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Abstract Uncertainty is inherent in watershed modeling

but it is not fully acknowledged in model applications. This

review focuses on uncertainty issues related to the Soil and

Water Assessment Tool (SWAT) model, which is one of

the most useful tools for simulating nonpoint source (NPS)

pollution processes. We considered numerous studies that

addressed three types of uncertainty in detail, i.e., the

model inputs, parameters, and model structure. It has been

shown that rainfall data, in terms of the spatial rainfall

variability and the accuracy of the measured data, play a

key role in the accuracy of the SWAT model. Geographic

information system inputs, including the digital elevation

model, land use map, and soil type map, have also been

identified as key sources of input errors. With respect to the

parameter uncertainty and model structural uncertainty, it

is anticipated that the complex, nonlinear structure, and

numerous parameters included in the SWAT model may

lead to a failure to identify parameters, as well as equifi-

nality phenomenon. We also compared some widely used

uncertainty analysis methods, such as the generalized

likelihood uncertainty estimation and first-order error

analysis, to provide reliable guidance for the application of

the SWAT model. This study benefits a wide range of

researchers, who are concerned with uncertainty issues in

NPS pollution modeling, and it provides insights into the

application of watershed models in the development of

watershed programs.
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Introduction

Nonpoint source (NPS) pollution has been one of the main

contributors to water quality degradation during the recent

decades (Chen et al. 2013; Tanik et al. 2013; Tian et al.

2012). Watershed models are essential tools that allow

researchers to investigate the complex effects of multiple

activities on basin systems (Barlund et al. 2007; Ghebre-

michael et al. 2013). However, watershed managers are

often unsure about how well the models match the real-

world system that they aim to represent. The meteorolog-

ical, geological, hydrological, and ecological processes that

occur in catchments are highly complex and are not always

well known. Given a lack of knowledge and natural ran-

domness, uncertainty is an inherent part of watershed

modeling. Overestimating uncertainty can lead to the over-

consideration of low probability events and subsequent

excessive expenditure on management design, whereas

underestimation will lead to substandard pollution reduc-

tion (Zhang et al. 2009). Thus, uncertainty in modeling has

received much attention because it provides predictions

that facilitate high accuracy and precision during watershed

management, such as the total maximum daily load and the

water framework directive (Chen et al. 2007; Carter and

White 2012).

In general, watershed modeling involves two types of

uncertainty: (1) systematic modeling uncertainty irre-

spective of the correct input, or more specifically the

uncertainty conferred by the parameters and structure; and

(2) uncertainty due to inaccurate inputs. Input errors occur
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due to variations in the natural conditions such as changes

in the climate or underlying surface properties (Post et al.

2008; Shen et al. 2013d). Thus, the model inputs should

be addressed first, in theory. Parameter and structural

uncertainty may be related to the inappropriate applica-

tion of models in terms of scaling with the hypothesis and

design inconsistency (Tripp and Niemann 2008) and to

the equifinality phenomena during the complex and sub-

jective process of parameter calibration (Beck 1987).

Input errors may be compensated for by parameter cali-

bration, and they may be propagated throughout the

model structures, thereby leading to extreme difficulty

when decomposing the uncertainty into separate sources

(Beven 2006). These different sources of model uncer-

tainty interact and lead to inconclusive results. The

propagation effects of these uncertainties are usually

calculated based on the standard deviation, coefficient of

variation (CV), and uncertainty bands, which should be

analyzed to produce reliable predictions (Li et al. 2010).

There has been increasing concern about watershed NPS

modeling, but the sources of uncertainty and related

uncertainty analysis methods have been documented rel-

atively poorly.

The Soil and Water Assessment Tool (SWAT) is a

semi-distributed and physically based model (Hong et al.

2012). In general, the hydrological processes in the

SWAT model are divided into two phases: the land phase

and the channel phase. To estimate the surface runoff, the

curve number (CN) method (SCS 1972) is used for the

daily rainfall data, and the Green–Ampt infiltration

method (Green and Ampt 1991) is used for the hourly

precipitation data. The modified universal soil loss

equation (MUSLE) model (Williams 1975) is used to

estimate the sediment yield at the hydrological research

unit (HRU) level. Flow, sediments, and nutrients are

combined at the sub-watershed level and routed through

the channels, ponds, reservoirs, and wetlands to the

watershed outlet using the QUAL2E model (Arabi et al.

2008). The SWAT model is usually selected to simulate

NPS processes because it accounts for most of the key

processes at the basin scale (Dechmi et al. 2012; Mar-

inganti et al. 2009). More information about the model

structures and algorithms used by SWAT was reported by

Douglas-Mankin et al. (2010).

Uncertainty analysis has been a hydrological modeling

hot spot, but there have been few studies of NPS model-

ing, especially using the SWAT model. The present study

fills this void. In the next section, the sources of uncer-

tainties and their effects on the modeling results are

analyzed. The commonly used methods of uncertainty

analysis are then compared in terms of their strengths and

limitations.

Sources of uncertainty

Model inputs

The model inputs are generally considered to be the most

important issues that affect watershed models because they

drive runoff production and mass transport in the watershed

system. Precipitation is considered to be one of the most

crucial inputs because it is the direct driving force of the

SWAT model (Park et al. 2010). However, rainfall data

often exhibit irregular frequencies, durations, and magni-

tudes across a catchment because of variable natural con-

ditions. The spatial distribution of rainfall, which involves

the density of rain gauges and the interpolation methods,

can be categorized as an important source of input error.

For a typical watershed, it has been reported that the

SWAT results may fluctuate as the rain gauge density

changes. The CV of the root mean standard difference

(RMSD) based on scenarios with the highest and lowest

density may reach up to 0.31 for total phosphorus (Cho

et al. 2009). Studies have demonstrated that intensively

distributed rain gauges are suitable for obtaining reliable

model results, although the construction and operation of

large numbers of gauges is problematic and costly (Chau-

bey et al. 1999, 2005; Masih et al. 2011). However, Gong

et al. (2012) found that there were no significant differ-

ences between single- and multi-gauge-based hydrology

calibrations and validations. This was attributed mainly to

the SWAT simulation mechanism in HRUs, which com-

bines many control parameters related to land use, topog-

raphy, and soil type. They are either distributed uniformly

or attenuated by the low resolution of geographic infor-

mation system (GIS) data in the study area. The parameters

obtained using single calibrations can be extrapolated to

the whole catchment. However, the determination of the

optimal number of rain gauges should consider the water-

shed characteristics comprehensively. In particular, previ-

ous studies provided various quantitative conclusions that

are valuable to watershed management. For example, Fu

et al. (2011) reported that the effect of the rainfall input on

discharge modeling was relatively low for catchment sizes

above 250 km2 and even negligible for watersheds larger

than 1,000 km2. A well-located station might be sufficient

for watersheds up to about 50 ha (Osborn et al. 1972),

while 20 km has been shown to be the threshold distance

between stations to ensure reliable hydrological modeling

(Vischel and Lebel 2007).

As a semi-distributed model, the SWAT model auto-

matically assigns precipitation data from the rain gauge

nearest to the center of a sub-watershed as the areal rainfall

input, which is called the centroid method (Wood et al.

1990). This traditional method may cause inherent
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uncertainties because of the following reasons: Rain gau-

ges far from the centroid of a sub-watershed may be

abandoned despite their potential value; the effects of cli-

mate variation and elevation change are theoretically

important, but are not considered in the current version of

SWAT model. Therefore, scientists have attempted to

adopt more advanced interpolation methods, which

increase the Nash–Sutcliffe efficiency coefficient (ENS)

(Nash and Sutcliffe 1970) for flow, sediment, and TP up to

12.5, 10.1, and 9.24 %, respectively (Shen et al. 2012b).

These different interpolation methods have resulted in

different quantifications of the rainfall spatial variability

and the derived uncertainty due to flow modeling. This

type of uncertainty may be propagated through the SWAT

model, to some extent, to NPS-sediment modeling and then

magnified into NPS-nitrogen and NPS-phosphorus model-

ing. This phenomenon is dominated mainly by the effects

of the underlying surface conditions on rainfall-NPS pol-

lution, as well as anthropogenic practices (Cho et al. 2009;

Rouhani et al. 2009). Furthermore, there is a need to select

an appropriate interpolation method for the scale of inter-

est. Using global interpolators (e.g., the Kriging method

and inverse distance-weighted method) with more accurate

descriptions of spatial rainfall distributions may have a

great positive impact on the model reliability in relatively

large watersheds that have high rainfall spatial variability.

The current method used in the SWAT model could pro-

vide adequate performance if the rainfall regime in small

watersheds is mainly homogeneous. It has also been

reported that the incorporation of elevation correction

factors, which can be extracted from the digital elevation

model (DEM), are highly recommended (Masih et al. 2011;

Shen et al. 2012b).

Another source of uncertainty in rainfall data is the

accuracy of the observed data. In general, rain measure-

ment involves complex physical processes where system-

atic errors and random errors may arise (Schuurmans and

Bierkens 2007). The diversity and complexity of the

environment, constraints on the tools used, and a lack of

calibration are the leading causes of measurement errors

(Liu et al. 2009). The values recorded will inevitably

deviate from reality. These errors exist even if the best

equipment is used and correct operation is performed

(Tapiador et al. 2012). Stochastic modeling may facilitate

the investigation of the propagation of rainfall measure-

ment errors. The probability distribution functions (PDFs)

of rainfall data errors need to be determined in an appro-

priate manner based on statistical analysis and the actual

conditions (Beven and Alcock 2012).

Watershed hydrology also depends on the land charac-

teristics. The DEM, land use–land cover (LULC), and soil

data are the most important inputs used to describe the

underlying surface conditions. At present, these spatial data

can be visualized explicitly and compiled using the GIS.

However, the resolution of GIS data obtained from different

departments varies according to the cartography methods

used, which leads to high uncertainty. The DEM is a

mathematical expression of the topographic conditions, and

its resolution affects the parameters extracted from the

watershed characteristics, which subsequently has a great

impact on model prediction (Chaubey et al. 2005; Dixon

and Earls 2009; Lin et al. 2013). The modeling performance

potentially improves with increased resolution, but there is

a threshold level beyond which the prediction accuracy may

fail to improve, and the simulation efficiency may remain

stable within a specific resolution domain (Lin et al. 2010).

A NPS pollution study in Daning watershed in China’s

Three Gorges Reservoir Region also confirmed this phe-

nomenon. The contribution of each GIS input to the total

uncertainty was decomposed to identify the threshold value.

The coarsest resolutions of DEM inputs were assumed to be

200 9 200 m, 90 9 90 m, 30 9 30 m, 90 9 90 m, and

90 9 90 m for modeling the variables flow, sediment, total

phosphorus, attached nitrogen, and dissolved nitrogen,

respectively (Shen et al. 2013c). The LULC map is used to

define the geometric properties and plant cover, whereas the

soil data map provides baseline definitions of the soil

classes. The threshold phenomenon can also be extended to

the LULC and soil map because they are inter-related to the

DEM (Shen et al. 2013c). When selecting the optimum

combination of resolution for each GIS input, the appro-

priate resolution at which the model can be assumed to be

reliable should be identified as a priority concern. The DEM

resolution is considered to be the driving force in SWAT

modeling compared with LULC maps. Thus, if high-reso-

lution DEM data can be obtained within the threshold, the

choice of precise LULC inputs becomes less important.

However, if the resolution of DEM inputs is coarser than the

threshold value, LULC maps with finer resolution should be

considered. This threshold phenomenon may be explained

based on the mechanism employed by the SWAT model.

Shen et al. (2013c) suggested that there may be a GIS

threshold if the lumped CN and MUSLE application and

HRU-based methods are applied to a watershed model.

Thus, GIS input with a higher precision might not always be

necessary for a semi-distributed model because of the extra

cost and labor involved.

Model parameters

These process-based models are generally treated as con-

ceptualizations of the watershed system functions, so the

parameters in these models are defined as quantifiable sub-

processes based on the watershed characteristics (Shen

et al. 2012a). It has been reported that the model
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parameters comprise conceptual and physical groups

(Gong et al. 2011). The conceptual parameters are used to

quantify the watershed processes but without physical

interpretation. The assignment of their values requires

careful calibration. Ideally, physical parameters have

physical interpretations based on the watershed processes,

and they should be measured or estimated based on the

watershed characteristics when intensive data collection

are possible. Unknown spatial heterogeneity in the study

area and expensive experiments may be involved, so the

physical parameters are usually determined by calibrating

the model against the measured data. However, if the

number of parameters is large because of the substantive

sub-processes being considered or the model structure

itself, the calibration process becomes complex and

parameter uncertainty emerges (Ng et al. 2010). Some

studies have also shown that the parameter uncertainty may

be propagated from hydrological modeling to the NPS

simulation to a greater degree (Shen et al. 2008).

Previous studies have demonstrated that only a few

parameters have major effects on the model results (Li

et al. 2010; Shen et al. 2008). Moreover, small adjustments

of parameters at certain data intervals, especially near the

upper and lower limits, introduce significant fluctuations

into the model results (Harrison et al. 1993; Shen et al.

2012a). In an actual application of the SWAT model, it is

preferable to obtain the confidence range of each parameter

and so the models can be calibrated appropriately.

Parameter calibration is a complex, nonlinear problem, and

numerous possible solutions may be obtained using opti-

mization algorithms. Previous studies (Arhonditsis et al.

2008; Zak and Beven 1999) suggest that multiple disjoint

groups of parameters may produce similar model results,

which is widely known as equifinality because input errors

and structural uncertainties may neutralize the discrepan-

cies caused by the parameters (Beven and Binley 1992). In

these cases, the model user should check whether any

information related to the watershed characteristics and its

underlying hydrological processes, or neighboring catch-

ments, could be used to provide more precise statistical

ranges for the model parameters.

Determining the PDF for each parameter is another

critical step during parameter uncertainty analysis. In ideal

cases, if intensive data collection are possible, the PDF of

each parameter should be measured or estimated according

to the watershed characteristics. However, these experi-

ments are often impossible for many reasons, such as the

unknown spatial heterogeneity of the watershed, high costs,

and time constraints, as well as the experience of the

operating personnel involved (Nandakumar and Mein

1997). Instead, researchers collect and estimate PDFs using

statistical processes. From the perspective of statistical

parameter estimation, the question could be rephrased as

the problem of selecting the appropriate PDFs for param-

eters. According to Sohrabi et al. (2003), PDFs can be

determined according to professional judgment and based

on documented information. In general, theoretical and

empirical PDFs can be used instead of data collection and

monitoring. For example, the soil hydraulic conductivity

was shown to be approximately log-normally distributed in

some studies (Sohrabi et al. 2003). It is usual to employ

classic PDFs, such as uniform, normal, and logarithmic

normal, to evaluate the propagation of parameter uncer-

tainty to the model outputs (Vrugt et al. 2003). In a study

that focused on the influence of parameter distribution

uncertainty (Shen et al. 2013a), a uniform PDF produced

the widest stream flow 95 % confidence interval (CI)

(0.92–53.11 m3/s), followed by logarithmic normal PDF

(37.59–56.91 m3/s) and normal PDF (38.04–56.94 m3/s).

The wider 95 % CI with a uniform PDF might lead to a

more uncertain model prediction. For a uniform PDF,

however, the ENS was calculated as (-0.27604, 0.74314),

which included the most satisfactory results. In sediment

simulations, the PDF types produced the same effects.

Based on this study, the selection of parameter PDFs might

allow a balance between modeling precision and prediction

uncertainty. An adequate number of simulations is also

required to satisfy the convergence precision and to cal-

culate more reliable distributions. To reduce this burden,

the integration of an appropriate sampling method is also

beneficial.

Specifically, the contamination caused by NPS differs

greatly among land use types. Therefore, land use

parameters are important during NPS modeling. Studies

have shown that the uncertainty of NPS outputs exhibits

apparent variation among different land use types because

of their different landforms, physiognomy, underlying

surface conditions, and anthropogenic activities (Shen

et al. 2010, 2013b; Tu 2011). Thus, parameter uncertainty

analysis can facilitate effective management. Various

attempts have been made in this respect in the Three

Gorges Reservoir Region of China. It has been demon-

strated that dry land is highly recommended with con-

servation practices and appropriate land cover, while

nutrient management should be optimized in paddy fields.

The grazing practices and vegetation density are consid-

ered to be especially important for yellow earth and

purple soils, respectively. It has also been shown that NPS

prediction has a greater uncertainty during high-flow

periods (Li et al. 2009; Shen et al. 2008; Wu and Liu

2012). The main cause is the irregular frequency of pre-

cipitation and stream flows, which propagate uncertainty

into the NPS outputs (Bardossy and Das 2008; Shen et al.

2008).
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Model structure

Structural uncertainty arises from inaccurate descriptions

of watershed systems. It is widely held that the details of

watershed processes cannot be captured fully by watershed

models because of the complex mechanism of NPS pol-

lution, so the simplification of some processes (e.g., runoff

production, infiltration, and evapotranspiration) is inevita-

ble. Studies have shown that the model structure may even

produce a greater magnitude of uncertainty than other

sources (Li et al. 2010; Parasuraman and Elshorbagy 2008).

In general, the development and modification of modules

according to actual modeling procedures is a common

approach for addressing structural uncertainty (Pohlert

et al. 2007). In particular, the SWAT model includes dif-

ferent built-in modules that represent the same watershed

processes. According to Zhang et al. (2009), different

descriptions of evapotranspiration, flow routing, snow

accumulation, and melting could be merged in the SWAT

model. The Bayesian model averaging (BMA) mean and

ensemble mean were calculated, and both yielded better

prediction accuracy than single model-based results in

terms of ENS.

Methods of uncertainty analysis

Several calibration and uncertainty analysis techniques

have been applied in previous studies. Table 1 shows the

most commonly used methods. The appropriate choices

should be based on three critical considerations: (1) the

system nonlinearity; (2) the correlations among elements;

and (3) the assumptions of the PDFs. The features of each

method are discussed in greater detail below based on these

three considerations, as well as the strengths and limita-

tions characterized in Table 2.

Sensitivity analysis (SA) is a screening method used to

estimate the response degree of model results with respect

to a certain parameter (Spear and Hornberger 1980).

However, one-factor-at-a-time (OTA) is a traditional SA

technique that fails to appreciate the spatial distributions

and correlations among parameters, which may lead to

biased results with nonlinear systems (Morris 1991).

Table 1 Comparison of common-used methods for uncertainty analysis

Methods Principles Critical considerations

System

nonlinearity

Correlation of

elements

Assumption

of PDF

OTA Each variable is perturbed in turn with all other factors fixed H

FOEA First-order derivative of the function with respect to elements acting

independently

H

SUFI-2 Propagation of parameter uncertainty leads to 95 % prediction uncertainty H H H

MC Each uncertain characteristic is randomly selected from a PDF H H H

GLUE MC-based sampling followed by estimation with likelihood measures and

threshold value

H H H

Bayesian

inference

Probability density of the posterior parameter distribution is derived from the

prior density and measured data

H H

Bootstrap Nonparametric technique with direct sampling from data

Table 2 Strengths and limitations of each analysis method

Methods Strengths Limitations References

OTA Easy to program,

low

computational

requirements

Biased results in

non-linear system

Morris

(1991)

FOEA Easy to use,

simple

algorithms

Many hypotheses

are adopted,

biased results in

non-linear system

Abbaspour

et al.

(2004)

SUFI-2 Semi-automated;

all sources of

uncertainty are

accounted for

Parameter PDFs are

prejudged,

additional

iterations are

required

Melching

and Yoon

(1996)

MC Flexible, simple,

but sound

Abundant

simulation times

are required

Bobba

et al.

(2000)

GLUE All sources of

uncertainty are

accounted for

Huge sampling

quantity, many

hypotheses are

adopted

Beven and

Binley

(1992)

Bayesian

inference

PDFs are strictly

estimated

Strong dependence

on the formulation

of likelihood

function

Vrugt et al.

(2003)

Bootstrap Wide scope of

application,

fewer

assumptions are

involved

High dependency

on original

samples

Li et al.

(2010)
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Studies have also indicated that rankings based on sensi-

tivity may not match with those based on uncertainty,

which may lead to parameters with low sensitivity but high

uncertainty being overlooked (Beck 1987; Melching and

Yoon 1996; Shen et al. 2008).

The first-order error analysis (FOEA) method, which

considers the combined effects of parameter sensitivity and

uncertainty, has gained popularity in situations where

insufficient information is available (Melching and Yoon

1996; Zhao et al. 2011). Compared with other methods, the

greatest strength of FOEA is the simplicity of the algo-

rithms it employs, although the inherent constraints that

underlie the assumptions of the system functions are linear

(Bobba et al. 1996; Shen et al. 2010).

A uniform distribution is assumed in the sequential

uncertainty fitting version 2 (SUFI-2) method, and the

uncertainty is quantified using 95 % prediction uncertainty

(Abbaspour et al. 2004). This process begins with an

assumption of high uncertainty and reduces the range,

either by bracketing most of the observations or when the

average distance between the simulation and measurements

becomes small. The SUFI-2 algorithm considers all sources

of uncertainty, but it requires additional iterations and

careful adjustment of the parameter ranges (Setegn et al.

2010).

The Monte Carlo (MC) technique is conceptually sim-

ple but theoretically sound, and it supports stochastic

analysis using perturbation approaches (Bobba et al.

2000). High-precision estimation depends on the sampling

number. The MC-based techniques, which are typified by

importance sampling (IS) and Markov Chain MC

(MCMC) simulations, consider the nonlinearity and

interdependency among components, and they are com-

monly integrated into more synthetic approaches such as

the generalized likelihood uncertainty estimation (GLUE)

method and Bayesian inference (Li et al. 2010). Bayesian

inference derives the posterior parameter PDF based on

the prior distribution and a likelihood function (Vrugt et al.

2003). The model nonlinearity with arbitrary posterior

distribution shapes is better described using MC-based

numerical approximations that consider parameter spaces

with high dimensions (Yang et al. 2007). Compared with

the Bayesian inference method, the bootstrap method may

involve even fewer assumptions, especially when the error

form is hard to derive or approximate. As a nonparametric

technique, it depends heavily on the original data but the

correlations among elements might not be preserved (Li

et al. 2010).

The GLUE method (Beven and Binley 1992) is based on

the concept of IS and regional SA. It stresses that the model

performance depends on the parameter sets rather than the

individual parameters by considering all sources of

uncertainty including input errors, parameters, and

structural uncertainty (Vrugt et al. 2009). However, its

prohibitive computational burden hinders its application to

some extent. Moreover, several subjective hypotheses,

such as the variation ranges of parameters, the level of

confidence, the likelihood function, and the threshold value

of the likelihood measure, need to be investigated further to

obtain a reliable estimation (Gong et al. 2011).

Conclusion

Our study reflects the concerns of watershed decision-

makers and highlights the significance of targeting

uncertainty, which is an inherent part of NPS modeling.

The consideration of model input uncertainty facilitates

input data acquisition and data processing. The number

and locations of rainfall gauges, as well as interpolation

methods for the scale of interest, should be selected

carefully and arranged to provide accurate description of

rainfall variability. Rainfall measurement errors should

not be neglected because of their propagation and mag-

nified effect in flow and NPS modeling. The optimum

combination of GIS data resolution should be determined

in terms of the threshold phenomenon, to guide water-

shed managers when building spatial databases. As

another significant source of uncertainty, the model

parameters involve inherent uncertainty and propagation

effects in the same manner as rainfall data. Parameter

identification in terms of their sensitivity, uncertainty,

and PDFs helps to characterize significant NPS processes

and to guide appropriate effective management practices.

In addition, the uncertainty caused by model structures

may be treated by replacing single results with ensemble

or BMA means.

In an actual application, the sources of uncertainty

should be analyzed by stochastic simulation to identify the

components of models that can be updated to achieve the

optimal assimilation of the real-world observation, thereby

facilitating dynamic decision making. The use of uncer-

tainty bands rather than specific values can avoid biased

predictions, although the trade-off between the confidence

interval and the uncertainty bound required to meet man-

agement requirements in all potential situations remains a

subjective but critical issue. It should be mentioned that the

majority of previous studies have focused on parameter

uncertainty. However, the model input and structure

uncertainties merit greater attention. The impact of each

source of uncertainty is also difficult to separate because of

the potential for compensating errors among them. The

interactions between these sources of uncertainty remain a

challenge that prevents a holistic understanding of uncer-

tainty issues. The uncertainty associated with a specific

source will also be magnified from discharge modeling to
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NPS modeling, to varying extents, because the SWAT

model is a nonlinear system, which reflects the importance

of addressing uncertainty issues in NPS modeling. The

results highlighted in this review can be extrapolated to

other watershed models, such as the Agricultural Nonpoint

Source (AGNPS) model and Hydrological Simulation

Program-FORTRAN (HSPF) model, which share many

similarities with NPS simulation systems. Future work

should use advanced techniques to improve our under-

standing of NPS processes.
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