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Abstract Groundwater flow and mass transport predic-

tions are subjected to uncertainty due to heterogeneity of

hydraulic conductivity, whose variability in space is con-

siderably higher than that of other hydraulic properties

relevant to groundwater flow. To characterize the distri-

bution of hydraulic conductivity, random space function

(RSF) is often used. The Bayesian approach was applied to

quantitatively study the effect of parameter uncertainty in

RSF on a hypothetical two-dimensional uniform ground-

water flow and mass transport. Specifically, the parameter

uncertainty transmitted to macrodispersion in mass trans-

port model was also inferred. The results showed that the

posterior probability distributions of parameters were

updated after Bayesian inference. The numerical experi-

ments indicated that the overall predictive uncertainty was

increased with simulating time along the flow direction. As

to the relative contribution of the two types of uncertainty,

it indicated that parametric uncertainty was a little more

important than stochastic uncertainty for the predictive

uncertainty of hydraulic head. When the uncertainty of

hydraulic head as well as macrodispersion was transported

to mass transport model, a much bigger contribution of

stochastic uncertainty was observed. Therefore, parametric

uncertainty should not be neglected during the process of

subsurface simulation.

Keywords Groundwater � Heterogeneous � Bayesian

approach � Uncertainty � Hydraulic conductivity

Introduction

A major difficulty in accurately describing and simulating

subsurface flow and mass transport arises from the uncer-

tainty of subsurface system. The uncertainty stems from a

number of factors including parametric uncertainty, spatial

variability, concept uncertainty and boundary uncertainty

(Rojas et al. 2010). Among them, parametric uncertainty

caused by heterogeneity of geological properties has

aroused widely attention. Hydraulic conductivity, which

reflects the characteristics of porous media, is considered to

be the most important uncertain input parameter of

groundwater flow models (Zeng et al. 2009). Its variability

in space is considerably higher than that of other hydraulic

properties relevant to groundwater flow, and it can vary by

orders of magnitude over a few meters (Feyen et al. 2003).

Hydraulic conductivity varies in space in a nondeter-

ministic way, generally following some kind of structural

pattern. To characterize the spatial variability of the

hydraulic conductivity, random space function (RSF) is

often adopted (Ezzedine and Rubin 1996; Feyen et al.

2003; Franssen et al. 2003; Kerrou et al. 2008; Hassan et al.

2009; Liang et al. 2009, 2010). However, scarcity of
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measurements leads to generating spatial structure pattern

of hydraulic conductivity at a few sampling location, which

arouse uncertainty of spatial hydraulic conductivity distri-

bution. In practice, the parameters are inferred conditional

to measurements in a process known as ‘‘parameter esti-

mation’’. In fact, the practice significance of parameter

estimation is more apparent as models improve in their

description of physical processes. The development of

accurate parameter estimation methods holds the promise

of allowing the full utilization of measurements, which are

collected at high cost, in achieving the best possible site

characterization. Many articles have been published on this

subject (Yeh 1986; Sun 1994), and many of the currently

available methods have been developed, including classical

deterministic approach related to generalizations of the

least squares or maximum-likelihood approach (Yeh and

Yoon 1981) and Bayesian approach. The latter can describe

natural uncertainties in the model parameters from limited

and imperfect data. The inferred results expressed in terms

of probability distribution are known as the posterior dis-

tribution, which can be used to summarize parameter

uncertainty and quantify its effects on model prediction.

Parameter uncertainty is quantified by a prior probability

distribution, which represents historical or expert infor-

mation before any new data are collected, and a likelihood

function, which characterizes the proximity of simulated

and observed data. Feyen et al. (2003) were the first to pay

attention to the uncertainty of the parameters in RSF and

apply Bayesian approach to infer them. They found that the

predictions of the Bayesian approach was more conserva-

tive compared with classical approach. The same results

were also obtained by Franssen et al. (2003) under the

framework of Bayesian approach.

The uncertainty of hydraulic conductivity can cause the

changes of other input parameters. The macrodispersion,

one of the important parameters of groundwater mass

transport model, can be viewed as a parameter reflecting

the spatial variability of hydraulic conductivity. Experi-

mental and theoretical results have suggested that macro-

dispersion of solute is essentially produced by the spatial

variation of the fluid velocity resulting from the heteroge-

neity of hydraulic conductivity (Fu and Gómez-Hernández

2009). Therefore, the uncertainty of macrodispersion

caused by uncertainty of hydraulic conductivity should be

included in the analysis.

The Bayesian approach provides a rigorous framework

to represent the uncertainty lies in the parameter in natural.

The parameter is then stochastically chosen from its

inferred posterior probability distribution using Monte

Carlo (MC) sampling technique and is used to generate

spatial distribution of hydraulic conductivity, which is the

input of groundwater flow model. The uncertainty of

parameters in RSF and macrodispersion is then transported

to groundwater flow and mass transport model. During the

process related above, two types of uncertainty, including

parametric uncertainty and stochastic uncertainty, lie in.

This paper demonstrates the use of Bayesian approach to

estimate posterior probability distribution of parameters in

RSF and macrodispersion. With each drawn sample, the

groundwater flow and mass transport model must be run to

produce the output that is compared with the reference data

to quantificationally characterize the uncertainty. Specially,

we focus on addressing the contribution of stochastic

uncertainty and parametric uncertainty on the predictive

hydraulic head and mass concentration. This paper is

organized as follows: Section ‘‘Materials and methods’’

presents a brief background about the Bayesian approach

and the relationship between hydraulic conductivity and

macrodispersion. In Sect. ‘‘Results and discussion’’, a

hypothetical steady two-dimensional flow and transport

field is given to test the parameter uncertainty of predictive

mass transport. Results and a summary of the key aspects

of the achieved uncertainty reduction in model input as

well as output are also presented. The main conclusions

drawn from the analysis are presented in Sect.

‘‘Conclusion.’’

Materials and methods

Spatial stochastic hydraulic conductivity field

Hydraulic conductivity (K) is found to be log-normally or

ln-normally distributed in a heterogeneous aquifer (Sud-

icky 1986). Let K(x) denote the stochastic hydraulic con-

ductivity field, and its ln form is denoted as Y(x) = ln K(x),

where x is the unmeasured spatial location. Gaussian sta-

tionary RSF, with a constant average value of ln K(x) and

an isotropic exponential two-point covariance function, is

adopted to quantitative describe the spatial continuity of

Y(x):

Y xð Þ ¼ l ð1Þ

V hð Þ ¼ Y xþ hð Þ � Y xþ hð Þ
h i

Y xð Þ � Y xð Þ
h i

¼ r2q hð Þ

ð2Þ

V hð Þ ¼ r2 exp hj j=uð Þ ð3Þ

where l is the expected value or average value of ln K(x),

V(h) is the two-point covariance function of the process

with lag separation vector h, the variance r2 and the cor-

relation function u is the integral scale of the spatial sto-

chastic process. To generate hydraulic conductivity as

input of groundwater flow model, l, r2 and u should be

determined from limited measured data. Here, we denote

parameters as h = (l, r2, u). The process of parameters

estimation introduces uncertainty from inability to exactly
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estimate hydraulic conductivity at unmeasured locations,

which should be considered in prediction.

Macrodispersion

Macrodispersion is an important parameter of groundwater

mass transport model. It is defined as the change rate of the

second-order moment of a mass plume. Studies on the

effects of hydraulic conductivity on macrodispersion of

solutes have shown the macrodispersion coefficients that

can be calculated from the statistical of hydraulic con-

ductivity. We compute the macrodispersion coefficients

according to Eq. 4

AL ¼
r2

ln KkL

c2
ð4Þ

where AL is the apparent longitudinal macrodispersion

along the groundwater flow direction, r2
ln K is the variance

of ln K, kL is the relevant scale of ln K, and c is experience

flow factor.

Fig. 1 Hypothetical distribution of hydraulic conductivity, hydraulic

head and mass concentration: a hypothetical hydraulic conductivity

field, b locations of sampled hydraulic conductivity, c reference

distribution of hydraulic head, d reference distribution of mass

concentration for t = 100 days, e reference distribution of mass

concentration for t = 200 days, and f reference distribution of

mass concentration
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Bayesian approach to estimate parameter

Bayesian approach can deal with uncertainty that stems

from the imperfect knowledge of parameters. In Bayesian

approach, the parameter h is characterized by posterior

probability distribution. It is obtained by combining the

prior information about the parameters before the mea-

surements are introduced with the likelihood information

about the proximity of simulated and observed data

according to Bayes’ rules. The prior information can be

obtained from borehole description, expert judgments,

previous studies, etc., and the likelihood information can be

obtained from the likelihood function. Assume that the ln

form of observed hydraulic conductivity is y = (y1,

y2,…,yn)T, on the basis of Bayesian inference, the resulting

predictive posterior distribution of the ln K is obtained

p Y xð Þjyð Þ ¼
Z

p Y xð Þjy; hð Þp hjyð Þdh ð5Þ

where p(h|y) is the prior probability distribution, p(Y(x)|y,

h) is the likelihood function and p(Y(x)|y) is the posterior

probability distribution.

The realization of ln K is MC sampled posterior from its

probability distribution and transformed to K, which is used

as inputs of groundwater flow model. The predictive

hydraulic head is given by:

p H x; tð Þjyð Þ ¼
Z

f p Y xð Þjy; hð Þp hjyð Þ; t½ � ð6Þ

The posterior probability distribution of h was applied

to calculate AL, which is used as one of input parameters

Table 1 Prior distribution of parameters

Parameter Prior probability distribution Hypothetical value

l Uniform [0, 5] 4.1052

r2 Uniform [0, 2] 0.5

u Uniform [0, 300] 200

Fig. 2 Evolution of the SR score for parameter h = (l, r2, u) using

MH algorithm

Fig. 3 Marginal posterior probability distributions for parameter h = (l, r2, u)
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of mass transport model. After numerical simulation, the

predictive distribution of mass transport is given by:

p C x; tð Þjyð Þ ¼
Z

f p Y xð Þjy; hð Þp hjyð Þ;AL; t½ � ð7Þ

The Bayesian predictive hydraulic heads and mass

distribution can be seen as the transformation of the

predictive ln K and AL, with the function given by the

groundwater flow and mass transport equation.

Therefore, through Bayesian inference, the predictive

hydraulic head and mass distribution are conditional on

the measurements only, and thus, the uncertainty about

parameters and stochastic simulation is incorporated in

the predictions.

Uncertainty assessment

To assess predictive uncertainty of mass transport in

groundwater, three statistics are defined. I1 measures the

precision of the realizations since it evaluates the ensemble

variance over all the cells. I2 and I3 take the advantage of the

knowledge of the reference field to measure the average

bias and a combination of bias and precision, respectively.

The statistics are defined below:

Table 2 Statistic of posterior distribution for parameters

Parameter Samples Optimal value Mean value Standard deviation Kurtosis value Skew value Minimum value Maximum value

l 15,000 3.8590 3.3123 1.0838 2.8207 -0.6639 0.0106 4.9999

r2 15,000 1.8207 1.7168 0.2060 4.1372 -1.0908 0.7655 2

u 15,000 26.2900 40.6734 26.5748 5.9230 1.2279 0.0022 253.2111

AL 15,000 1.0911 1.5976 1.0449 4.4824 1.0818 0 7.4743

Parameter Samples Percentile

5 % 10 % 25 % 50 % 75 % 90 % 95 %

l 15,000 1.2173 1.7326 2.6194 3.4763 4.1722 4.6095 4.7579

r2 15,000 1.3143 1.4289 1.6032 1.7646 1.8716 1.9417 1.9676

u 15,000 5.5983 10.5724 21.8417 36.1100 54.7319 75.2605 89.7847

AL 15,000 0.2461 0.43745 0.8355 1.4005 2.1455 3.0271 3.6224

Table 3 Assessment of

hydraulic head uncertainty
Uncertainty index I1 I2 I3

U1 0.0328 0.3634 0.2022

U2 0.2667 0.3993 0.2946

U 0.2981 0.4588 0.3887

Table 4 Assessment of mass

transport uncertainty
Uncertainty index Time d I1 I2 I3

U1 100 1.5568 0.2377 2.0291

200 2.7255 0.4239 3.3235

300 3.8254 0.6820 4.7610

U2 100 1.5190 0.1991 1.7438

200 2.5556 0.3921 3.1026

300 3.0350 0.6197 4.5693

U 100 1.6825 0.2861 2.2633

200 3.4180 0.4683 4.1374

300 5.1101 0.7104 6.1422
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I1 ¼
1

n

Xn

i¼1

1

nr

Xnr

r¼1

xi;r � xi

� �2

I2 ¼
1

n

Xn

i¼1

1

nr

Xnr

r¼1

xi;r � xi;ref

�� ��

I3 ¼
1

n

Xn

i¼1

1

nr

Xnr

r¼1

xi;r � xi;ref

� �2

where n is the number of cells, nr is the number of real-

izations, xi,r is the simulated hydraulic head or mass con-

centration value at cell i and realization r, xi;r is the

ensemble average hydraulic head or mass concentration

value over all realizations at cell i, and xi,ref is reference

hydraulic head or mass concentration value at cell i.

Results and discussion

Study domain

A hypothetical steady two-dimensional flow and transport

field in the groundwater constructed by Wilson and Miller

(1978) is adopted to reflect the subsurface flow and solute

transport under the generated hydraulic conductivity field.

The study domain is depicted in plan view in Fig. 1 with a

grayscale overlay of the distribution of ln K(x) generated

by the unconditional sequential Gaussian simulation

(sgsim) algorithm. The study domain is 460 9 310 m2. A

point source releases a small amount of fluid into the

aquifer at 1 m3/day at location of (x = 160, y = 160). The

injected fluid carries a nonreactive solute at a concentration

of 1,000 ppm. The contaminant migrates by advection and

dispersion at a Darcy velocity of 0.33 m/day. The porosity

of the porous medium is 0.3.

The flow model is surrounded by constant-head

boundaries on the east and west borders and no-flow

boundaries on the north and south borders of the study area.

The aquifer is initially pristine with concentrations every-

where equal to zero. The only source of contaminant is

the injection, so flow through the inlet has zero concen-

tration. The steady groundwater flow is simulated using

MODFLOW-96, and the mass transport is simulated using

MT3DMS through the third-order total-variation-dimin-

ishing solution scheme.

Fig. 4 Ensemble average hydraulic head and mass concentration distributions for t = 100 days, t = 200 days and t = 300 days: stochastic

uncertainty
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The sets of ln K(x) measurements are taken regularly

from the study domain of the hypothetical field in Fig. 1.

The study domain is discretized into 46 columns along y-

axis and 31 rows along x-axis. The number and the

location of the measurement taken from the study domain

are the same to remove the effect of measurements. First,

the measurements are used to update prior information to

generate the posterior probability distribution of parameter

h. Next, the conditional ln K(x) field is yielded from h
using conditional sgsim algorithm according to the spatial

scale of ln K(x). Then, ln K(x) field is transformed to

K field and calculated AL. Lastly, K and AL are used as

inputs of groundwater flow and transport model,

respectively.

Predictive posterior of parameter

In the Bayesian approach to estimate parameter h, we

assumed that no information about h was present.

Therefore, uniform distribution is specified as prior dis-

tribution of h. However, in real applications, prior

information about the parameters may be available and

more informative priors can be specified. The prior

probability distribution and hypothetical value of h can

be seen in Table 1. Markov Chain Monte Carlo (MCMC)

approach and specifically the Metropolis–Hastings (MH)

algorithm are applied to update the prior probability

distribution. The MCMC MH algorithm is run with

q = 5 parallel sequences with each having a population

size of s = 20,000. The likelihood of parameter h given

the measurements y is computed using the function

described by Box and Tiao (1992), and the convergence

of the algorithm is assessed using the Scale Reduction

(SR) score
ffiffiffiffiffiffi
SR
p� �

defined by Gelman and Rubin (1992).

If
ffiffiffiffiffiffi
SR
p

is \1.0, the Markov chain is considered to be

converged; otherwise, more runs are needed. In Fig. 2,

the calculated values of
ffiffiffiffiffiffi
SR
p

are plotted against the

number of MCMC iterations. The line plots indicated

that for parameter r2 and u, the parallel sequences

converged to the target distribution rapidly and, for

Fig. 5 Ensemble average hydraulic head and mass concentration distributions for t = 100 days, t = 200 days and t = 300 days: parametric

uncertainty
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parameter l, the parallel sequences converged to the

target distribution after approximately 6,000 iterations.

Using Bayesian approach, the posterior probability dis-

tribution for the parameter h is obtained. The posterior

distribution of h is obtained by statistic generated param-

eter values in MC chains, removing the values of the initial

6,000 times oscillation. Figure 3 presents the marginal

posterior probability distributions for parameter h. The

distributions did not resemble a standard probability dis-

tribution. The summary statistics of the marginal posterior

parameter distributions are given in Table 2. The parame-

ter h is transported to AL, and the calculated AL is also listed

in Table 2. Among them, the optimal value of parameter is

decided by dividing the parameter space into 25 groups and

taking the median of a group with highest probability.

Percentiles help to determine the confidence interval of

parameter and thus reflects the uncertainty of parameter,

for example, 90 % confidence interval is (5th percentile

value, 95th percentile value), 80 % confidence interval is

(10th percentile value, 90th percentile value), and the rest

may be deduced by analogy. The histograms and the sta-

tistics showed that the posterior probability distributions of

parameter h, which did not resemble uniform distribution,

were updated after Bayesian inference.

Uncertainty assessment of hydraulic head and mass

transport

Two types uncertainty for predictive hydraulic head and

mass transport are assessed in the paper, including sto-

chastic uncertainty (U1) and parametric uncertainty (U2).

The overall predictive uncertainty (U), which is contributed

by the two types of uncertainty, is also evaluated. To assess

uncertainty of U1, U2 and U, MC sampling is used to

generate 100 sets of parameter h from the posterior prob-

ability distribution. Each set is used to yield 100 alternative

images of the hydraulic conductivity field by sgsim, which

is used as inputs of the groundwater flow and to update AL.

The corresponding uncertainty assessment index I1, I2 and

I3 are calculated and listed in Tables 3 and 4. Statistical

analysis of the ensemble of predictive hydraulic head and

predictive mass transport for t = 100 days, t = 200 days

and t = 300 days are given in Figs. 4, 5 and 6. The cal-

culated uncertainty assessment index I1, I2 and I3 in

Tables 3 and 4 showed that stochastic uncertainty (U1) and

parametric uncertainty (U2) were contributed to the overall

predictive uncertainty (U) for hydraulic head and mass

concentration simultaneously, which should not be

neglected during the process of simulation. For all time

Fig. 6 Ensemble average hydraulic head and mass concentration distributions for t = 100 days, t = 200 days and t = 300 days: overall

predictive uncertainty
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steps, the uncertainty of predictive distribution of mass

concentration (U) was increased when stochastic uncer-

tainty (U1) and parametric uncertainty (U2) was accounted

for. The mass concentration contour maps also showed that

there was an increase in the zone of 95 % uncertainty

interval along the flow direction.

As to the relative contribution of stochastic uncer-

tainty (U1) and parametric uncertainty (U2) to the

overall predictive uncertainty (U) for hydraulic head and

mass concentration distribution, the numerical experi-

ment in this paper indicated that parametric uncertainty

(U2), which was 87.7, 8.99 and 31.5 % higher than

stochastic uncertainty for I1, I2 and I3, was a little more

important than stochastic uncertainty (U1) for the pre-

dictive uncertainty of hydraulic head (U). However,

when the uncertainty of hydraulic head as well as

macrodispersion was transported to mass transport

model, a much bigger contribution of stochastic uncer-

tainty (U1) than parametric uncertainty (U2) to the

overall predictive uncertainty for mass concentration

distribution (U) was observed. For the simulation time

of 100 days, the stochastic uncertainty was 2.43, 16.24

and 14.06 % higher than parametric uncertainty for I1,

I2 and I3. For the simulation time of 200 days, 6.23 %,

7.50 % and 6.65 % higher of stochastic uncertainty than

parametric uncertainty was observed. And for the sim-

ulation time of 300 days, 20.66, 9.13 and 4.03 % higher

of stochastic uncertainty than parametric uncertainty

was obtained.

Conclusion

Bayesian approach is applied in the paper to quantify

parameter uncertainty and its impact on hydraulic head and

mass transport in heterogeneous aquifer. Specifically, we

focus on inferring parameters in RSF and their effects on

macrodispersion. Two types of uncertainty, parametric

uncertainty and stochastic uncertainty, are addressed. The

simulation results of a hypothetical two-dimensional

groundwater flow and mass transport show that the inferred

posterior probability distribution is updated by Bayesian

approach. The posterior distributions are not obeyed to

uniform distributions. As to the relative contribution of

stochastic uncertainty and parametric uncertainty to the

overall predictive uncertainty for hydraulic head and mass

concentration distribution, the numerical experiment in this

paper indicates that parametric uncertainty is a little more

important than stochastic uncertainty for the predictive

uncertainty of hydraulic head. When the uncertainty of

hydraulic head as well as macrodispersion is transported to

mass transport model, a much bigger contribution of sto-

chastic uncertainty is observed. Therefore, parameters

uncertainty should not be neglected during the process of

head and mass transport simulation in heterogeneous

aquifer.
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Fu JL, Gómez-Hernández JJ (2009) Uncertainty assessment and data

worth in groundwater flow and mass transport modeling using

a blocking Markov chain Monte Carlo method. J Hydrol

364(3–4):328–341

Gelman A, Rubin DB (1992) Inference from iterative simulation

using multiple sequences. Stat Sci 7(4):457–511

Hassan AE, Bekhit HM, Chapman JB (2009) Using Markov Chain

Monte Carlo to quantify parameter uncertainty and its effect on

predictions of a groundwater flow model. Environ Model Softw

24(6):749–763

Kerrou J, Renard P, Hendricks HJ, Franssen H, Lunati I (2008) Issues

in characterizing heterogeneity and connectivity in non-multig-

aussian media. Adv Water Resour 31(1):147–159

Liang J, Zeng GM, Guo SL, Li JB, Wei AL, Shi L, Li XD (2009)

Uncertainty analysis of stochastic solute transport in a hetero-

geneous aquifer. Environ Eng Sci 26(2):359–368

Liang J, Zeng GM, Guo SL, Wei AL, Li XD, Shi L, Du CY (2010)

Optimal solute transport in heterogeneous aquifer: coupled

inverse modelling. Int J Environ Pollut 42(1–3):258–269

Rojas R, Kahunde S, Peeters L, Batelaan O, Feyen L, Dassargues A

(2010) Application of a multimodel approach to account for

conceptual model and scenario uncertainties in groundwater

modeling. J Hydrol 394(3–4):416–435

Sudicky EA (1986) A natural gradient experiment on solute transport

in a sand aquifer: spatial variability of hydraulic conductivity

and its role in the dispersion process. Water Resour Res

22(13):2069–2082

Sun NZ (1994) Inverse problems in groundwater modeling. Kluwer

Academic Publishers Group, Norwell

Wilson JL, Miller PJ (1978) Two-dimensional plume in uniform

ground water flow. J Hydraul Div 104(4):503–514

Int. J. Environ. Sci. Technol. (2015) 12:919–928 927

123



Yeh WWG (1986) Review of parameter identification procedures in

groundwater hydrology: the inverse problem. Water Resour Res

22(1):95–106

Yeh WWG, Yoon YS (1981) Aquifer parameter identifiability with

optimum dimension in parameterization. Water Resour Res

17(3):664–672

Zeng GM, Liang J, Guo SL, Shi L, Xiang L, Li XD, Du CY (2009)

Spatial analysis of human health risk associated with ingesting

manganese in Huangxing Town, Middle China. Chemosphere

77(3–4):368–375

928 Int. J. Environ. Sci. Technol. (2015) 12:919–928

123


	Bayesian approach to quantify parameter uncertainty and impacts on predictive flow and mass transport in heterogeneous aquifer
	Abstract
	Introduction
	Materials and methods
	Spatial stochastic hydraulic conductivity field
	Macrodispersion
	Bayesian approach to estimate parameter
	Uncertainty assessment

	Results and discussion
	Study domain
	Predictive posterior of parameter
	Uncertainty assessment of hydraulic head and mass transport

	Conclusion
	Acknowledgments
	References


