOnline


Bandyopadhyay G, Chattopadhyay S (2007) Single hidden layer

artificial neural network models versus multiple linear regression

model in forecasting the time series of total ozone. Int J Environ

Sci Technol 4:141–149

Beckerman B, Jerrett M, Brook JR, Verma DK, Arain MA,

Finkelstein MM (2008) Correlation of nitrogen dioxide with

other traffic pollutants near a major expressway. Atmos Environ

42(2):275–290

Brugge D, Durant JL, Rioux C (2007) Near-highway pollutants in

motor vehicle exhaust: a review of epidemiologic evidence of

cardiac and pulmonary health risks. Environ Health 6(1):23

Cai M, Yin Y, Xie M (2009) Prediction of hourly air pollutant

concentrations near urban arterials using artificial neural network

approach. Transp Res Part D Transp Environ 14(1):32–41

Chen H, Bai S, Eisinger D, Niemeier D, Claggett M (2009) Predicting

near-road PM 2.5 concentrations. Transp Res Rec J Transp Res

Board 2123(1):26–37

Clench-Aas J, Bartnova A, Bøhler T, Grønskei KE, Sivertson B,

Larssen S (1999) Air pollution exposure monitoring and

estimating. Part I: integrated air quality monitoring system.

J Environ Monit 1(4):313–319

Gardner MW, Dorling SR (1998) Artificial neural networks (the

multilayer perceptron)–a review of applications in the atmo-

spheric sciences. Atmos Environ 32(14–15):2627–2636

Hagan MT, Demuth HB, Beale MH (1996) Neural network design.

Pws, Boston

Hitchins J, Morawska L, Wolff R, Gilbert D (2000) Concentrations of

submicrometre particles from vehicle emissions near a major

road. Atmos Environ 34(1):51–59

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward

networks are universal approximators. Neural netw

2(5):359–366

Kam W, Liacos JW, Schauer JJ, Delfino RJ, Sioutas C (2012) On-

road emission factors of PM pollutants for light-duty vehicles

(LDVs) based on urban street driving conditions. Atmos Environ

61:378–386

Karlaftis MG, Vlahogianni EI (2011) Statistical methods versus

neural networks in transportation research: differences, similar-

ities and some insights. Transp Res Part C Emerg Technol

19(3):387–399

Kukkonen J, Partanen L, Karppinen A, Ruuskanen J, Junninen H,

Kolehmainen M, Cawley G (2003) Extensive evaluation of

neural network models for the prediction of NO2 and PM10

concentrations, compared with a deterministic modelling system

and measurements in central Helsinki. Atmos Environ

37(32):4539–4550

Lighty JS, Veranth JM, Sarofim AF (2000) Combustion aerosols:

factors governing their size and composition and implications to

human health. J Air Waste Manag Assoc 50(9):1565–1618

Lowenthal DH, Gertler AW, Labib MW (2014) Particulate matter

source apportionment in Cairo: recent measurements and

comparison with previous studies. Int J Environ Sci Technol

11(3):657–670

Ministry of Housing and Urban-Rural Construction of the P. R. China

(2012) Code for design of urban road engineering, China

Architecture and Building Press

Nagendra SM, Khare M (2006) Artificial neural network approach for

modelling nitrogen dioxide dispersion from vehicular exhaust

emissions. Ecol Model 190(1):99–115

National Research Council (2000) Modeling mobile source emissions.

National Academies Press, Washington, DC

Ordieres JB, Vergara EP, Capuz RS, Salazar RE (2005) Neural

network prediction model for fine particulate matter (PM2.5) on

the US–Mexico border in El Paso (Texas) and Ciudad Juárez
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