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Abstract Lipases are serine hydrolases that catalyze the

hydrolysis and synthesis of esters formed from glycerol and

long-chain fatty acids, by acting at the oil–water interface.

Lipases from microbial sources have received heightened

attention for an array of industrial applications, and these

enzymes have been well exploited in the environmental

sector as well. In this article, we present an overview of

microbial lipase, including the microorganisms from which

it could be produced; the application of recombinant DNA

technology tools to produce lipase with enhanced proper-

ties, the effective use of waste materials as substrates for

lipase production; the usage of statistical tools to efficiently

optimize the production medium; lipase purification strat-

egies; and the immobilization of the enzyme on a variety of

support materials. The next section of the article provides a

gist of its application in diversified spheres and focusses

exclusively on the environmentally relevant ones. Lipase-

catalyzed esterification, transesterification, and interesteri-

fication reactions, an emerging area of green chemistry;

lipase-mediated in vitro biopolymer synthesis and degra-

dation; and the application of lipase for remediating fat and

oil constituents in wastewater are dealt with in-depth.

When its full potential is harnessed, the enzyme could play

a pivotal role in environmental management.

Keywords Microbial sources � Recombinant lipases �
Immobilization � Biopolymers � Bioremediation

Introduction

With the advent of whole-cell and enzymatic biocatalysts,

chemical catalysts have been superseded to a significant

extent. Factors such as high selectivity, specificity, ability

to act under mild conditions, and nil residual effect have

made enzymes the most sought-after catalysts for a pleth-

ora of reactions. Around 75 % of the industrially used

enzymes are hydrolytic in nature, and lipases (triacyl

glycerol acylhydrolases) (EC. 3.1.1.3) belonging to the

superfamily of serine hydrolases are quite conspicuous

among them.

Lipases unanimously conform to a common structural

organization, viz., the alpha/beta hydrolase fold (Ollis et al.

1992; Nardini and Dijkstra1999). The substrate-binding

site is located inside a pocket on top of the central b-sheet

that is typical of this fold. The catalytic triad of serine,

histidine, and aspartic acid residing at 105-224-187 posi-

tions of the amino acid sequence constitutes the active site

of all serine hydrolases (Uppenberg et al. 1994a, b). This

active site is shielded by a mobile lid, and whether this lid

is closed or open, it determines the enzyme’s inactive or

active state. At the oil–water interface, the lid opens, giving

the substrate access to the active site. Unlike esterases,

lipases do not follow Michaelis–Menten kinetics. The size

of the enzyme has been reported to vary from 19.4 kDa

(Kawasaki et al. 2002) to above 300 kDa for oligomeric

forms, with subunits of around 50 kDa (Salameh 2006).

Lipases catalyze the hydrolysis of esters formed from

glycerol and long-chain fatty acids into di-, monoacyl

glycerols, fatty acids, and glycerol. The general scheme for

reaction catalyzed by lipase is illustrated in Fig. 1. True

lipases differ from esterases owing to the fact that they

require an oil–water interface and do not hydrolyze sub-

strates dissolved in the bulk liquid. It is tough to accurately
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measure the amount of interface and also the parameters of

interfacial tension, surface viscosity, surface potential, etc.

The emulsification of the substrate by using surface active

amphipathic molecules such as detergents can have a

profound impact on the measured enzyme activity.

Apart from catalyzing ester hydrolysis in the aqueous

environment, lipases also catalyze the reverse reactions of

esterification, interesterification, and transesterification in

nonaqueous and microaqueous milieu. They are chemo-,

regio-, and enantioselective and are applied widely in

industrial arenas. They are also an environmentally rele-

vant class of enzymes, contributing toward wastewater

treatment, biopolymer synthesis, etc. The enzyme may be

procured from plant, animal, or microbial sources, with

microbial source being the most agreeable on account of

enzyme stability, substrate specificity, lower production

cost, and ease of manipulation. Hardly 2 % of the immense

microbial biodiversity has been harnessed for enzyme

production, thus justifying the search for new lipases with

improved properties. In this article, we present a compre-

hensive view of microbial lipases, with special emphasis on

how lipase-catalyzed hydrolytic and synthetic reactions

could be exploited for environmental applications.

Sources of microbial lipases

Lipase activities from several bacterial genera have been

documented in the literature, with Bacillus and Pseudo-

monas being the most prominent ones. Among Bacillus

spp, lipases with thermal tolerance have been reported from

thermophilic bacteria such as B. stearothermophilus

(Kambourova et al. 2003) and B. thermoleovorans (Leea

et al. 2001). The crystal structure of lipase from one such

thermophilic organism, B. stearothermophilus, has been

shown to contain a unique zinc-binding site, to which the

organism’s increased thermal stability might be attributed

(Tyndall et al. 2002). Certain strains of B. subtilis (Olus-

esan et al. 2011) and B. coagulans (Kumar et al. 2005) also

produce lipases with thermo-tolerant attributes. The pre-

sence of charged residues and the formation of salt bridges

play a key role in thermostability. The accumulation of

more than two mutations had a dramatic impact on Geo-

bacillus thermodenitrificans EstGtA2 lipase activity at high

temperatures, suggesting an important role of conserved

salt bridge-forming residues in thermostability (Charbon-

neau and Beauregard, 2013). Alkaline lipases are widely

produced by the members of Bacillus genera, including B.

licheniformis (Chakraborty and Raj 2008). Organic solvent

tolerance is yet another useful trait, desirable for catalyzing

synthetic reactions in nearly anhydrous conditions and has

been observed in B. sphearicus (Tamilarasan and Kumar

2012). Enantioselective lipases find applications in pro-

ducing optically pure pharmaceuticals, and B. cereus is

capable of secreting such enzymes (Chen et al. 2007).

Lipase activity has generally been proven to be calcium-

dependent, and the lipase from B. pumilis is an exception to

this norm (Kim et al. 2002). Aneurinibacillus, a genus that

can be differentiated from Bacillus based on 16S rRNA

sequence, also produces a thermostable and organic sol-

vent-tolerant lipase (Masomian et al. 2013).

Several species of Pseudomonas exhibit extracellular

lipolytic activities, with P. fluorescens (Kojima and Shi-

mizu 2003), P. aeruginosa (Ito et al. 2001), P. cepacia, and

P. luteola (Litthauer et al. 2002) being a few of the doc-

umented members. Organic solvent tolerance (Rahman

et al. 2005a, b), specificity for monoacyl glycerides (Sa-

kiyama et al. 2001), and polyunsaturated fatty acid bonds

(Kojima and Shimizu 2003) are noteworthy characteristic

features observed in some of these lipases. Various efflux

pumps—encoding sequences, such as AcrA/B/C/D/F —are

related to organic solvent tolerance and are present in the

genomic DNA sequences of P. cepacia complex strains

(Ramos et al. 2002). Certain Staphylococci such as S.

aureus (Sarkar et al. 2012) and S. xylosus (Bouaziz et al.

2011) are also capable of lipid hydrolysis. The desirable

features of thermal and organic solvent stability are pos-

sessed by a few members (Bouaziz et al. 2011) of this

Fig. 1 General scheme for reactions catalyzed by lipases
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genus, and quite interestingly, certain strains of halophilic

Staphylococci produce an enzyme with remarkable toler-

ance to high salt concentrations (Daoud et al. 2013).

Apart from the above-mentioned bacterial genera, Aer-

omonas caviae (Velu et al. 2012), Acinetobacter calco-

aceticus (Pratuangdejkul and Dharrnsthiti 2000),

Microbacterium luteolum (Joseph et al. 2012), Lactoba-

cillus plantarum (Regalla et al. 2002), Thermus thermo-

philus (Fucinos et al. 2005), and Serratia marcescens

(Abdou 2003) are a few other bacteria with substantial

lipolytic capability. Some of these isolates are especially

useful, since they exhibit extremophilic properties of either

heat (Fucinos et al. 2005; Velu et al. 2012) or cold toler-

ance (Pratuangdejkul and Dharrnsthiti 2000).

The lipolytic activity of various fungal and yeast strains

has also been extensively explored over the past few years.

Of the fungal genera, lipases from Aspergillus spp. have

been purified and characterized by several researchers, with

A. niger and A. carneus being the most widely reported

species (Mhetras et al. 2009; Zheng-Yu et al. 2007). Pen-

icillium chrysogenum (Tan et al. 2004), Mucor hiemalis

(Ülker and Karaoglu 2012), Rhizopus oryzae (Hiol et al.

2000), and Rhizopus chinensis (Sun and Xu 2009) are also

noteworthy sources of fungal lipases that have been sub-

jected to intensive research. Members of Fusarium and

Geotrichum genera are also lipolytic (Liu et al. 2009a, b;

Cai et al. 2009). Antrodia cinnamomea is another less

commonly reported fungus with lipolytic activity (Shu

et al. 2006). Another unusual documented case is the lipase

from the plant pathogenic fungus Metarhizium anisopliae

(Silva et al. 2009). Yeasts have also been adequately

studied for their lipolytic activity, with Yarrowia lipolytica

being the most significant one (Yadav et al. 2011; Yu et al.

2007). Lipolytic activities in Cryptococcus sp. and

Pseudozyma hubiensis (Bussamara et al. 2010; Kamini

et al. 2000) have also been reported.

Molecular studies

Lipases have been subjected to molecular-level character-

ization. N-terminal amino acid residues have been identi-

fied, and parts of lipase-encoding genes have also been

cloned and sequenced, based on which the homology, or

lack of it, to previously reported lipases can be deduced. For

instance, when the 30 N-terminal amino acid residues of

Staphylococcus simulans lipase were sequenced, they were

found to be identical to S. aureus PS54 (SAL PS54) lipase.

However, cloning and partial sequencing of the lipase-

encoding gene revealed some differences from SAL PS54

sequence (Sayari et al. 2001). Genes encoding S. aureus and

S. xylosus lipases have also been similarly cloned and

sequenced (Horchani et al. 2009; Mosbah et al. 2005).

There are also several instances of recombinant lipases,

tailor-made in order to cater to specific industrial needs and

overexpressed in heterologous hosts. Among bacteria,

E. coli cells have conveniently been used to express lipases

from Staphylococcus warneri (Kampen et al. 2001), S.

xylosus (Mosbah et al. 2006), Geobacillus sp. (Ebrahim-

pour et al. 2011), G. thermocatenulatus (Vélez et al. 2013),

G. thermoleovorans (Soliman et al. 2007), and Burk-

holderia cepacia (Wang et al. 2009). Among eukaryotes,

the yeast Pichia pastoris has served as a versatile expres-

sion system for lipases from fungi such as Galactomyces

geotrichum (Fernández et al. 2006), R. oryzae (Guillén

et al. 2011), Fusarium graminearum (Nguyena et al. 2010),

and Streptomyces fraediae (Zhang et al. 2008); yeasts such

as Y. lipolytica (Song et al. 2006), Candida antarctica

(Liua et al. 2012), and C. parapsiliosis (Brunel et al. 2004)

and even bacteria such as Bacillus sp. (Sabri et al. 2009).

Less commonly, recombinant lipases have also been

expressed in the yeast, Saccharomyces cerevisiae (Florczak

et al. 2013), and the fungi, Streptomyces sp. (Bielen et al.

2009) and Trichoderma sp. (Qin et al. 2012). Even the

human lysosomal acid lipase has been cloned and expres-

sed in cells of the yeast Schizosaccharomyces pombe (Ik-

eda et al. 2004). Such recombinant enzymes are produced

by the heterologous host as inclusion bodies in the cyto-

plasm, which are dissolved by treating with chaotropic

agents during the purification process and proper refolding

of the enzyme is necessary to restore activity.

Studies on directed evolution have been performed with

lipases. The lipase from Bacillus pumilis has been sub-

jected to DNA shuffling, generating variants with improved

applicability as biocatalysts (Akbulut et al. 2013). A ther-

mostable variant of Y. lipolytica lipase has been identified

by error-prone PCR and screening of the library in a high-

performance yeast expression system (Bordes et al. 2011).

In other studies, the metagenomic approach has been

applied to characterize lipases (Zheng et al. 2013).

The use of agricultural residues and industrial effluents

as environmentally friendly and economically viable

substrates for lipase production

The chemical composition of the culture medium plays a

pertinent role in influencing lipase production. Several

substrates have been experimented with and this includes

an array of waste materials. Exploiting such materials

offers the twin benefits of offsetting the environmental

pollution associated with their disposal and also helps

conserve valuable resources. Lipases are generally known

to be inducible enzymes, and the presence of residual lipid

constituents in certain waste streams enables their utiliza-

tion as viable substrates for enzyme production.
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Lipid-rich wastewaters emanating from oil refineries,

slaughter houses, and dairy industries have proven to be

potential substrates facilitating lipase production. Candida

cylindracea cultured in palm oil mill effluent (Salihu et al.

2011) and olive mill effluent (Brozzoli et al. 2009;

D’Annibale et al. 2006) showed appreciable levels of lipase

production. Similarly, grease waste has been used as a

substrate for lipase production by P. chrysogenum under

solid-state fermentation (Kumar et al. 2011). Microbial

consortium derived from wastewater sludge, when cultured

in a medium containing lipid-rich solid industrial waste

under thermophilic conditions, showed good lipase pro-

duction (Santis-Navarro et al. 2011).

Among the agricultural residues, oil cakes have been

used to a large extent. Deoiled Jatropha seed cake has been

utilized for culturing P. aeruginosa both under solid-state

and submerged fermentations (Bose and Keharia 2013;

Joshi and Khare 2013). Groundnut and mustard oil cakes

have been proven to be good substrates for the production

of psychrophilic lipase from Micrococcus roseus under

semisolid-state fermentation (Joseph et al. 2011). Sal

(Shorea robusta) deoiled seed cake extract has also been

assessed for lipase production using Aeromonas sp. under

submerged fermentation (Mahdi et al. 2012). Next to oil

cakes, lignocellulosic fibrous residues such as wheat bran

and rice bran have been utilized in several instances (Colla

et al. 2010; Mala et al. 2007), either alone or in combi-

nation with other substrates for nutrient augmentation.

Table 1 illustrates the utilization of such waste materials as

cost-effective substrates for lipase production.

The use of statistical tools for optimizing lipase

production

Production media have traditionally been optimized by

varying one factor at a time (OFAT), which turns

cumbersome when a large number of variables are

involved and this methodology also faces the limitation of

not indicating the interaction effects of the different vari-

ables tested. This led to the application of statistical tools in

media optimization. The significant variables influencing

lipase production are usually screened through the Plack-

ett–Burman (PB) design, and the optimal concentrations

and interaction effects of these variables are inferred from

the response surface methodology (RSM).

Plackett–Burman (PB) experimental design has been

applied to evaluate the medium components for lipase

production through submerged fermentation of microor-

ganisms such as Rhizopus arrhizius and Candida rugosa

(Rajendran et al. 2008; Rajendran and Thangavelu 2009).

PB, in combination with RSM, has resulted in optimizing

the medium and increasing the enzyme yield from a mul-

titude of yeasts, fungi, and bacteria. Rhizopus delemar

(Acıkel et al. 2010), A. carneus (Kaushik et al. 2006),

Aspergillus awamori (Basheer et al. 2011), Geotrichum sp.

(Burkert et al. 2004), C. cylindracea (Salihu et al. 2011),

Burkholderia sp. (Gupta et al. 2007), Stenotrophomonas sp.

(Hasan-Beikdashti et al. 2012), etc., are noteworthy among

them. Box–Behnken and central composite designs of

RSM have been applied in the above cases. Such statistical

optimizations of process parameters have resulted in

improved lipase production and enhanced feasibility of

process scale-up and commercialization.

Lipase purification

Recovery of lipase from the production medium routinely

entails ultrafiltration and ammonium sulfate precipitation

followed by purification to homogeneity in ion exchange

and gel filtration chromatographic columns. Alternatively,

aqueous two-phase extraction (ATPS) and reverse micellar

extraction (RME) have been used for enzyme recovery.

Table 1 Utilization of waste materials as substrates for lipase production

Substrate Type of fermentation Microorganism References

Industrial effluent and solid waste

Palm oil mill effluent Submerged Candida cylindracea Salihu et al. (2011)

Olive mill effluent Submerged Brozzoli et al. (2009), D’Annibale et al. (2006)

Grease waste Solid state Penicillium chrysogenum Kumar et al. (2011)

Oil cakes

Deoiled jatropha seed cake Solid state Pseudomonas aeruginosa Bose and Keharia (2013), Joshi and Khare (2013)

Groundnut and mustard oil cakes Solid state Micrococcus roseus Joseph et al. (2011)

Sal (Shorea robusta) deoiled seed cake smf Submerged Aeromonas sp Mahdi et al. (2012)

Fibrous agro residues in combination with other substrates

Soybean meal and rice husk Solid state Aspergillus niger Colla et al. (2010)

Gingelly oil cake and wheat bran Solid state Mala et al. (2007)
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Alcohol—salt-based ATPS—has been used to recover

lipase from Burkholderia pseudomallei (Ooi et al. 2009).

An extractive fermentation using ATPS has also been tried

out for the simultaneous cell cultivation and downstream

processing of lipase derived from the same species (Ooi

et al. 2011). Such an extractive fermentation technique

employing a thermoseparating reagent has been tried out

for recovering B. cepacia lipase as well (Show et al. 2012).

RME is yet another unconventional route to single-step

recovery and purification of lipase. The cationic detergent

cetyltrimethylammonium bromide (CTAB) and the Aero-

sol OT (bis 2-ethylhexyl) sodium sulfosuccinate system

have been used under optimized conditions for RME of

lipase (Gaikaiwari et al. 2012; Nandini and Rastogi 2009).

Among the chromatographic techniques, expanded bed

adsorption can serve as a single-step procedure for puri-

fying enzymes directly from particulate containing fer-

mentation broths, as bed expansion increases void volume.

This method has been used for purifying lipase from P.

cepacia by adsorption on to Amberlite 410 ion exchange

resins (Padilha et al. 2009). Affinity and pseudoaffinity

chromatographic techniques involving ligand–receptor

interactions are also useful for lipase purification. Affinity-

based isolation of Burkholderia glumae lipase through

steric chaperone interactions has been reported (Pauwels

and Gelder 2008). Biomimetic affinity purification using

synthetic ligands and hydroxyapatite chromatography has

resulted in single-step purification of C. antarctica lipases

(Dimitrijevic et al. 2012; Yao et al. 2011).

Lipase immobilization

Lipases have been immobilized on a variety of supports,

permitting repetitive usage of the enzyme, increased sta-

bility, and easier product recovery. Such immobilized

enzymes and whole cells have been used in a wide range of

applications. Adsorption, covalent bonding, and entrap-

ment are the methods commonly used for immobilization,

and an appropriate technique that retains enzyme activity

and is strong enough to prevent enzyme leakage has to be

selected for a particular application.

Candida spp. lipases have extensively been immobilized

on diversified materials such as pretreated textile (Adachi

et al. 2006); nonwoven fabrics of polypropylene, polyeth-

ylene terephthalate, and viscose fiber (Li et al. 2011);

macroporous silica monoliths (He et al. 2010); silica-PEG

gel (Yang et al. 2010); treated chitosan membranes (Orrego

et al. 2010); ternary blend film comprising of chitosan,

polylactic acid (PLA), and polyvinyl alcohol (Badgujar

et al. 2013); chitosan tethered poly(acrylonitrile-co-maleic

acid) surface (Ye et al. 2005); natural kaolin (Rahman et al.

2005a, b); and Amberlite IRC-50 and Al2O3 (Minovska

et al. 2005). Immobilization of R. oryzae lipase on silica

aerogels (Kharrat et al. 2011), and Thermomyces sp. lipase

on regenerated cellulose, glass fiber, and polyvinylidene

fluoride grafted with 1,4-diaminobutane and activated with

glutaraldehyde (Chen et al. 2012) are a few other instances

of immobilized fungal lipases.

Among bacterial lipases, Pseudomonas spp. lipases have

been covalently immobilized on porous polymethyl-

acrylamide cross-linked with N,N’methylene bisacryla-

mide (Wu and Tsai 2004) and bacterially produced

exopolysaccharide (Dimitrijevic et al. 2011). Zirconia

particles (Wang et al. 2012), alginate—k-carrageenan

hybrid matrix (Abdulla and Ravindra 2013), Celite carriers

(Liu et al. 2009a, b), polygluteraldehyde activated sty-

rene—divinylbenzene copolymer (Dizge et al. 2009),

synthetic macroporous alkylated glycidyl epoxy copoly-

mers (Bhushan et al. 2008), etc., have served as support

materials for immobilization of lipases from other bacteria

including Burkholderia sp. and Arthrobacter sp.

Applications of lipases

Microbial lipases constitute a key group of industrial

enzymes. Their rampant applications in fat and oleo-

chemical industry, textile industry, detergent industry, food

industry (dairy products, bakery products, confectionaries,

tea processing, and flavor development), diagnostic and

medical fields, synthesis of fine chemicals and pharma-

ceuticals, biodiesel production, synthesis of biodegradable

polymers, and in bioremediation have been extensively

reviewed and documented (Hasan et al. 2006). Three cru-

cial spheres of environmentally appropriate applications

alone are discussed here:

Lipase-catalyzed esterification, transesterification,

and interesterification reactions: an emerging area

of green chemistry

Lipases are known to carry out hydrolysis of ester bonds in

aqueous environments (Liu et al. 2008; Ramani et al. 2010).

Their intrinsic property also permits them to catalyze the

reverse reactions of esterification, transesterification, and in-

teresterification in nonaqueous and microaqueous milieu.

Lipases from P. aeruginosa (Ji et al. 2010), A. niger (Ro-

mero et al. 2012), and Ralstonia sp. (Yoo et al. 2011) are

potential candidates for biodiesel production. A. oryzae

whole-cell biocatalysts expressing Geobacillus thermocate-

nulatus (Adachi et al. 2013) and Fusarium heterosporum

lipase (Yoshida et al. 2012), and S. cerevisiae expressing

Candida sp. lipase (Liu et al. 2013) have also been demon-

strated to be useful in biodiesel production.
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Transesterification resolution of (R, S)-1-phenylethanol

by lipase from Pseudomonas stutzeri (Cao et al. 2012),

enzymatic transesterification of vegetable oils with meth-

anol by Streptomyces sp. lipase (Mander et al. 2012),

transesterification of corn and soybean oils with ethanol

and butanol by synthetic resin-bound truncated C. antarc-

tica lipase (Hughes et al. 2012), and transesterification of

palm oil by whole cells of Rhodotorulla mucilagenosa

(Srimhan et al. 2011) have also been recorded. Such lipase-

mediated transesterification reactions are useful in biodie-

sel production from vegetable oils. Not only is biodiesel an

important renewable energy, but also the use of enzymatic

biocatalysts in the production process makes the fuel more

environmentally acceptable. For example, sodium

hydroxide, potassium hydroxide, sulfuric acid, and super-

critical fluids used to catalyze biodiesel production could

be substituted by lipases.

The extracellular lipase secreted by Burkholderia mul-

tivorans has efficiently catalyzed the synthesis of ethyl

butyrate esters that find extensive applications in the food

and fragrance industries (Dandavate et al. 2009). Lipase

from Acinetobacter sp. has mediated the synthesis of the

flavor ester ethyl caprylate. The compound has a ‘‘fruity-

flowery’’ fragrance and is used in various fruity flavors

such as peach, apple, banana, and pineapple. It serves as a

flavor-enhancing compound in fermentation industry and is

commonly associated with wines and whiskey (Ahmed

et al. 2010). Lipase from Amycolatopsis mediterranei has

brought about synthesis of the flavor ester isoamyl acetate,

one of the most important flavor and fragrance compounds

used in the food, beverage, cosmetics, and pharmaceutical

industries because of its characteristic banana flavor

(Dheeman et al. 2011).

Production of structured lipids with dietary significance

is yet another important arena of research. Fatty acid

composition of several edible oils has been favorably

modified by lipase-catalyzed interesterification reactions.

Olive oil enriched with medium-chain-length fatty acids

(Nunes et al. 2011) and sardine oil enriched with n-3

polyunsaturated fatty acids (Chakraborty et al. 2010;

Chakraborty and Raj 2009) constitute such examples.

Lipase-catalyzed biopolymer synthesis and degradation

Synthesis and degradation of biopolymers helps maintain

homeostasis in biological systems. In vivo biopolymer

production by several bacterial strains, especially under

conditions of limiting nitrogen and excess carbon in the

growth medium, has been well documented (Khanafari and

Sepahei 2007; Sandhya et al. 2013). It is possible to syn-

thesize these biopolymers in vitro by enzyme-mediated

processes, and lipases play a predominant role in this. Such

enzymatic polymerizations are quite specific (regio- and

enantioselective) when compared to their chemical coun-

terparts, enabling precise control over the polymer struc-

ture, and are carried out under milder conditions. Traces of

chemical catalysts in the product can be avoided, which

makes them particularly amenable to biomedical applica-

tions. Oxyacids and their esters, dicarboxylic acids or their

derivatives and lactones, are the monomer combinations

used as substrates for the polymerization reaction. Poly-

hydroxyalkanoate (PHA), PLA, and polycaprolactone

(PCL) are important classes of biopolymers that can be

synthesized in vitro using tailored lipases. Such in vitro

biopolymer syntheses have been reviewed by certain

researchers (Hiraishi and Taguchi 2009; Kobayashi and

Uyama 2002; Sandoval et al. 2010).

Ring-opening polymerization (ROP) of e-caprolactone

(CL) can result in low-molecular-weight polyesters with

unique multiphase morphology. However, mechanistic

limitations exist in such reactions, and these include the

limit for methoxy-poly(ethylene glycol) initiator esterifi-

cation and slower monomer conversion in concentrated

solutions, factors that have been investigated by research-

ers (Panova and Kaplan 2003). Ultrasonic irradiation has

been shown to greatly improve C. antarctica lipase

B-mediated ROP of e-CL to poly-6-hydroxyhexanoate in

the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoro-

borate. Sonication improved the monomer conversion by

63 % and afforded a polymer of narrower molecular

weight distribution and a higher degree of crystallinity

(Gumel et al. 2012). In other studies, lipase-catalyzed

synthesis of poly-CL has been carried out in supercritical

carbon dioxide and the influence of operating conditions on

polymer chain size and polydispersity index was evaluated

(Santos et al. 2012). Novel copolymers based on x-pen-

tadecalactone have also been enzymatically synthesized by

a combination of ROP and polycondensation. These new

biopolymers have potential application in the manufacture

of drug-loaded biodegradable microspheres for modified

release drug delivery (Thompson et al. 2006).

In another significant observation, the lipase from

Candida sp. has catalyzed the synthesis of aliphatic poly-

ester poly(butylene sebacate) from diethyl sebacate and

1,4-butenediol in the absence of organic solvents.

Poly(butylene sebacate) is a remarkable member of the

polyester family. It can be used as biodegradable thermo-

plastics and biocompatible medical materials. As a plasti-

cizing agent, it can be converted to various forms, such as

leatheroids, wrapper films, and fibers. It can substitute

conventional thermoplastics on account of its thermal sta-

bility and good mechanical strength (Liu et al. 2011).

Lactate-based polymers are highly valuable in biomed-

ical and food industries. Synthesis of poly-l-lactide by

lipase-mediated ROP of l-lactide in the presence of
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supercritical carbon dioxide has been achieved. Lipase B

from C. antarctica (CALB) was employed for this reaction,

and semi-crystalline polymers with a molecular weight up

to 12,900 g/mol were attained (Garcı́a-Arrazola et al.

2009). Whole-cell biocatalysts displaying CALB have also

been utilized for the synthesis of enantiomeric ethyl lactate

from ethanol and lactic acid. The synthesis efficiency was

temperature-dependent and reached 74 % at 50 �C (Bos-

khomdzhiev et al. 2010). Enzymatic synthesis of b-d-

galactosyl-l-lactic acid ethyl ester (GLAEE), which is

difficult to synthesize via traditional chemical routes, has

been reported. Polymerization of GLAEE to yield a unique

biopolymer b-d-galactoside-co-l-lactic acid with the aid of

commercial lipase Novozyme 435 has also been executed

(Jia and Wang 2007). A variety of sugar-hydroxyl acid

copolymers can be synthesized using the same approach,

leading to the development of a new class of biopolymers.

Bioactive hydrophilic sugar moieties can be applied for

the functionalization of aliphatic biopolymer PHA, thereby

augmenting its hydrophilicity and hence biodegradability.

Novozyme 435 has been effectively used to synthesize one

such functionalized biopolymer poly(10-O-3-hydroxyacyl

sucrose), having potential applications in biomedical and

other allied industrial niches (Gumel et al. 2013).

Degradation of biopolymers has also been given due

attention. The long-term kinetic curves for biodegradation

of poly(3-hydroxybutyrate) (PHB), its copolymer poly(3-

hydroxybutyrate-co-3-hydroxyvalerate), and a PHB/PLA

blend have been compared (Boskhomdzhiev et al. 2009).

The rate of biodegradation was analyzed in vitro in the

presence of lipase, and such studies are useful in the

development of PHB-based medical devices. In another

study, lipase-secreting Bacillus pumilus isolated from the

rhizosphere of mangroves has been shown to degrade poly-

CL at thrice the hitherto reported speed, resulting in

complete degradation in just 20 days (Motiwalla et al.

2013). In other molecular-level studies, the purification,

cloning, and expression of an A. niger lipase for degrada-

tion of poly(lactic acid) and poly(e-CL) have been carried

out (Nakajima-Kambe et al. 2012). Table 2 summarizes

such biopolymer synthetic and degradative reactions.

Bioremediation of oil and grease (O&G) containing

wastewater

Treatment of O&G containing wastewater by physico-

chemical as well as biological methods has been exten-

sively researched (Wong et al. 2007; Abdulsalam et al.

2011), as these constituents could lead to a multitude of

problems in treatment plants and seriously undermine the

plant’s performance. Reduction in cell-aqueous phase

transfer rates, sedimentation hindrance due to the growth of

filamentous microorganisms, development of bulking sludge,

clogging, and emanation of foul odors are a few representative

difficulties posed by these constituents. Pretreatment of such

wastewaters to bring about lipid hydrolysis makes them more

amenable to conventional biological treatment and hydrolytic

enzymes find promising applications in this sector. Such

applications of lipases and other hydrolytic enzymes have

been reviewed earlier (Cammarota and Freire 2006; Mrozik

et al. 2008; Karigar and Rao 2011).

Potential microbial strains for O&G bioremediation

Several lipase-producing bacterial, fungal, and yeast strains

have been employed either individually or as a consortium

to bring about O&G bioremediation, and such isolates,

more often than not, have been obtained from contami-

nated environments. Among bacteria, Pseudomonas spp.

have served as handy tools for bioremediation and several

strains of P. aeruginosa have been especially useful. Sta-

tistical methods have been adopted to optimize the lipase

production process as well as the process of oil hydrolysis

by Pseudomonas sp. (Gaur and Khare 2011; Verma et al.

2012). B. stearothermophilus isolated from slaughter house

waste and a bacterial pool of Bacillus spp. isolated from

Table 2 Synthesis and degradation of biopolymers via lipase-cata-

lyzed reactions

Biopolymer synthesized/degraded References

Synthesis of poly(e-caprolactone) with

multiphase morphology

Barrera-Rivera et al.

(2012)

Synthesis of poly(e-caprolactone) in

supercritical carbon dioxide

Santos et al. (2012)

Synthesis of x-pentadecalactone polymers

for the production of biodegradable

microspheres

Thompson et al.

(2006)

Synthesis of b-d-galactosyl-l-lactic acid

ethyl ester (GLAEE); polymerization of

GLAEE to form poly(b-d-galactoside-co-

l-lactic acid) (PGLA)

Jia and Wang (2007)

Synthesis of poly-l-lactide using

supercritical carbon dioxide

Garcı́a-Arrazola et al.

(2009)

Ultrasound-assisted synthesis of poly-6-

hydroxyhexanoate

Gumel et al. (2012)

Functionalization of medium-chain-length

polyhydroxyalkanoates using biologically

active hydrophilic sugar moieties

Gumel et al. (2013)

Biodegradation of poly(3-hydroxybutyrate)

(PHB), its copolymer poly(3-

hydroxybutyrate-co-3-hydroxyvalerate),

and PHB/polylactic acid blend

Boskhomdzhiev et al.

(2009, 2010)

Degradation of poly(e-caprolactone) Motiwalla et al. (2013)

Degradation of poly(lactic acid) and poly(e-

caprolactone)

Nakajima-Kambe

et al. (2012)
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aged petroleum contaminated soil also hold promise for

bioremediation (Bayoumi et al. 2012; Granzotto et al.

2012). Other documented bacteria genera comprise of

Burkholderia sp. and Raoultella planticola, the latter being

a novel isolate capable of biodegrading edible oil under

acidic conditions (Matsumiya et al. 2007; Sugimori et al.

2013). In other studies, bacterial consortia have been for-

mulated as potential inoculum for the treatment for high

strength O&G wastewaters. One such bacterial consortium

comprised of P. aeruginosa, Bacillus sp., and Acineto-

bacter caloaceticus (Mongkolthanaruk and Dharmsthiti

2002), and the other one comprised of B. subtilis, B. li-

cheniformis, B. amyloliquifaciens, S. marsescens, P.

aeruginosa, and S. aureus (Prasad and Manjunath 2011).

Fungal cultures with lipolytic activity have also been

practically applied for bioremediation. Submerged and

static cultures of Geotrichum candidum applied in olive

mill wastewater treatment and solid culture of P. chrys-

ogenum applied in bioremediation of waste cooking oil

exemplify this statement (Asses et al. 2009; Kumar et al.

2012). Yeasts have been efficaciously used in remediation

of wastewaters from oil mills, and Y. lipolytica has found

massive applications in olive mill wastewater treatment

(Gonçalves et al. 2009; Lanciotti et al. 2005). Extremophilic

strains always have an edge, and the antarctic yeast Mrakia

blollopsis has been fruitful in the low-temperature remedia-

tion of milk fat curdle (Tsuji et al. 2013). Yeast–bacteria

symbiosis is also valuable in O&G biodegradation as shown in

the association between lipase-secreting Burkholderia arboris

and glycerol-assimilating C. cylindracea (Matsuoka et al.

2009). Table 3 depicts the microbial strains that have played a

leading role in O&G bioremediation.

Effect of enzymatic pre-hydrolysis on anaerobic

digestion of various industrial wastewaters

Upflow anaerobic sludge blanket (UASB) reactor, packed

bed reactor (PBR), membrane bioreactor (MBR), and

sequencing batch reactor (SBR) are the reactor types

widely employed for remediating O&G containing waste-

water (Chakraborty et al. 2012; Masse et al. 2003; Jega-

nathan et al. 2007a, b). Anaerobic digestion is preferred

over aerobic treatment for high strength wastewaters. The

efficacy of anaerobic treatment is often enhanced when

such treatment is preceded by lipase-catalyzed hydrolysis.

Turbidity, volatile suspended solids, and COD removal

in dairy wastewater treated in UASB reactor were greatly

Table 3 Microbes applied in

oil and grease bioremediation
Microorganism References

Bacteria

Pseudomonas aeruginosa Mobarak-Qamsari et al. (2012)

Bacillus sp. Bayoumi et al. (2012)

Bacillus stearothermophilus Granzotto et al. (2012)

Burkholderia sp. Matsumiya et al. (2007)

Raoultella planticola Matsumiya et al. (2007),

Sugimori et al. (2013)

Microthrix parvicella Nielsen et al. (2002)

Fungi

Geotrichum candidum Asses et al. (2009)

Penicillium chrysogenum Kumar et al. (2012)

Penicillium restrictum Valladão et al. (2009, 2011)

Rhizopus oryzae Efremenko et al. (2008)

Yeast

Candida rugosa Chakraborty et al. (2012)

Yarrowia lipolytica Lanciotti et al. (2005),

Gonçalves et al. (2009)

Mrakia blollopsis Tsuji et al. (2013)

Lipomyces starkey Yousuf et al. (2010)

Consortia

Pseudomonas aeruginosa, Bacillus sp. and Acinetobacter caloaceticus Mongkolthanaruk and

Dharmsthiti (2002)

Bacillus subtilis, Bacillus. licheniformis, Bacillus amyloliquifaciens,

Serratia marsescens, Pseudomonas aeruginosa and Staphylococcus

aureus

Prasad and Manjunath (2011)

Burkholderia arboris and Candida cylindracea Matsuoka et al. (2009)
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enhanced when it was pretreated with 0.1 % babassu cake

containing Penicillium restrictum lipase (Cammarota et al.

2001). The benefits of hydrolysis become evident especially

while treating strong wastewaters containing 1,000 mg/l

O&G (Leal et al. 2006). Hydrolytic pretreatment also has a

profound impact on the microbial community in the bio-

reactor. Lipase-rich enzyme preparation produced by Pen-

icillium sp. has been shown to alter the microbial

communities in UASB and horizontal-flow anaerobic

immobilized biomass (HAIB) reactors. Molecular analysis

of the bacteria and archaea domains revealed significant

differences in the microbial profiles in experiments con-

ducted with and without pre-hydrolysis (Cammarota et al.

2013). Enzymatic extract prepared from P. aeruginosa has

also improved the treatability of synthetic dairy wastewater

in a batch bioreactor, resulting in accentuated COD removal

and biogas production (Mobarak-Qamsari et al. 2012).

There are several such instances where hydrolytic enzymes

have been successfully used as adjuvants in the anaerobic

treatment of dairy wastewaters (Leal et al. 2002).

Enzymatic pre-hydrolysis has also been helpful in reme-

diating slaughter house wastewater. Lipase-rich solid enzy-

matic preparation (SEP) produced by the fungus P. restrictum

positively influenced poultry wastewater treatment in UASB

reactor (Valladão et al. 2009, 2011). Wastewater from the

swine meat industry has also been hydrolyzed with an SEP,

and the hydrolysis efficiency has been compared with a

commercial enzyme Lipolase 100T from Novozymes (Rigo

et al. 2008a). The comparative hydrolytic efficacies of these

enzymes for wastewaters from the bovine meat industry have

also been investigated (Rigo et al. 2008a, b) and SEP proved

to be superior in both the cases. The effectiveness of enzy-

matic pre-hydrolysis has also been compared with alkaline

hydrolysis for the treatment of slaughter house wastewater.

Sodium hydroxide and three lipases of plant, animal, and

bacterial origin were tried, and the pancreatic lipase PL-250

increased the free long-chain fatty acid (LCFA) concentration

maximally. The bacterial lipase LG-1000 was also efficient in

reducing the average size of fat particles, but high doses

[1,000 mg/l were required (Masse et al. 2001). In yet another

study involving a commercial C. rugosa lipase, the pretreated

effluent produced about four times more biogas than the crude

effluent (Pereira et al. 2006).

The effect of pretreatment using an enzymatic mixture

comprising of lipase–protease–carbohydrase in 1:2:1 ratio

on solubilization and volatile fatty acid (VFA) production

in the fermentation of food waste has been probed (Kim

et al. 2005). Increase in VFA production was three times

when compared to the control fermenter, with n-butyrate

and acetate being the major forms. The favorable role of

enzymatic hydrolysis in controlling the oily and greasy

substances in recycled fiber pulping wastewater has also

been assessed (Liu et al. 2012).

The role of lipases in activated sludge systems

Lipids are noxious constituents in activated sludge systems

as they contribute to 30–40 % of the wastewater COD and

flair up the growth of filamentous microorganisms. Hence,

their transformation to innocuous components is desired.

For a sound description of the process involved in the

transformation of lipids in such systems, a conceptual

model has been suggested. It involves the adsorption/

desorption of both triacylglyceride and LCFA onto surfaces

of sludge flocs, hydrolysis of triacylglycerides by lipases

and the uptake of LCFA by bacteria (Dueholm et al. 2001).

This model could assist in the design and evaluation of

activated sludge experiments with lipids.

The impact of the addition of lipase-rich enzyme pool on

an activated sludge system under fat shock loads has been

researched. Continuous addition of enzymatic preparation

can become cost-prohibitive, and the study suggested it as

an emergency measure at times of fat overloads in the

effluent. Such a measure resulted in efficient COD removal

in the test reactor for 270 days without any operational

problems (Damascene et al. 2008). The utilization of a SEP

produced by P. restrictum in activated sludge systems

treating dairy wastewater with high levels of O&G has been

scrutinized and found to be effective with 13 % higher COD

removal, 40 % lower accumulation of O&G in flocs, 1.7

times higher biomass concentration, and 1.3 times higher

specific oxygen uptake rate (Rosa et al. 2006).

In certain interesting studies, extraction of lipases and

proteases from activated sludge using the nonionic deter-

gent Triton X-100, EDTA, and cation exchange resin has

been attempted (Gessesse et al. 2003). In other experi-

ments, the filamentous bacterium Microthrix parvicella has

been demonstrated to be a specialized lipid consumer,

being able to take up LCFA under anaerobic conditions and

subsequent usage of the stored material for growth when

nitrate or oxygen is available as electron acceptors (Nielsen

et al. 2002).

Immobilized enzyme and whole-cell biocatalysts

in O&G remediation

Immobilized lipase has been instrumental in bringing about

hydrolysis of O&G contents in pet food industry wastewater.

COD and O&G reduction were 49 and 45 %, respectively,

without pretreatment and 65 and 64 %, respectively, with

immobilized lipase pretreatment (Jeganathan et al. 2007a,

b). C. rugosa lipase immobilized in calcium alginate beads

has been used for hydrolyzing pet food industry wastewater

(Jeganathan et al. 2006). C. rugosa lipases have also been

immobilized in polyethersulphone membrane (Chakraborty

et al. 2012). Lipase-producing bacteria immobilized on
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different matrices have been incorporated in a grease trap

system for restaurant wastewater. When the influent O&G

concentration exceeded 5,000 mg/l, the matrix-based trap

system showed higher O&G and COD removal (Nisola et al.

2009). R. oryzae cells entrapped in polyvinyl alcohol cryo-

gel have been used for the treatment of complex food

industry wastewater (Efremenko et al. 2008). The immobi-

lized cells possessed concurrent lipolytic, amylolytic, and

proteolytic activities.

Converting O&G wastewater into high-value products:

the economic advantage

The lipid constituents may be recovered from grease traps

or from the wastewater itself by flotation, centrifugation, or

filtration. Extraction procedure involving zeolite and a

natural mixture of clays and diatomaceous earth can also be

used to recover lipids. Such recovered lipids can then be

used for biodiesel production through lipase-catalyzed

esterification or transesterification reactions. One particular

study revealed that the free fatty acid (FFA) content of the

recovered O&G could be increased to 15 % over a 20-day

period by lipase-catalyzed esterification process, following

which alkali-catalyzed biodiesel production was carried out

(Montefrio et al. 2010). In another study, Lipomyces star-

key-mediated conversion of olive mill wastewater into

lipids suitable for biodiesel production has been demon-

strated (Yousuf et al. 2010).

Olive mill wastewater has also been exploited for gen-

erating high-value products such as industrially important

enzymes through fungal fermentative processes. Enzymes,

such as lipase, laccase, Mn-dependent peroxidase, pectin-

ase, and also exopolysaccharides, have been produced. A

process based on the acidogenic fungus Aspergillus niger

has been used to increase the phosphorus content of OMW

(Crognale et al. 2006). The yeast Y. lipolytica, by use of

specific enzymatic pathways from hydrocarbonoclastic

bacteria, is also being developed into a microbial factory

capable of producing industrially valuable compounds such

as wax esters, carotenoids, PHA, and free hydroxylated

fatty acids (Sabirova et al. 2011). Palm oil mill effluent has

been utilized for PHA production and nutrient removal in a

fed-batch reactor, and 66 % PHA production with the

removal of total organic carbon and nitrate by 19 and 3 %,

respectively, were achieved (Din et al. 2013).

Other novel treatment approaches

Co-composting of oiled bleaching earth with waste sludge

has been practiced as an alternative way of bioremediation,

and lipases play prominent roles in stabilization of the waste

(Piotrowska-Cyplik et al. 2013). A combination of micro-

wave irradiation and lipase treatment has been applied for

biodegrading lipid-rich wastewater (Saifuddin and Chua

2006). Lipase and protease products have been tried for

removing milk fouling deposits from stainless steel panels,

as a cleaning-in-place strategy in dairy industries (Boyce

et al. 2010). Recombinant DNA technology has also been

exploited in bioremediation. To combine the advantage of

the oleaginous yeast Y. lipolytica with the high activity of

fungal lipases, effective lipase-displaying arming yeast was

constructed using the flocculation functional domain of S.

cerevisiae as the protein anchor. When applied into an

activated sludge bioreactor, it resulted in 96.95 and 97.6 %

oil and COD removal, respectively (Song et al. 2011).

Concluding remarks

Lipolytic microorganisms and lipases constitute one of the

most important groups of biocatalysts for environmental

applications, as reinforced by this article. They lack sequence

homology, exhibit catalytic promiscuity, and hence are truly

versatile. In lieu of the recent research progress, our under-

standing of this unique enzyme has broadened, making its

application more practically feasible, but it is still not com-

plete. Several constraints are yet to be overcome. The pro-

hibitive cost of commercial lipases is one dimension of the

problem. The cost often stems from feedstock price and the

complex downstream processing steps resulting in low enzyme

yield. The use of agro industrial residues and industrial efflu-

ents as substrates can help offset the cost and serve as a pro-

environment measure too. Simple and innovative purification

strategies such as liquid–liquid and reversed micellar extrac-

tion need to be looked into. Immobilization methods permit-

ting continuous use of the enzyme can also bring down the cost.

For bioremediation, the microbe and the enzyme should be

robust enough to survive and function effectively in the field

condition, which is another challenge. New microbes and

enzymes with extremophilic properties in terms of tempera-

ture, pH, or organic solvent tolerance need to be identified

through intensive screening programs. Alternatively, tailored

lipases could be fabricated through metagenomics, site-direc-

ted mutagenesis, and cloning and expression of the gene in

heterologous hosts. These measures could pave the way for

lipolytic microbes and their enzymes playing a more pro-

active, affordable, and realistic role in environmental

protection.
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Vélez AM, Horta ACL, Silva AJ, Iemma MRC, Giordano RLC,

Zangirolami TC (2013) Enhanced production of recombinant

thermo-stable lipase in Escherichia coli at high induction

temperature. Protein Expr Purif 90:96–103

Velu N, Divakar K, Nandhinidevi G, Gautam P (2012) Lipase from

Aeromonas caviae AU04: isolation, purification and protein

aggregation. Biocatal Agric Biotechnol 1(1):45–50

Verma S, Saxena J, Prasanna R, Sharma V, Nain L (2012) Medium

optimization for a novel crude-oil degrading lipase from

Pseudomonas aeruginosa SL-72 using statistical approaches

for bioremediation of crude-oil. Biocatal Agric Biotechnol

1(4):321–329

Wang X, Yu X, Xu Y (2009) Homologous expression, purification

and characterization of a novel high-alkaline and thermal stable

lipase from Burkholderia cepacia ATCC 25416. Enzyme Microb

Technol 45:94–102

Wang J-Y, Ma C-L, Bao Y-M, Xu P-S (2012) Lipase entrapment in

protamine-induced bio-zirconia particles: characterization and

application to the resolution of (R, S)-1-phenylethanol. Enzyme

Microb Technol 51:40–46

Wong NH, Law PL, Lai SH (2007) Field tests on a grease trap

effluent filter. Int J Environ Sci Tech 4(3):345–350

Wu H-S, Tsai M-J (2004) Kinetics of tributyrin hydrolysis by lipase.

Enzyme Microb Technol 35:488–493

Yadav KNS, Adsul MG, Bastawde KB, Jadhav DD, Thulasiram HV,

Gokhale DV (2011) Differential induction, purification and

characterization of cold active lipase from Yarrowia lipolytica

NCIM 3639. Bioresour Technol 102:10663–10670

Yang J, Ma X, Zhang Z, Chen B, Li S, Wang G (2010) Lipase

immobilized by modification-coupled and adsorption–cross-

linking methods: a comparative study. Biotechnol Adv

28:644–650

Yao H, Zhang T, Xue H, Tang K, Li R (2011) Biomimetic affinity

purification of Candida antarctica lipase B. J Chromatogr B

879:3896–3900

Ye P, Xu Z-K, Che A-F, Wu J, Seta P (2005) Chitosan-tethered

poly(acrylonitrile-co-maleic acid) hollow fiber membrane for

lipase immobilization. Biomaterials 26:6394–6403

Yoo H-Y, Simkhada J-R, Cho S-S, Park DH, Kim SW, Seong CN,

Yoo JC (2011) A novel alkaline lipase from Ralstonia with

potential application in biodiesel production. Bioresour Technol

102:6104–6111

Yoshida A, Hama S, Tamadani N, Fukuda H, Kondo A (2012)

Improved performance of a packed-bed reactor for biodiesel

production through whole-cell biocatalysis employing a high-

lipase-expression system. Biochem Eng J 63:76–80

Yousuf A, Sannino F, Addorisio V, Pirozzi D (2010) Microbial

conversion of olive oil mill wastewaters into lipids suitable for

biodiesel production. J Agric Food Chem 58(15):8630–8635

Yu M, Qin S, Tan T (2007) Purification and characterization of the

extracellular lipase Lip2 from Yarrowia lipolytica. Process

Biochem 42:384–391

Zhang Y, Meng K, Wang Y, Luo H, Yang P, Shi P, Wu N, Fan Y, Li

J, Yao B (2008) A novel proteolysis-resistant lipase from

keratinolytic Streptomyces fradiae var. k11. Enzyme Microb

Technol 42:346–352

Zheng J, Liu C, Liu L, Jin Q (2013) Characterization of a thermo-

alkali-stable lipase from oil-contaminated soil using a metage-

nomic approach. Syst Appl Microbiol 36:197–204

Zheng-Yu S, Jiang-Ke Y, Yun-Jun Y (2007) Purification and

characterization of a lipase from Aspergillus niger F044. Chin

J Biotech 23(1):96–100

1162 Int. J. Environ. Sci. Technol. (2015) 12:1147–1162

123


	An insight into microbial lipases and their environmental facet
	Abstract
	Introduction
	Sources of microbial lipases
	Molecular studies
	The use of agricultural residues and industrial effluents as environmentally friendly and economically viable substrates for lipase production
	The use of statistical tools for optimizing lipase production
	Lipase purification
	Lipase immobilization
	Applications of lipases
	Lipase-catalyzed esterification, transesterification, and interesterification reactions: an emerging area of green chemistry
	Lipase-catalyzed biopolymer synthesis and degradation
	Bioremediation of oil and grease (O&G) containing wastewater
	Potential microbial strains for O&G bioremediation
	Effect of enzymatic pre-hydrolysis on anaerobic digestion of various industrial wastewaters
	The role of lipases in activated sludge systems
	Immobilized enzyme and whole-cell biocatalysts in O&G remediation
	Converting O&G wastewater into high-value products: the economic advantage
	Other novel treatment approaches
	Concluding remarks
	References


