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Abstract The survival of rare animals is an important

concern in an environmental impact assessment. However,

it is very difficult to quantitatively predict the possible

effect that a development project has on rare animals, and

there is a heavy reliance on expert knowledge and judg-

ment. In order to improve the credibility of expert judg-

ment, this study uses Bayesian belief networks (BBN) to

visually represent expert knowledge and to clearly explain

the inference process. For the case study, the primary dif-

ficulty is in determining a large amount of conditional

probabilities in the BBN, because there is a lack of suffi-

cient data concerning rare animals. Therefore, a new

method that uses fuzzy logic to systematically generate

these probabilities is proposed. The combination of the

BBN and the fuzzy logic system is used to assess the

possible future population status of the Pheasant-tailed

jacana and the associated probabilities, which have been

affected by the construction of the Taiwan High-Speed

Rail. The analysis shows that a restoration program would

successfully preserve the species, because in the restoration

area, the BBN model predicts that there is a 75.49 %

probability that the species will flourish in the future.

Keywords Pheasant-tailed jacana � Future population

status � Expert judgment � Artificial intelligence

Introduction

Environmental impact assessment (EIA) is a procedural

tool which involves the processes of identification, pre-

diction, evaluation, and mitigation of the biophysical,

social, and other relevant effects of development projects,

before major decisions and commitments are made (Petts

1999). Development projects for which there is a possi-

bility of adverse impact on the environment must submit an

environmental impact assessment report (EIAR), and this

EIAR must then be forwarded to competent authorities for

review. A development project is refused if its adverse

impact is significant. Usually, the survival of rare animals

is an important criterion in determining whether the impact

of a development project is significant. A study of the 34
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EIARs for road construction in Taiwan over the past

5 years (2007–2011) shows that, in practice, the tools that

are usually used to estimate the degree of the impact on

protected or rare animals mostly rely heavily on expert

knowledge and judgment, alone, and make limited use of

empirical data. Despite the continued advances in empiri-

cal or statistical methods for complex and dynamic eco-

systems, most EIARs still use expert opinion, when

assessing the impact on rare animals. One possible reason

for this is that there is difficulty in obtaining sufficient

scientific information that enables the complicated cause-

and-effect relationships between a variety of stressors

(external intervention and change in the physical, chemical,

biological, and natural environment) and a receptor (a

specific rare animal) to be identified, so changes made by

man that affect rare animals cannot be adequately quanti-

fied, but experts can qualitatively forecast the possible

consequences for rare animals that result from develop-

ment projects. Aside from its use in forecasting the impact

on rare animals, expert judgment is widely used in bio-

logical conservation, partially because of the complexity of

the problems encountered, the relative lack of data, and the

imminent nature of many conservation decisions (Martin

et al. 2012).

Although expert judgment can be used to assess the

impact on rare animals, in an EIS, it is usually criticized,

because decisions are made in isolation, based on intuition

or conjecture, so the reason for the judgment is not often

readily explicable. In order to address this concern, meth-

ods that can explicitly express expert knowledge and

clearly explain the process of inference are required. A

total of 36 studies, which are described in the next para-

graph, have demonstrated the utility of BBNs (Pearl 1988)

in garnering and integrating expert knowledge and empir-

ical data concerning ecological issues. The BBN is a

directed acyclic graph with nodes, which denotes a set of

random variables as nodes and arrows. These indicate the

probabilistic cause-and-effect dependencies. A number of

properties make it particularly useful for ecological appli-

cations; it allows the use of a combination of qualitative

knowledge and quantitative data (Aguilera et al. 2011), so

it can easily cope with missing data and it can be con-

structed using observed data, other models, or expert

knowledge. It is a useful tool for risk assessment, because it

explicitly incorporates uncertainty in relationships. It is

also useful in ecological risk management, because the

effects are identified, given the causes, or the causes, given

the effects (Hart and Pollino 2008).

The number of studies concerning the application of the

BBN for ecological issues has dramatically increased, in

recent years. A total of 36 relevant papers have been

published and most of these (28 out of 36) were published

after 2006. This demonstrates the potential of BBN for use

in ecological issues. The BBN has been used for a variety

of predictions, assessments, and characterizations of eco-

logical issues, such as population health, or the future

status of fish stocks (Rieman et al. 2001; Borsuk et al.

2003, 2004, 2006; Pollino et al. 2007a; Shenton et al. 2011;

Nicholson and Flores 2011; Vilizzi et al. 2012; Chan et al.

2012), amphibians (Wilson et al. 2008), small passerines

(Howes et al. 2010), endangered Eucalyptus camphora

(Pollino et al. 2007b), terrestrial lichens (Nyberg et al.

2006), the prediction of the spatial distribution of species

(Walton and Meidinger 2006; Aguilera et al. 2011; Grech

and Coles 2010; Dlamini 2011), the viability of populations

of at-risk species (Marcot et al. 2001; Steventon et al.

2006), fish production capacity (Hammond and Ellis 2002;

Uusitalo et al. 2005), the success of cheetah relocation

(Johnson et al. 2010), net ecosystem metabolism in an

estuary (Young et al. 2011), large-scale coral bleaching

(Wooldridge and Done 2004), reef condition (Shenton

et al. 2010), the prediction of the coverage of coral reef

macroalgae (Renken and Mumby 2009), bloom initiation

for Lyngbya majuscula (Hamilton et al. 2007), habitat

conditions (Raphael et al. 2001; Sadoddin et al. 2005;

McNay et al. 2006; Smith et al. 2007) and in combination

with management strategies (Marcot et al. 2006; Gibbs

2007; Bashari et al. 2008; Newton 2010; Helle et al. 2011).

Table 1 shows five characteristics (and their options), as

detailed in the review paper by Aguilera et al. (2011).

These are used to analyze the 36 papers in terms of vari-

ables (discrete, continuous, both), model learning (data/

simulation, experts/literature, both), and evaluation (train

Table 1 Distribution of five characteristics over the options for the

36 papers analyzed

Characteristic Options Total %

Variable Discrete 33 91.6

Continuous 2 5.6

Both 1 2.8

Establishment of BBN structure Experts/literature 26 78.8

Data/simulation 3 8.38

Not available 7 19.4

Generation of CP Experts/literature 20 55.5

Data/simulation 10 27.8

Both 6 16.7

Software Netica 16 44.4

Hugin 4 11.2

Others 16 44.4

Evaluation Sensitivity analysis 15 41.6

Train and test 4 11.1

Hybrid 6 16.7

Cross validation 1 2.8

Not available 10 27.8
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and test, sensitivity analysis, hybrid, cross validation, not

available).

Usually, the values for each node in the BBN are cate-

gorized into a finite number of levels. The greater the

number of levels, the more complex and precise is the

model, but the greater is the amount of data required to

construct conditional probabilities (CPs). In practice, 2–10

levels are usually used in ecological studies (Uusitalo

2007). In this research, five levels are used, producing

19,625 CPs in the BBN model of the case study. However,

it is extremely difficult to obtain sufficient data (whether

field data or expert survey) for the rare animal, the

Pheasant-tailed jacana, to construct these CPs, so sub-

jective judgment is used. This is also known as an expert-

driven BBN (Oteniya 2008; Radliński 2013). Similarly,

55.5 % of the related papers (Table 1) use expert opinion

or literature to populate the CPs, in the cases where very

little empirical data are available, but none detail how the

expertise is converted into CPs.

The expert-driven methods used to generate CPs can be

approximately classified into three groups: the direct

assignment method, the weighted sum algorithm, and fuzzy

fault tree (FFT) analysis. The first group of researchers

used the direct assignment method because the number of

the CPs was small and the experts could easily estimate the

CPs. While the subjective estimations for the CPs are

usually expressed linguistically, several studies (Li and

Kao 2005; Ren et al. 2009; Kao et al. 2011; Li et al. 2012)

extend the concept of a conventional BBN to allow fuzzy

probabilities (fuzzy BBN). The second group of research-

ers (Das 2004; Baker and Mendes 2010) devised the

weighted sum algorithm, which means that experts esti-

mate less CPs, but they must additionally assess the rela-

tive strengths (weights) of the influences of the parent-

nodes on a child-node. The third group of researchers

(Wang et al. 2011; Wang and Xie 2012) mapped FFT into

BBNs. In the FFT method, experts directly assign the

probabilities in the rules of Takagi and Sugeno model,

which represent the uncertain relationships among different

events, so these are the CPs in the BBN. The direct

assignment method, the weighted sum algorithm, or FFT

analysis are not suitable for this study, because of the large

amount of CPs (19,625) in the case study. Therefore, a new

expert-driven method to generate a large amount of CPs is

proposed, which employs fuzzy logic (Zadeh 1996, 2002)

to construct less heuristic rules elicited from experts and to

automatically infer more CPs, using these rules.

The use of BBN or fuzzy logic in environmental science

and technology is common, as seen in the studies of Liu

et al. (2012, 2013), Tuzkaya and Gulsun (2008), Tuzkaya

et al. (2009), Karimi et al. (2011), Bangian et al. (2012) and

Tuzkaya (2013), but the combination of fuzzy logic and

BBN in this field or in ecology is not quite seen in litera-

tures. In this study, fuzzy logic is integrated into the BBN

model as an ecological assessment tool for EIA. Finally,

the assessment of the future population status of the

Pheasant-tailed jacana due to the construction of the

Taiwan High-Speed Rail (THSR) is used as a case study, in

order to demonstrate the use of the method. This research

was undertaken by the Department of Safety, Health and

Environmental Engineering, Ming Chi University of

Technology (Taipei; Taiwan), from August 2011 to July

2012.

Materials and methods

Case study

The rugged central mountainous terrain of Taiwan has

hindered the population and socio-economical growth, so

economic activity has mainly developed along the plains of

the West Coast. The increasing demands for north–south

intercity transportation led to the birth of the THSR system.

In 1987, because of the deteriorating quality and saturation

of the transportation system in the Western Corridor, the

Executive Yuan commissioned the Taiwanese Transporta-

tion Bureau to undertake a feasibility study for a High-

Speed Rail System in the Western Corridor. The aim of this

study was to improve the transportation service in this area

and to coordinate with the metropolitan rapid transport

system plan for the construction of a complete transporta-

tion network. After almost 13 years of preparation and

planning, the construction work for the THSR system began

on March 27, 2000. The THSR project, the route of which is

mapped in Fig. 1, is not only one of the most challenging

infrastructure projects in the world, to date, but also boasts

the largest private sector investment in a public construction

project. The total investment needed for construction was

approximately USD 18 billion. The planned system was

344.68 km in length, including 252 km of overpasses and

48 km of tunnels and revenue service commenced in 2006.

The THSR line runs from Taipei to Kaohsiung, passing 14

major cities and counties and 77 townships and regions,

including Guantian. Guantian is an agricultural town in

Tainan County, well known for its water caltrop farms and

produce. Due to the abundance of water caltrop farms and

other water-based vegetation farms, Guantian is also an

important habitat for many species of water birds especially

the rare Pheasant-tailed jacana.
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The Pheasant-tailed jacanas are found in Southern

China, the Philippines, and the Middle of the Southern

Peninsula, as well as in Taiwan. The rear of the jacana’s

neck is golden in color and its feathers are dazzling. The

males take on the responsibility for the incubation of the

eggs and the care of the hatchlings. The jacana is a con-

spicuous and unmistakable bird that builds its nest on the

water caltrops, lotus leaves, and other floating vegetation,

in order to prevent attack from land predators. In accor-

dance with the studies by Deng (2002, 2010), Chen (2008),

Chiu (2004) and Ueng (2008), several essential survival

factors influencing the future population status of the

Pheasant-tailed jacana are shown in Fig. 2. Brushwood

and shrubbery provide a buffer against enemies; swamp-

land is a place for nesting; embankments prevent distur-

bance to breeding and also provide shelter from cold

winds; water caltrop is an important place for nesting,

foraging, and resting; mud is essential for winter foraging;

rice is the secondary food source; water quality influences

survival; and finally, exterior threats from human distur-

bance or predators also affect the future population status.

These factors determine the suitability of breeding envi-

ronment, hibernacula surrounding, foraging condition, and

habitat (see Fig. 2).

Pheasant-tailed jacanas used to be quite a common

sight on farmlands in Taiwan. However, the development

of freeways through different ponds, farmland, and other

water caltrop production regions has caused a decrease in

wetland habitats and has resulted in a severe reduction in

their numbers. Today, the Pheasant-tailed jacana is one of

the most endangered bird species in the world. Therefore,

the number of the Pheasant-tailed jacana is an indicator of

the success of any complete fully functioning wetland

ecosystem where the Pheasant-tailed jacana is to be found.

Unfortunately, the THSR was built across the most

important habitat for the Pheasant-tailed jacana, Hulu

pond, and many water caltrop farms and jacana’s natural

habitat were disturbed, as shown in Fig. 2.

In this study, four scenarios for the future population

status of the Pheasant-tailed jacanas are discussed in the

EIA report. The first scenario is the baseline condition (BC).

Hulu pond is the largest, stable habitat for the jacana because

it contains a large amount of water chestnut. However, in

winter, water chestnut wilt and no floating leaves are avail-

able, so the jacana must live in ditches, abandoned fishponds,

or riverbanks, leading to their predation by dogs or other

animals. Suitable ponds for the jacana usually have deep

embankments, but in the Hulu pond many embankments are

Fig. 1 The major habitat of the Pheasant-tailed jacanas, Hulu pond, and its disturbance by the construction of the THSR
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shallow, which causes a lack of shelter and allows interfer-

ence from the outside. In addition, illegal industrial waste-

water from the nearby Kuantien Industrial Park has been

discharged into the pond, leading to eutrophication in the

pond, and the excessive use of pesticides in the surrounding

agricultural areas has polluted the water. The second sce-

nario is the prediction of the impact without mitigation

measures (PIWOM). During the construction of the THSR,

personnel, vehicles, and construction equipment cause noise,

vibration, and pollution, which seriously affects the breed-

ing, foraging, habitat, and hibernacula of the jacana. The

third scenario is the prediction of the impact with mitigation

measures (PIWM). The mitigation measures include reduc-

ing the scale of construction in the area, using low-noise

construction equipment/technology and avoiding building

piers in the pond. Waste soil and wastewater are also pre-

vented from being discharged into the pond, to avoid pol-

lution of the water. The construction period should also take

account of the ecology of the jacana, and construction should

be avoided from October to April. The fourth scenario is the

prediction of the impact with a restoration program (RP).

Tainan County and THSR reserved a district approximately

2 km away from Hulu pond, to create a habitat in which the

jacanas can live and breed. This land was chosen because it is

a potential wetland close to breeding populations (Hulu

pond) and is an easily accessible water resource (Chi-Nan

irrigation system). The land is divided into two parts of 7 and

8 hectares on each side by Chi-Nan irrigation system. The

7-hectare area to the north includes a large pool, two small

ponds, and a nursery pond. There are another four large

Fig. 2 Essential survival factors influencing the future population status of the Pheasant-tailed jacana (shown by the BBN model)
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ponds in the 8-hectare area to the south. Water chestnuts will

be planted in the early phase, and more aquatic plants will be

added in the future. Winter is usually dry and the water

supply is scarce in southern Taiwan, but because the ponds to

the south are deeper they are able to retain enough water to

ensure the survival of animals. In winter, when water

chestnuts die, other than putting in man-made islands, fra-

grant lilies and aquatic plants that grow in the winter will be

planted in the ponds, to make them more habitable for the

jacanas in winter. The detailed information for the four

scenarios is shown in Table 2.

Bayesian belief network

A BBN is a directed acyclic graph wherein the nodes rep-

resent random variables (Xi) that have several possible states

and the arrows connect pairs of nodes and show their prob-

abilistic cause-and-effect relationships. Each node with

parents is associated with a conditional probability table that

contains many CPs and quantifies the uncertain effects that

the parents have on the node; those nodes without a parent

have a probability distribution over all possible states. These

probabilities are evaluated using historical data, expert

judgment, or a combination of both, as shown in Table 1.

A BBN has an associated computational structure, so it can

calculate the bi-directional propagations of beliefs between

nodes and ultimately determine a probability distribution

over all possible states for each node, for a given set of

evidence. This feature can be used to test scenarios, under

either data-driven or goal-driven circumstances.

There are three important elements in the development of

a BBN (Liu et al. 2012): nodes (key factors), networks

Table 2 The detailed information for the four scenarios

Scenario BC PIWOM PIWM RP

Brushwood

and

shrubbery

Abundant Acceptable Acceptable Very

abundant

Exterior threat Slight Serious Moderate Slight

Swampland Abundant Limited Acceptable Abundant

Embankment Acceptable Limited Limited Abundant

Water caltrop Acceptable Limited Acceptable Very

abundant

Mud Abundant Limited Acceptable Very

abundant

Rice field Acceptable Acceptable Acceptable Acceptable

Water quality Acceptable Bad Acceptable Very

abundant

Fig. 3 The development procedure for an expert-driven BBN using fuzzy logic
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(causal relationships), and CPs (uncertainty causal rela-

tionships). For the assessment of rare animals, there is no

relevant information, so these three elements are established

by means of an expert panel. The expert panel consists of the

authors: an ornithologist and several specialists in environ-

mental management or information systems, who formulate

the BBN model according to the guidelines proposed by

Marcot et al. (2006), as shown in Fig. 3. Firstly, the experts

identify the key factors affecting the Pheasant-tailed jacana,

as detailed by related literature, to create influence diagrams

and develop an initial, tentative BBN model. The tentative

BBN model is then revised following an interview with the

ornithologist. The fuzzy logic system is then designed by the

expert panel and the associated 3,925 fuzzy rules are

extracted from the information provided by the ornithologist.

The 19,625 CPs are determined using the fuzzy logic system.

An iterative process is then used to calibrate the fuzzy rules,

before a final workable set of CPs is produced, which creates

the final BBN model.

The use of fuzzy logic to generate CPs

It is very difficult for experts to evaluate the 19,625 CPs;

therefore, fuzzy logic is used to help the experts. For

example, the suitability of the foraging environment is

determined by the conditions of the water caltrop and rice

fields; the 125 CPs are shown in Table 3. The five CPs in

row no. 17 of Table 3, P = (Foraging = |water cal-

trop = abundant and rice field = limited), demonstrate the

derivation of the fuzzy logic.

Fuzzy logic (Zadeh 1996, 2002) is a tool with the ability

to compute with words for the analysis of complex systems

and decisions, in order to model qualitative human thought

processes. Fuzzy logic represents qualitative perception-

based reasoning by ‘‘IF–THEN’’ fuzzy rules, which makes

it easier for experts to express their judgment of CPs. In the

suitability of foraging example, the evaluation rules for

generating the associated CPs are easily seen in Table 4,

where ‘‘water caltrop,’’ ‘‘rice field,’’ and ‘‘the suitability of

Table 3 The 125 conditional probabilities for the suitability of the foraging environment

No Water caltrop (1–5) Rice field (1–5) Foraging (%)

Very unsuitable Unsuitable Acceptable Suitable Very suitable

1 Very limited Very limited 86.7 10.5 1.0 1.0 1.0

2 Very limited Limited 83.3 13.9 0.9 0.9 0.9

3 Very limited Acceptable 5.1 90.9 2.0 1.0 1.0

4 Very limited Abundant 0.9 86.5 10.8 0.9 0.9

5 Very limited Very abundant 0.9 84.5 12.7 0.9 0.9

6 Limited Very limited 4.1 91.8 2.1 1.0 1.0

7 Limited Limited 3.7 85.2 9.3 0.9 0.9

8 Limited Acceptable 0.9 88.1 9.2 0.9 0.9

9 Limited Abundant 0.9 6.5 90.7 0.9 0.9

10 Limited Very abundant 0.9 3.5 84.3 10.4 0.9

11 Acceptable Very limited 0.9 86.5 10.8 0.9 0.9

12 Acceptable Limited 1.0 5.7 91.4 1.0 1.0

13 Acceptable Acceptable 0.9 4.4 86.7 7.1 0.9

14 Acceptable Abundant 0.9 0.9 90.1 7.2 0.9

15 Acceptable Very abundant 0.9 0.9 9.2 88.1 0.9

16 Abundant Very limited 0.9 6.6 86.8 4.7 0.9

17 Abundant (3.988) Limited (2.126) 0.9 0.9 85.7 11.6 0.9

18 Abundant Acceptable 0.9 0.9 7.2 90.1 0.9

19 Abundant Abundant 0.9 0.9 6.9 86.2 5.2

20 Abundant Very abundant 0.9 0.9 0.9 91.7 5.5

21 Very abundant Very limited 1.0 1.0 7.8 89.2 1.0

22 Very abundant Limited 0.9 0.9 6.4 90.9 0.9

23 Very abundant Acceptable 0.9 0.9 0.9 89.1 8.2

24 Very abundant Abundant 0.9 0.9 0.9 8.1 89.2

25 Very abundant Very abundant 0.9 0.9 0.9 6.4 90.9
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foraging’’ are linguistic variables (Zadeh 1975) and ‘‘very

limited,’’ ‘‘limited,’’ ‘‘acceptable,’’ ‘‘abundant,’’ ‘‘very

abundant,’’ ‘‘very unsuitable,’’ ‘‘unsuitable,’’ ‘‘acceptable,’’

‘‘suitable,’’ and ‘‘very suitable’’ are the possible fuzzy

values, which are defined by Gaussian distribution, as

shown in Fig. 4. Instead of widely used triangular mem-

bership functions, the Gaussian distribution is used herein

because a study (Mandal et al. 2012) has made a compari-

son among the predicted data using different membership

functions and it indicated that the Gaussian distribution has

less error in prediction of data than the triangular one.

In order to account for any bias due to subjective

judgment, the values for ‘‘water caltrop = abundant’’ and

‘‘rice field = limited’’ are randomly selected around the

peak of the Gaussian distributions; they are 3.988 and

2.126, respectively. The two values are fed into this

inference mechanism and fuzzy logic proceeds. Fuzzy

logic is easily explained using a graphical representation,

as shown in Fig. 4. This figure shows the three major steps

involved in inferring a conclusion, using fuzzy reasoning

(Liu and Lai 2009): computing compatibility, truncating

conclusions, and aggregating truncated conclusions. The

first step defines compatibility as the similarity of an

antecedent, which refers to a fact having the same lin-

guistic variable, or the suitability of a specific rule with

regard to several facts, as its respective antecedents. For

Rule 13, the compatibility of ‘‘water caltrop = abundant’’

with ‘‘water caltrop = acceptable’’ is 0.07, and for ‘‘rice

field = limited,’’ its compatibility with ‘‘rice

field = acceptable’’ is 0.13, so the overall compatibility of

Rule 13 with the four facts is 0.07 9 0.13, which is 0.01. It

should be noted that ‘‘algebraic product’’ is chosen as the

t-norm operator, rather than using another more widely

used t-norm operator, ‘‘min,’’ because the t-norm operator,

‘‘product,’’ makes the conclusion sensitive to every input,

whereas only one input controls the conclusion in the case

of the t-norm operator, ‘‘min.’’ The compatibility of other

rules is calculated in the same way. The second step

computes the degree to which the antecedents are satisfied

by each rule. As shown in Fig. 4, a new conclusion is then

inferred, by truncating the Gaussian conclusion of each rule

with its corresponding compatibility. The last step aggre-

gates several inferred conclusions with the same linguistic

variable. Aggregation is the process by which the fuzzy

sets representing the truncated conclusions of triggered

rules are combined into a single fuzzy set. In Fig. 4, the

final conclusion is aggregated by taking the union of all

truncated conclusions. Ultimately, the conditional possi-

bilities for ‘‘the suitability of foraging = very unsuitable,’’

‘‘foraging = unsuitable,’’ ‘‘foraging = acceptable,’’ ‘‘for-

aging = suitable,’’ and ‘‘foraging = very suitable’’ are

0.00, 0.00, 0.96, 0.13, 0.00, respectively. However, the

lowest possibility, 0.01, is tolerated in the situation where

the possibility is zero because every state of the suitability

of foraging is possible and its possibility should be greater

than zero. Therefore, these conditional possibilities are

further edited, as follows, and their summation is 1.12.

Poss(Foraging = very unsuitable | water cal-

trop = abundant and rice field = limited)

=0.01

Poss(Foraging = unsuitable | water caltrop = abundant

and rice field = limited)

=0.01

Poss(Foraging = acceptable | water caltrop = abundant

and rice field = limited)

=0.96

Poss(Foraging = suitable | water caltrop = abundant

and rice field = limited)

=0.13

Table 4 Fuzzy rules for generating the CPs of foraging environment

Rule No IF part THEN part

Water caltrop Rice Field Foraging

1 Very limited Very limited Very unsuitable

2 Very limited Limited Very unsuitable

3 Very limited Acceptable Unsuitable

4 Very limited Abundant Unsuitable

5 Very limited Very abundant Unsuitable

6 Limited Very limited Unsuitable

7 Limited Limited Unsuitable

8 Limited Acceptable Unsuitable

9 Limited Abundant Acceptable

10 Limited Very abundant Acceptable

11 Acceptable Very limited Unsuitable

12 Acceptable Limited Acceptable

13 Acceptable Acceptable Acceptable

14 Acceptable Abundant Acceptable

15 Acceptable Very abundant Suitable

16 Abundant Very limited Acceptable

17 Abundant Limited Acceptable

18 Abundant Acceptable Suitable

19 Abundant Abundant Suitable

20 Abundant Very abundant Suitable

21 Very abundant Very limited Suitable

22 Very abundant Limited Suitable

23 Very abundant Acceptable Suitable

24 Very abundant Abundant Very suitable

25 Very abundant Very abundant Very suitable
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Poss(Foraging = very suitable | water caltrop = abun-

dant and rice field = limited)

=0.01

The upper bound of a probability measure is the possi-

bility measure (Dubois and Prade 2010), i.e.,

P(�) ^ Poss(�). However, the CPs of the suitability of

foraging over the five possible states are assumed to be

proportional to the CPs. Therefore, the five CPs in row no.

17 of Table 3 are derived as follows:

P(Foraging = very unsuitable | water caltrop = abun-

dant and rice field = limited)

=0.01/1.12

=0.009

P(Foraging = unsuitable | water caltrop = abundant and

rice field = limited)

=0.01/1.12

=0.009

P(Foraging = acceptable | water caltrop = abundant

and rice field = limited)

=0.96/1.12

=0.857

P(Foraging = suitable | water caltrop = abundant and

rice field = limited)

=0.13/1.12

=0.116

Fig. 4 Graphical representation

of fuzzy logic
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P(Foraging = very suitable | water caltrop = abundant

and rice field = limited)

=0.010/1.12

=0.009

Results and discussion

Model development and evaluation

A widely used software package, Netica (Norsys Software

Corp. Canada), was employed to implement the BBN

model. Its graphical user interfaces makes it easy for users

to build the network structure manually. It offers a mech-

anism for learning CPs from cases, but this was not used

because of the insufficient number of cases. Instead, the

fuzzy logic is used to generate the CPs and is implemented

with the MATLAB Fuzzy Logic Toolbox.

Sometimes it is useful to know the degree to which a

belief in a particular node is influenced by findings at other

nodes. Netica computes a node’s ‘‘sensitivity to findings,’’

using the mutual information. In probability theory and

information theory, the mutual information of two random

variables is a quantity that measures the mutual depen-

dence of the two random variables. The mutual information

determines which variables and states of variables are more

influential, with respect to the target variable. It shows

when small changes in the probability of a state cause great

changes in the probability distribution of the target variable

(Aguilera et al. 2011). The information also helps to

identify errors in either the network structure or the CPs

and provides guidance for the collection of further data or

for eliciting direct expert evaluation (Pollino et al. 2007a).

For the case study, the result for the sensitivity to findings

is shown in Table 5. For the target node (future population

status), the suitability of breeding, the suitability of for-

aging, water caltrop, and the suitability of habitat are the

most crucial survival factors. It should also be noted that

water caltrop is the most crucial survival factor for the

suitability of breeding, foraging, and habitat, simulta-

neously, because it provides a space for nesting, foraging,

and resting.

Scenario testing

Four scenarios are considered in the EIA report: the

BC, the PIWOM, the PIWM, and the prediction of the

impact with a RP. For every scenario, the possible

states for each survival factor are shown in Table 2,

which are evaluated by authors primarily based on the

EIA report and other supplemental materials such as

reports (Chiu 2004; Ueng 2008), theses (Chen 2008;

Deng 2010), and related discussion on the Internet. The

detailed information for the four scenarios (Table 2) is

the input of the BBN model, and the probability dis-

tribution over all possible states for each survival factor

is then obtained, as shown in Table 6. For the BC, the

most probable suitability of ‘‘breeding’’ is ‘‘accept-

able,’’ with the highest probability being 90.09 %; the

most probable suitability of ‘‘foraging’’ is ‘‘accept-

able,’’ with the highest probability being 86.73 %; the

most probable suitability of ‘‘habitat’’ is ‘‘acceptable,’’

with the highest probability being 88.29 %, and the

most probable suitability of ‘‘hibernacula’’ is ‘‘accept-

able,’’ with the highest probability being 90.91 %.

Ultimately, the most probable status of the future

population of the Pheasant-tailed jacanas is ‘‘moder-

ate,’’ with the highest probability being 88.56 %, as

demonstrated in Fig. 3 and shown in the BC column of

Table 6. Because of the construction work for the

Taiwan High-Speed Railway, the most probable suit-

ability of ‘‘breeding,’’ ‘‘foraging,’’ ‘‘habitat,’’ and

‘‘hibernacula’’ is shifted one level to ‘‘unsuitable,’’

‘‘unsuitable,’’ ‘‘unsuitable,’’ and ‘‘unsuitable,’’

Table 5 Sensitivity to a target node due to a finding in its relevant

survival factors

Target node Important relevant survival

factor

Mutual

information

Future population status Breeding 0.43275

Foraging 0.37896

Water caltrop 0.37488

Habitat 0.35407

Hibernacula 0.13050

Embankment 0.08780

Exterior threat 0.02639

Mud 0.01906

Rice field 0.01315

Water quality 0.00621

Swampland 0.00394

Brushwood and shrubbery 0.00314

Breeding Water caltrop 0.31002

Embankment 0.08980

Swampland 0.06019

Brushwood and shrubbery 0.04809

Exterior threat 0.03705

Hibernacula Embankment 0.62838

Mud 0.28274

Foraging Water caltrop 0.78097

Rice field 0.20053

Habitat Water caltrop 0.43615

Exterior threat 0.17337

Water quality 0.08253
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respectively, and the most probable status of the future

population of the Pheasant-tailed jacanas is further

rated as ‘‘weak,’’ with the highest probability being

84.01 %, as shown in the PIWON column of Table 6.

If the mitigation measures, as described in the EIA

report (section ‘‘Materials and methods’’), are taken, the

analysis shows that only the suitability of habitat is

improved from ‘‘unsuitable’’ to ‘‘acceptable,’’ because the

mitigation measures primarily reduce the disturbance due

to construction (exterior threat) and water pollution. The

future population of the Pheasant-tailed jacanas is then

considered to be a combination of ‘‘weak,’’ with a proba-

bility of 62.53 %, and ‘‘moderate,’’ with a probability of

34.39 %, as shown in the PIWN column of Table 6. This

result implies that the PIWN is not satisfactory. A useful

feature of the BBN is that it can help to manage environ-

mental or ecological risk by testing causes, given the

hypothetical effects (Hart and Pollino 2008). Assuming

that the EIA committee ask the developer to maintain the

suitability of ‘‘breeding,’’ ‘‘foraging,’’ ‘‘hibernacula,’’ and

‘‘habitat’’ as ‘‘acceptable,’’ during the construction work,

the BBN model suggests that the condition of exterior

threat should be improved to the level of ‘‘very slight,’’

with a highest probability of 79.84 %. This ‘‘very slight’’

exterior threat is very difficult or very costly to achieve,

during the construction work, because it is better than the

‘‘slight’’ exterior threat for the BC. Another solution is the

RP, as described in section ‘‘Materials and methods’’. The

RP largely improves the environmental conditions for the

Pheasant-tailed jacanas. For the RP, the most probable

suitability of ‘‘breeding’’ is ‘‘suitable,’’ with the highest

probability being 85.71 %; the most probable suitability of

‘‘foraging’’ is ‘‘suitable,’’ with the highest probability being

89.09 %; the most probable suitability of ‘‘habitat’’ is

‘‘very suitable,’’ with the highest probability being

88.39 %, and the most probable suitability of ‘‘hibernacu-

la’’ is ‘‘suitable,’’ with the highest probability being

90.09 %. Ultimately, the most probable status of the future

population of the Pheasant-tailed jacanas is ‘‘strong,’’ with

the highest probability being 75.49, as shown in the RP

column of Table 6.

Conclusion

This study proposes a BBN model for ecological assess-

ment in EIA, whose features include the representation of

the demonstration of the probabilistic relationships

between survival factors and adverse ecological effects,

using the graphical structures of the BBN, the construction

of stress–response relationships, using the CPs of the BBN,

and the capability to predict the population status of a rare

animal using the inference mechanism of the BBN. The

19,625 CPs in the BBN model are very difficult to gener-

ate, because of the lack of sufficient data concerning rare

animals. Therefore, this paper uses fuzzy logic to allow

experts to generate these CPs.

In the case study, the status of the future population of

the Pheasant-tailed jacana is affected by the construction

work for the Taiwan High-Speed Railway. In terms of the

BC, the most probable status of the future population is

‘‘moderate,’’ with the highest probability being 88.56 %,

but this is reduced to ‘‘weak,’’ with the highest probability

Table 6 The derived probability distributions for the survival factors

for the four scenarios

Survival factor State BC

(%)

PIWOM

(%)

PIWM

(%)

RP

(%)

Breeding Very

unsuitable

0.90 0.93 0.94 0.89

Unsuitable 0.90 87.85 86.79 0.89

Acceptable 90.09 9.35 10.38 5.36

Suitable 7.21 0.93 0.94 85.71

Very

suitable

0.90 0.93 0.94 7.14

Foraging Very

unsuitable

0.88 0.92 0.92 0.90

Unsuitable 4.42 88.07 88.07 0.90

Acceptable 86.73 9.17 9.17 0.90

Suitable 7.08 0.92 0.92 89.09

Very

suitable

0.88 0.92 0.92 8.18

Habitat Very

unsuitable

0.90 1.06 0.95 0.89

Unsuitable 0.90 94.68 4.76 0.89

Acceptable 88.29 2.13 92.38 0.89

Suitable 9.01 1.06 0.95 8.93

Very

suitable

0.90 1.06 0.95 88.39

Hibernacula Very

unsuitable

0.90 2.63 2.63 0.90

Unsuitable 0.90 87.72 87.72 0.90

Acceptable 90.91 7.89 7.89 0.90

Suitable 6.36 0.88 0.88 90.09

Very

suitable

0.90 0.88 0.88 7.21

Future

population

status

Very weak 0.97 1.04 0.96 0.91

Weak 1.26 84.01 62.53 0.91

Moderate 88.56 12.78 34.39 2.23

Strong 8.24 1.12 1.15 75.49

Very strong 0.97 1.04 0.96 20.45
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being 84.01 %, in the construction phase. It is slightly

improved (a combination of ‘‘weak,’’ with a probability of

62.53 %, and ‘‘moderate,’’ with a probability of 34.39 %),

if the mitigation measures are taken, but the result is not

satisfactory. Ultimately, the RP significantly improves the

environmental conditions for the Pheasant-tailed jacana,

and the most probable status of the future population of the

Pheasant-tailed jacana is ‘‘strong,’’ with the highest

probability being 75.49 %.
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