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Abstract Formaldehyde is widely used in chemical

manufacturing industry and classified as a human carcin-

ogen. Discharging wastewater containing formaldehyde

without treatment can cause serious risk to the water

environment. In this study, a formaldehyde-resistant fungal

strain was isolated from sewerage of a furniture factory.

Isolate strain was identified based on the morphological

and phylogenetic analyses. Formaldehyde-degrading fun-

gus was determined by characterizing the mycelia growth

in culture media, formaldehyde-resistant, formaldehyde-

degrading efficiencies, and specific enzyme activity

involved in formaldehyde removal. Isolate strain HUA was

identified as a member of Aspergillus sydowii. The strain

HUA showed a growth in the presence of formaldehyde up

to 2,400 mg l-1 at an optimum temperature of 25 �C and

optimum pH of 7. The specific activity of formaldehyde

dehydrogenase and formate dehydrogenase could reach up

to 5.02 and 1.06 U mg-1, respectively. It indicated that

isolated formaldehyde-resistant A. sydowii HUA strain

would be potential used for removing formaldehyde from

industrial wastewater.
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Introduction

Formaldehyde, a highly reactive chemical material, is

widely used in chemical manufacturing industry. It is often

released from wastewater of construction, textile, wood

processing, furniture, and pharmacy industry (Tang et al.

2009). Formaldehyde is a water-soluble compound, which

can diffuse into many tissues rapidly, react with different

macromolecules such as proteins and nucleic acids, cause

DNA–DNA, protein–DNA, and protein–protein cross-links

(Metz et al. 2004; Merk and Speit 1998; Solomon and

Varshavsky 1985). Therefore, it has a toxic effect on all

organisms, the IARC (2006) (International Agency for

Research on Cancer) has classified formaldehyde as a

human carcinogen that causes nasopharyngeal cancer and

probably leukemia.

Discharging wastewater containing formaldehyde gen-

erated by organic synthesis cause environmental worsening

and human disease (Tišler and Zagorc-Koncan 1997).

Much more researches have been done to wastewater

treatment (Moussavi and Heidarizad 2010). Biological

control, such as microbial degradation, is the most com-

monly applied method for treatment of wastewaters con-

taining biodegradable compounds (Bhakta et al. 2012;

Kanmani et al. 2012; Ashraf et al. 2011). Many microor-

ganisms have been shown to degrade formaldehyde in the

sewage, and bacterial degradability has been the research

hotspot on formaldehyde degradation (Di Maiuta et al.

2009; Arutchelvan et al. 2005; Hidalgo et al. 2002). Nev-

ertheless, there is fewer fungal resources that are able to

degrade formaldehyde have been reported (Sawada et al.

2006). Filamentous fungus plays an important role in bio-

remediation in wastewater treatment (Mani and Kumar

2013; Usharani and Muthukumar 2013; More et al. 2010).

It is shown that filamentous fungus A. versicolor and A.
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niger has bio-accumulate capacity of heavy metal from

industrial effluent (Taştan et al. 2010; Das et al. 2007;

Srivastava and Thakur 2006). The effects of biodegrading

behavior of polymers and utilization of organophosphate

pesticides by genus Aspergillus have been reported (Zhao

et al. 2005).

Formaldehyde presents as a natural product endogenous

biological compound in most living systems (Tang et al.

2009). Formaldehyde is situated at the branch point

between dissimilation and assimilation pathway of form-

aldehyde (Yurimoto et al. 2005). Organisms have several

biological forms of formaldehyde metabolism to deal with

the hazards of formaldehyde. One of which is the combi-

nation of formaldehyde with cofactors, the combination

product then is oxidized into CO2 and generated energy

(Hanson and Roje 2001). The glutathione (GSH)-dependent

formaldehyde dehydrogenase (FADH) and formate dehy-

drogenase (FDH) participate in the above strategy (Tada

and Kidu 2011). In addition, formaldehyde participate the

C1 assimilation pathways, the xylulose monophosphate

pathway in yeasts, and the ribulose monophosphate path-

way in methylotrophic bacteria (Yurimoto et al. 2009).

There are few reports on fungal degradation of formal-

dehyde and filamentous fungi formaldehyde metabolism.

The aims of this study were to isolate and identify form-

aldehyde-degrading fungi and to determine the effects of

the degradation of formaldehyde and the activities of key

enzymes in formaldehyde metabolism.

Materials and methods

Fungal isolation and cultivation

The sludge samples were collected from sewerage of a

furniture factory (Harbin, China). The samples were stored

at 4 �C in sterile plastic bags. The sludge (10 g) was

transferred into 90 ml of the sterilized liquid basal medium

(1 l) contained: sucrose 3 %; NaNO3 0.3 %; K2HPO4

0.1 %; MgSO4�7H2O 0.05 %; KCl 0.05 %; FeSO4�7H2O

0.001 % (adjusted to pH 7) supplemented with 150 mg

formaldehyde and incubated at 30 �C shaking with

180 rpm. After cultivation for 5 days, the culture was

inoculated to plates containing basal medium with 2 %

agar and 150 mg l-1 formaldehyde incubated at 30 �C.

Single colony was picked up and inoculated into another

new plate. Above operation was repeated several times

until the pure cultures were obtained.

Identification and characterization of isolates

The fungal isolates were incubated on basal medium agar

plates in the dark at 25 �C for 15 days. At the end of the

cultivation, morphology (colony growth, color of conidia,

mycelia, exudate, and colony reverse) was characterized

using light microscope (Leica DM1000, Leica Microsys-

tems Germany). The genomic DNA was obtained from the

mycelia according to the method of Zhang et al. (1996).

Partial fragments of ITS region (internal transcribed spacer

region of the ribosomal DNA containing ITS1, ITS2, and

5.8S rRNA gene) and b-tubulin gene of strain HUA were

amplified for sequence analysis. The primers and condi-

tions used to amplify the ITS region and the b-tubulin gene

have been described previously (Glass and Donaldson

1995). The b-tubulin gene was sequenced to help clarify

interspecific relationships when ITS region was inadequate

for definitive identification. The amplified products were

sequenced at Sangon Biotech (Shanghai, China). Align-

ment of the determined sequences and those of related ITS

regions and b-tubulin sequences from the GenBank data-

base by searching with BLAST program was aligned using

ClustalX with manual adjustment (Thompson et al. 1997).

Phylogenesis analysis was performed with MEGA4, and

the evolutionary distances between the sequences were

calculated using Kimura’s two-parameter model (Tamura

et al. 2007). The phylogenetic trees were constructed by the

neighbor-joining method with bootstrap analysis (Saitou

and Nei 1987).

The optimal temperature for isolates growth was deter-

mined by measuring the dry cell mass of mycelia under

different temperatures. Flasks containing 100 ml of liquid

basal medium inoculated with almost 10 mg (fresh weight)

mycelia, which previously cultured aerobically in 100 ml

basal medium on a shaker (180 rpm) at 30 �C for 5 days.

The isolates were incubated at 20, 25, 30, 35, and 40 �C,

the cultivation was carried out with shaking at 180 rpm for

7 days to investigate temperature profile. Mycelia were

collected by filtration through filters and measured after

drying to a constant weight at 105 �C.

Formaldehyde resistance and degradation

Formaldehyde resistance and biodegradation of isolates with

different initial formaldehyde concentrations were screened

in liquid medium. Pre-culture of isolates, as described for

characterization above, was inoculated in basal medium

(50 ml) supplemented with 600–2,400 mg l-1 of formal-

dehyde. In order to clarify the connection between formal-

dehyde degradation curve and fungal growth, fungal initial

inoculation amount control in this experiment was 10 mg of

fresh weight. Control of formaldehyde solution with same

amount of the autoclaved mycelia was run in parallel. All

cultivations were repeated five times. The flasks were incu-

bated at 25 �C with shaking at 180 rpm for 7 days. The

residual formaldehyde was determined as previous descrip-

tion (Nash 1953). Growth rates were determined by
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measuring the fresh weight in time course. The experiments

were performed in three replications.

The characterization of formaldehyde degradation

To characterize the formaldehyde degradation under aer-

obic condition efficiency of fungal strains, the effects of

initial pH and supplemental carbon sources were investi-

gated. The pre-culture (10 mg) of fungal strains was

inoculated in autoclaved liquid basal medium supple-

mented with 1,500 mg l-1 formaldehyde. The pH of

medium was adjusted from pH 4 to pH 8. Mycelia were

collected as describe above after incubation at 25 �C for

7 days. Formaldehyde-degrading abilities of the isolates

under different carbon conditions were characterized by 4

different carbon media supplemented with 1,500 mg l-1

formaldehyde. Different carbon media were set by adding

(w/v) 3 % glucose, 3 % lactose, and 3 % soluble starch

replaced 3 % sucrose in basal medium. Basal medium with

same amount of the autoclaved cells was set as control. In

addition, basal medium without carbon source addition to

1,500 mg l-1 formaldehyde was set to detect formaldehyde

degradation ability of HUA-utilizing formaldehyde as the

sole carbon source. All cultivations were repeated five

times. Cultivation was carried out with shaking at 180 rpm

at 25 �C for 7 days. Formaldehyde concentration was

analyzed with methods descript before. Fresh weight of

mycelia and residual formaldehyde was measured every

day.

Enzyme activity assay

A basal medium supplemented with 300 mg l-1 formal-

dehyde was set as enzyme-inducing medium, and a basal

medium without formaldehyde was used as the control.

Mycelia were then collected by filtration and washed well

with sodium phosphate buffer (pH 7.5). Crude enzyme

extract was obtained through sonication (4 V, 50 Hz) at

4 �C for 30 s and centrifuged 13,000 rpm for 10 min.

Enzyme activities of GSH-dependent FADH and FDH

were assayed at 340 nm spectrophotometrically by moni-

toring the formation of NADH using a photometer (Hitachi

Fig. 1 Characterization of

HUA: a fungal colony grown on

basal medium agar,

b conidiogenous structures,

c neighbor-joining phylogenetic

tree based on b-tubulin

sequences of HUA and other

related taxa
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U-2800, Japan) (Schutte et al. 1976). The protein concen-

tration of crude enzyme extracts was estimated according

to Bradford method (1976).

Statistical analysis

Statistical analysis was performed using SPSS for Win-

dows version 16.0 (SPSS Inc., USA) and Excel (Microsoft,

USA). Graphical representations were presented using

Sigma Plot for Windows version 11.0 (SPSS Inc., USA).

Data were statistically evaluated using one-way analysis of

variance, and significant differences between means were

determined by Duncan’s multiple range tests (p \ 0.05).

Results and discussion

Identification and characterization of fungal strain HUA

A fungal strain HUA was isolated on basal medium agar

plate supplemented with 150 mg l-1 formaldehyde through

a simple procedure. The colony color was white at first and

then turned to olive, the reverse color was white initially

and then turned to orange (Fig. 1a). The color of exudates

and soluble pigments were brown and orange, respectively.

Radiation pattern was found on both surface and medium.

Sporangium and conidiogenous cells were globose-shaped

(Fig. 1b). The ITS region of strain HUA was selected as

the specific sequence for phylogenetic analysis. When

comparing with public ITS region sequences in the Gen-

Bank database, HUA exhibited the highest ITS gene

sequence similarity to Aspergillus sydowii (99 %) and

Aspergillus versicolor (99 %), both belonged to Aspergil-

lus section versicolors. The b-tubulin conserved sequence

confirmed that strain HUA belonged to A. sydowii

(Fig. 1c). Temperature had substantial effect on the dry cell

mass of strain HUA. The strain could grow in the range of

temperature 20–35 �C, and the optimum temperature for

strain was 25 �C, whereas HUA could not grow at 40 �C.

Formaldehyde resistance and degradation in liquid

medium

The pre-culture strain HUA could completely degrade

formaldehyde with initial concentration of 600, 900, 1,200,

and 1,500 mg l-1 within 4, 5, 6, 7 days, respectively. With

an increase in mycelia mass, the formaldehyde concentra-

tion (1,500 mg l-1) reduced gradually in medium

(Fig. 2a). As shown in Fig. 2a, in the first 2 days, the

fungal mycelia mass and the concentration of formalde-

hyde were almost unchanged. However, mycelia mass

increased rapidly after the second day. At the same time,

the formaldehyde concentration decreased rapidly, the

amounts of formaldehyde degraded by the strains HUA per

gram of mycelia and per hour was 8.9 mg beyond 6.3 mg

as previously reported about a formaldehyde-degrading

fungus, Trichoderma virens BDF002 (Sawada et al. 2006).

The strain HUA was able to grow in the presence of

formaldehyde up to 2,400 mg l-1 (Fig. 2b). Many fungi

are resistant to formaldehyde (Kondo et al. 2008, 2002).

According to Sawada et al. (2006), Trichoderma virens was

identified as formaldehyde-resistant strains based on mor-

phological and phylogenetic analyses.

Effect of initial pH on formaldehyde degradation

The formaldehyde degradation was dependent upon pH

values. The experiments were performed in the range of pH

4 to pH 8 for formaldehyde degrading. Formaldehyde

removal was 40.04 % at pH 4, 89.49 % at pH 5, 82.12 % at

pH 6, 100 % at pH 7, and 38.96 % at pH 8 after 7 days. It

was observed that the biodegrading of formaldehyde

Fig. 2 Formaldehyde degradation of HUA with different initial

formaldehyde concentration: a 1,500 mg l-1 and b, 2,400 mg l-1

250 Int. J. Environ. Sci. Technol. (2015) 12:247–254

123



increased between pH ranges from pH 5 to pH 7. More-

over, the mycelia mass also increased between pH 5 and

pH 7. It indicates that fungal mycelia growth state affects

formaldehyde-degrading rates. In the previous paper on the

effect of initial pH on the growth and formaldehyde-

degrading rates of fungi, it was shown that the formalde-

hyde-degrading capacity affected by the pH values of the

culture medium, where the optimum pH values were found

to be between 4 and 9 in fungus cultures (Sawada et al.

2006). Fungi within the same genus have similar growth

conditions. Similar results were observed, an optimum pH

value range for heavy metal adsorption of fungi belonging

to genus Aspergillus has been found from pH 5 to pH 7

(Taştan et al. 2010; Das et al. 2007).

Formaldehyde degradation with different carbon source

Strain HUA could grow in medium with sucrose, glucose,

lactose, soluble starch, and formaldehyde as carbon

source. These carbon sources had impact on fungal

growth. Fresh weight of mycelia grew around the time

from 0.01 to 0.24, 0.28, 0.18, 0.16, and 0.08 g under the

conditions of sucrose, glucose, lactose, soluble starch, and

formaldehyde after 7 days (Fig. 3a), respectively. The

Fig. 3 Formaldehyde

degradation of HUA with initial

formaldehyde concentration of

1500 mg l-1 in different carbon

sources: a fungal mass and

b formaldehyde degradation

Fig. 4 Enzyme activities of HUA grown on inducing medium

supplemented with formaldehyde
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degradation rates of formaldehyde were 100, 100, 99.5,

91.3, and 22.8 % (Fig. 3b), respectively. The amount of

evaporation of formaldehyde was 4.8 % in control sample.

The result showed strain HUA was able to grow and

degrade formaldehyde effective in carbon sources men-

tioned above.

Aspergillus sydowii spreads widely in ocean water

(Martins et al. 2011; Rocha et al. 2010). A. sydowii could

be used for field biodegradation of organophosphate pes-

ticides (Hasan 1999). Recent studies have focused on the

application of xylanase from A. sydowii (Nair et al. 2008).

Closely related fungus A. versicolor has been found to play

a considerable role in reducing polymer materials and

heavy metals such as chromium, copper, and nickel and

decolorizing Remazol Blue reactive dye (Taştan et al.

2010). The degradation of formaldehyde by Aspergillus

section versicolors has not yet been reported.

Enzyme activity analysis

Degradation of formaldehyde by strain HUA would occur

through the action of FADH and FDH. The activities of

FADH and FDH were measured under formaldehyde-

induced and non-induced conditions. FADH activity and

FDH activity could only be detected under formaldehyde-

induced condition. After 12 h of culturing with formalde-

hyde, FADH activity can be detected at a lower level that

closely resembles FDH (Fig. 4). The activity of FADH

reached a maximum after 24 h induced by formaldehyde,

followed by a gradual decrease until to the undetectable

levels at the fourth day. FADH activity can reach up to

5.02 U mg-1. After induction of 24 h, FDH was possible

to achieve the maximum, and after that, the activity was

maintained to formaldehyde completely consumed. Activ-

ity of FDH achieved the highest 1.06 U mg-1. The activity

of formaldehyde dehydrogenase was higher than that of

formate dehydrogenase during the entire formaldehyde

metabolism.

Formaldehyde degradation pathways have been studied

in certain prokaryotic and eukaryotic microorganisms.

FADH has been found in methylotrophic bacteria, as well

as in mammals, plants, and yeasts, where it plays a general

role in formaldehyde detoxification and antioxidation

(Vorholt 2002). In the present study, fungal FADH and

FDH activities were induced by 300 mg l-1 formaldehyde

and the enzyme activities were also change over time. The

two enzymes were gradually induced and accumulated at

the first 24 h. At this point, the strain HUA had the

strongest formaldehyde degradation (data not shown), and

formaldehyde concentration was reduced rapidly. After

48 h, the formaldehyde was completely consumed, the

FADH and FDH accumulated in strain HUA gradually

restored to the initial level. The results indicate that there

was a connection between formaldehyde degradation

curve, fungal growth curves, and enzyme activities. Achkor

et al. (2003) reported that transgenic Arabidopsis over-

expressing AtFADH show a 25 % increase in the detoxi-

fication rate compared with the wild-type plants. Recently,

FADH genes from Arabidopsis thaliana, golden pothos,

and rice were isolated and characterized (Tada and Kidu

2011). Studies on gene cloning of this fungus were in

progress to elucidate the gene regulation of formaldehyde

metabolism. In addition, when glutathione or NAD was not

added in reaction solution, the FADH activity could not be

measured. This result clearly showed that formaldehyde

dehydrogenase in strain HUA requires glutathione and

NAD for activity, which is the same as Candida boidinii

(Schutte et al. 1976). It indicates that FADH is one of the

key enzymes in formaldehyde metabolism of strain HUA,

and the strain HUA has potential applications for con-

taminated water treatment.

Conclusion

In this study, a formaldehyde-resistant fungal strain HUA

was identified as a member of A. sydowii. The optimal

temperature, pH, and carbon source conditions of culture

preparation were investigated, and formaldehyde degrada-

tion characteristics were determined. The formaldehyde

dehydrogenase could play an important role in metabolic

formaldehyde process in strain HUA. From the above

results, it can be concluded that A. sydowii HUA can

degrade formaldehyde efficiently, and it could be suc-

cessfully used for the treatment of industrial wastewater

containing formaldehyde. Further experiment should be

studied in natural condition to ascertain the exact formal-

dehyde degradation capacity.
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