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Abstract Drought is among the most important natural

disasters influencing different aspects of human life. In

recent decades, intelligent techniques have shown to be

highly capable of modeling and forecasting nonlinear and

dynamic time series. Hence, the present study aimed to

forecast drought using and comparing the multilayer per-

ceptron artificial neural network (MLP ANN), adaptive

neuro-fuzzy inference systems (ANFIS), support vector

machine (SVM) model, and the autoregressive integrated

moving average (ARIMAX) multivariate time series. To

this end, the precipitation data obtained from the Yazd

synoptic station for a 51-year statistic period were used.

Moreover, the humidity levels for short-term (3 and

6 months) and long-term (9, 12, 18, and 24 months) peri-

ods were calculated using the Standardized Precipitation

Index (SPI). Next, based on the results of calculations, the

1961–2002 period was selected as the control group and

the 2003–2012 period was selected as the experimental

group. In order to forecast the SPI for the t ? 1 period,

values of SPI, precipitation, and temperature of previous

eras were used. Results indicated that in a 9-months period

(as the timescale), the ARIMAX model gives SPI values

and forecast drought with more precision than the SVM,

ANFIS, and MLP models.

Keywords Drought � Forecasting � SPI � ANFIS � ANN �
ARIMAX � SVM � Yazd

Introduction

All areas across the globe may suffer from drought occa-

sionally, but this phenomenon more commonly occurs in

regions that are affected irregularly and randomly by dif-

ferent climatic systems. The chief indication of meteoro-

logical drought is the decline of precipitation to less than

normal precipitation (long-run average precipitation).

Reduction in soil moisture and a decrease in surface and

groundwater resources are some of the consequences of

reduced precipitation. In this regard, finding an accurate

solution to the more precise prediction of drought so as to

minimize its adverse effects on the nature and environment

is a necessity. The objective of this research was to dem-

onstrate the potential of artificial intelligence techniques

for drought forecast. Various indices have been so far

introduced for determining the characteristics of meteoro-

logical drought. In this research, the Standardized Precip-

itation Index (SPI) was used as one of the most important

and prominent available indices. Studies previously con-

ducted on this concept were as follows:

Bacanli et al. (2008) used the adaptive neuro-fuzzy

inference system (ANFIS) to forecast drought in Turkey.

Various SPI forecasting models were examined in 1-, 3-,

6-, 9-, and 12-month timescales. Results of examinations

revealed that a combination of former amounts of precip-

itation and SPI enhances the performance of models.

Comparisons of the results of the feed-forward neural

network (FFNN) and multiple linear regression (MLR)

methods revealed the superiority of ANFIS over the other

two models. Keskin et al. (2009) also employed the ANFIS
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and fuzzy logic models to forecast meteorological drought.

They used SPI to analyze drought and also used SPIs of 3-,

6-, 9-, and 12-month periods to better forecast drought.

Results of their research also reflected the superiority of

ANFIS over the fuzzy logic model. Jalalkamali et al.

(2011) used a fuzzy inference system and multilayer per-

ceptron neural networks to predict the level of groundwater

resources in Kerman Plain. Results of this research proved

the superiority of ANFIS over the multilayer perceptron

neural network. Furthermore, Shirmohammadi et al. (2013)

used the ANFIS, ANN, Wavelet-ANN, and Wavelet-AN-

FIS models to forecast meteorological drought in the next

3 months on the basis of the SPI for Azerbaijan Province

(Iran). Results of this research indicated that all of the

considered modeling methods were able to forecast SPI,

but the hybrid Wavelet-ANFIS model demonstrated a

better performance. The multilayer perceptron neural net-

work (MLP) was studied in five Iranian synoptic stations to

predict quantitative values of SPI using the optimized

Levenberg–Marquardt Algorithm (LMA) and tangent of

sigmoid function. The studies managed to calculate values

of SPI3, SPI6, SPI9, SPI12, and SPI24. In the course of

these studies, the MLP of SPIs of 1 month of prediction

was examined as well. Results showed that the MLP model

is capable of forecasting 12- and 24-month SPIs with more

precision than other SPIs (Rezaeian-zadeh and Tabari

2012). Santos et al. (2009) also worked on forecasting

drought based on artificial neural networks (ANNs) of three

regions in the San Francisco River basin, Brazil. Results of

their research showed that the method is capable of fore-

casting SPI for the coming month in a 12-month timescale,

but it gradually loses its precision over time. Fatehi Marj

and Meijerink (2011) used satellite images, climate indices,

and artificial neural networks to forecast drought. These

researchers found out that artificial neural networks yield

highly precise results through accepting NAO and SOI (a

year ago) as their inputs. Nikbakht Shahbazi et al. (2011)

calculated the SPIs of the catchments of Mamloo and

Taleqan dams in Tehran, Iran. Based on meteorological

variables, including temperature and geopotential height,

they found out that SVM often yields highly precise results.

Therefore, this method can be used for forecasting non-

linear behavior of meteorological data in short-term sta-

tistical periods. In a research, Khan and Coulibaly (2006)

studied the support vector machine’s potential to forecast

the level of the water contained in the Erie Lake in the long

run (12 months). They also drew comparisons between

SVM, MLP, and an autoregressive model. Results of their

studies suggested that SVM demonstrates a performance

better than the other two models. Qing et al. (2012) worked

on forecasting precipitation on the basis of time series. In

the first stage, they applied SVM to environmental factors,

and in the second stage, they employed the conditional

autoregressive model (CAR). Finally, the reliability of the

SVM-CAR method was approved. These researchers

reported that the aforementioned method (SVM-CAR)

forecasts drought and flood with high precision. Han et al.

(2010) used remote sensing data and the autoregressive

integrated moving average (ARIMA) model to forecast

drought. Results of their attempt indicated that the expan-

ded autoregressive (AR) model can be used to predict

drought in Guanzhong Plain. Cancelliere et al. (2006)

employed a nonparametrical method as well as SPI to

forecast drought in Sicily. They realized that a combination

of SPI and ARIMA along with time series of monthly

precipitations, as inputs, yields satisfactorily precise

results. Durdu (2010) used the linear random model to

forecast drought in the city of Buyuk in the Menderes River

basin (west of Turkey). Results of this research reflected

high precision of the ARIMA model in forecasting drought

for two coming months.

The aim of this study was to develop a proper model to

forecast meteorological drought using the Standardized

Precipitation Index. For this purpose, the time series data on

the period between 1961 and 2012 were used in this research.

The data were recorded on a monthly basis in the Yazd syn-

optic station. The Yazd Province is located at the heart of the

Iranian plateau. It is situated on northern latitude of 29�3500–
35�700 and eastern longitude of 52�5000–58�1600 (Fig. 1).

Materials and methods

Standardized Precipitation Index (SPI)

The average precipitation in Yazd Province is between 60

and 80 mm. Recorded data included values of minimum

Fig. 1 Location of the study area in Yazd Province, Iran
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temperature (Celsius), maximum temperature (Celsius),

and precipitation (millimeter). The monthly statistical

parameters of the data are given in Table 1.

SPI was calculated using the precipitation data with the

DIP (Drought Indices Package) software based on the

following equation.

In most cases, the distribution that best models obser-

vational precipitation data is the Gamma distribution. The

density probability function for the gamma distribution is

obtained as follows:

g xð Þ ¼ 1

baC að Þ x
a�1e

�x
b for x [ 0 ð1Þ

where a [ 0 is the shape parameter, b [ 0 is the scale

parameter, and x [ 0 is the amount of precipitation. C (a)

is the value taken by the standard mathematical function

known as the Gamma function defined by the following

integral:

C að Þ ¼ lim
n!1

Yn�1

v¼0

n!ny�1

yþ v
¼
Z1

0

ya�1e�ydy ð2Þ

In general, the gamma function is evaluated either

numerically or using the values tabulated depending on the

value of parameter a. In order to model the data observed

with a gamma-distributed density function, it is necessary

to estimate appropriately the a and b parameters. Different

methods have been so far suggested in the literature for

estimation of these parameters. For example, Edwards and

McKee (1997) used the Thom (1958) approximation to

achieve maximum probability.

â ¼ 1

4A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r
4A

 !
ð3Þ

b̂ ¼ �x

â
ð4Þ

where for n observations:

A ¼ ln �xð Þ �
P

ln xð Þ
n

ð5Þ

Estimation of the parameters can be further improved by

using the interactive approach suggested in Wilks (1995).

After estimating coefficients a and b, the density of the

probability function g(x) is integrated with respect to x.

Consequently, an expression for cumulative probability

G(x) is obtained which shows the certain amount of rain

has been observed in a given month and a specific

timescale.

G xð Þ ¼
Z1

0

g xð Þdx ¼ 1

b̂âC âð Þ

Zx

0

xâ�1e�x=b̂dx ð6Þ

If t ¼ x
�

B̂; this equation becomes the incomplete

gamma function:

G xð Þ ¼ 1

C âð Þ

Zx

0

tâ�1e�tdt ð7Þ

The gamma function is not defined by x = 0, and since

there may be no precipitation, the cumulative probability is

as follows:

H xð Þ ¼ qþ 1� qð ÞG xð Þ ð8Þ

where q is the probability of no precipitation. The

cumulative probability is then transformed into a normal

standardized distribution with null average and unit

variance based on which SPI is obtained (for more

details, see Edwards and McKee 1997 or Lloyd-Hughes

and Saunders 2002). The above approach, however, is

neither practical nor numerically simple to use if there are

many grid points or many stations to calculate SPI. In this

case, an alternative method was described in Edwards and

McKee (1997) using the technique of approximate

conversion developed by Abramowitz and Stegun

(1965). This technique converts the cumulative

probability into a standard variable Z. SPI is thus

defined as follows:

Z ¼ SPI ¼ � t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �

for 0\H xð Þ\0:5

ð9Þ

Z ¼ SPI ¼ þ t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �

for 0:5\H xð Þ\1

ð10Þ

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

H xð Þð Þ2

" #vuut for 0\H xð Þ\0:5 ð11Þ

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

1� H xð Þð Þ2

" #vuut for 0:5\H xð Þ\1 ð12Þ

where x is precipitation, H(x) is the cumulative probability

of precipitation observed, and c0, c1, c2, d0, d1, d2 are

constants with the following values (Table 2):

Table 1 Statistical parameters of data recorded from the Yazd syn-

optic station

Parameter Number of

data

Min Max Mean SD Skewness

Minimum

temperature

624 -6.2 35.6 11.9 8.8 0

Maximum

temperature

624 3.9 42.3 26.6 9.6 -0.1

Precipitation 624 0 71.2 4.7 8.4 3.2
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c0 ¼ 2:515517; c1 ¼ 0:802853; c2 ¼ 0:010328

d0 ¼ 1:432788; d1 ¼ 0:189269; d2 ¼ 0:001308

The adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS is a universal estimator that is capable of

approximating any real continuous function in a compact set

to any degree of accuracy (Jang et al. 1997). The basic

structure of the type of fuzzy inference system could be con-

sidered a model mapping input characteristics to input mem-

bership functions. This goes on to map input membership

functions to rules and the maps rules to a set of output char-

acteristics. Finally, it maps output characteristics to output

membership functions and also maps the output membership

function to a single-value output or an output-based decision

(Jang et al. 1997). Each fuzzy system contains three main

components including a fuzzifier, fuzzy database, and de-

fuzzifier. In addition, a fuzzy database consists of the fol-

lowing two main parts: fuzzy rule base and inference engine.

Figure 2 represents a typical ANFIS architecture. In

layer one, every node is an adaptive node with a node

function such as a generalized bell membership function or

a Gaussian membership function. In layer two, every node

is a fixed node representing the firing strength of each rule

and is calculated by the fuzzy and connective of the

‘product’ of the incoming signals. In layer three, every

node is a fixed node showing the normalized firing strength

of each rule. The i-th node calculates the ratio of the i-th

rule’s firing strength to the sum of two rules firing

strengths. In layer four, every node is an adaptive node

with a node function indicating the contribution of the i-th

rule to the overall output. In layer five, the single node is a

fixed node indicating the overall output as the sum of all

incoming signals (Jang and Sun 1995).

Where x and y are the inputs and z is the final output;

A1, A2, B1, and B2 are the linguistic labels (small, large,

etc.) associated with this node function, and wi is the

normalized firing strength that is the ratio of the i-th rule’s

firing strength (Wi) to the sum of the first and second rules’

firing strengths (W1 and W2). P is also the node label

(Shirmohammadi et al. 2013).

Multilayer perceptron (MLP) model

The MLP is one of the most widely implemented neural

network models. These networks take in a set of real

inputs, xi, and use them to compute one or more output

values, fk(x), with one hidden layer, such as that illustrated

in Fig. 3. The outputs might be computed as follows:

fk xð Þ ¼ bk þ
X

j

vjkhj xð Þ ð13Þ

hj xð Þ ¼ tanh aj þ
X

i

uijxi

 !
ð14Þ

where uij is the weight exerted on the connection by input

unit i to hidden unit j; similarly, mjk is the weight put on the

connection by hidden unit j to output unit k. aj and bk are

biases of the hidden and output units. These weights and

biases are the parameters of the networks. Each output

value, fk(x), is just a weighted sum of hidden unit values

plus a bias. Each hidden unit computes a similar weighted

sum of input values and then passes it in the return of a

nonlinear activation function. The activation function

selected here is the hyperbolic tangent (tanh) function. The

weights and biases in an MLP network are learned based

on a set of training cases, (x(1), y(1)),…, (x(n), y(n)), giving

examples of inputs, x(i), and associated targets, y(i) (both of

which have several components). Standard neural network

training procedures adjust the weights and biases in the

network so as to minimize a measure of ‘‘error’’ in the

training cases, which is most commonly the sum of the

Table 2 Classification according to the SPI values (Bacanli et al.

2008; McKee et al. 1993)

SPI Drought category

2[ Extremely wet

1.99–1.5 Very wet

1.49–1.0 Moderately wet

0.99–(-0.99) Near normal

(-1.0)–(1.49) Moderately dry

(-1.0)–(-1.99) Severely dry

-2\ Extremely dry

Fig. 2 Typical ANFIS architecture (Jang, 1993) Fig. 3 Neural network multilayer perceptron
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squared differences between the network outputs and the

targets. Finding the weights and biases that minimize the

chosen error function is commonly done using some gra-

dient-based optimization methods, derivatives of the error

with respect to the weights and biases calculated by back

propagation. The detailed theory of the back-propagation

algorithm can be found in Haykin (1999), which was

beyond the scope of this research. There are typically many

local minima, but good solutions often draw on heuristic

modifications (Khan and Coulibaly 2006).

The support vector machine (SVM) theory

According to the structural risk minimization (SRM)

principle, the generalization ability of learning machines

depends more on capacity concepts than the dimensionality

of the space or the number of free parameters of the loss

function (as espoused by the classical paradigm of gener-

alization). Hence, for a given set of observations (x1,

y1),…, (xn, yn), the SRM principle selects the function fb b

in the subset {fb: b[K}, for which the guaranteed risk

bound, as given by Eq. (15), is minimal. In other words, the

actual risk is controlled by the two terms in Eq. (15):

R bð Þ�Remp bð Þ þ X
n

h

� �
ð15Þ

where the first term is an estimation of the risk and the

second term is the confidence interval for this estimation.

The parameter h is called the VC dimension (named

after Vapnik and Chervonenkis) of a set of functions. It can

be seen as the capacity (or the flexibility of the functional

class in fitting the underlying learning problem) of a set of

functions implementable by the learning machine. If the

function is too complex (for the given amount of training

data), chances of over-fitting arise. In the case of ANN, for

the selected architecture, capacity is fixed and it is tried to

minimize the empirical risk. However, in the case of SVM,

the empirical risk term and the capacity term are controlled

simultaneously. SVM is an approximate implementation of

the SRM principle. The final approximating function for

SVM for regression is of the following form:

f xð Þ ¼
Xl

i¼1

ai � a�i
� 	

K xi; xð Þ þ b ð16Þ

where K(xi,x) = (u(x).u(xi)) is the kernel function, which

processes the inner product in feature space, u(x). To act as a

kernel, a function needs to satisfy Mercer’s condition

(discussed in the subsection on the proposed kernel

function). Kernel representation offers a powerful

alternative for using linear machines for hypothesizing

complex real-world problems as opposed to ANN-based

learning paradigms, which use multiple layers of threshold

nonlinear functions. The approximating function is designed

to have the smallest e deviation (given by Vapnik’s e-
insensitive loss function) from measured targets, di, for all

training data. Slack variables, ni and ni*, are introduced to

account for outliers in the training data. The algorithm

computes the value of Lagrange multipliers, ai and ai*, by

minimizing the following objective function:

Minimize 1
2

ak k2þC
PN

i¼1

ni þ n�i
� 	

Subject to di � a � xi þ bð Þ� eþ ni

a � xi þ bð Þ � di� eþ n�i
nin
�
i � 0

ð17Þ

Expressed in the dual form as follows:

Maximize � 1
2

PN

i;j¼1

ai � a�i
� 	

aj � a�j

� �
/i;/j


 �

�e
PN

i¼1

ai þ a�i
� 	

þ
PN

i¼1

yi ai � a�i
� 	 ð18Þ

It is subject to the following constraints:

Pn

i¼1

ai � a�i
� 	

¼ 0

0 6 ai 6 C; i ¼ 1; 2; . . .;N
0 6 a�i 6 C; i ¼ 1; 2; . . .;N

ð19Þ

where C is a user-specified constant and it determines the

trade-off between the flatness of f (x) and the amount of

allowable deviation. It is worth noting that both in the

objective function given by Eq. (18) and in the approximation

function given by Eq. (16), the training patterns appear as dot

products between the training pairs. The solution to the above

problem yields ai and ai* for all i = 1 to N. It can be shown

that all the training patterns within the e-insensitive zone yield

ai and ai* as zeros. The remaining nonzero coefficients

essentially define the final decision function. The training

examples corresponding to these non-vanishing coefficients

are called support vectors (Sivapragasam et al. 2001).

The values of e, C, and the kernel-specific parameters

must be tuned to their optimum by the user to get the final

regression estimation. At the moment, identification of

optimal values for these parameters is largely a trial and error

process. Furthermore, other than the e-insensitive loss

function, quadratic loss function (Fig. 4) may also be used in

which case e = 0. In this study, the quadratic loss function is

preferred over the e-insensitive loss function, as the former is

less memory-intensive using computers. Details on SVM can

be found, for example, in Vapnik (1995), Drucker et al.

(1997), Smola and Scholkopf (1998), Haykin (1999), Vapnik

(1999), and Cristianini and Shawe-Taylor (2000).

ARMA and AIRMA processes

In an ARIMA (p, d, q) process, q, d, and p denote the

number of autoregressive terms, integration degree, and the

Int. J. Environ. Sci. Technol. (2015) 12:1201–1210 1205
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number of moving average terms, respectively. When d is

equal to zero, ARIMA is changed to ARMA (autoregres-

sive moving average). Usually, in order to estimate the

ARIMA and ARMA models, the Box–Jenkins approach is

employed. This approach is comprised of the following

four phases: recognition, estimation, precision measure-

ment, and prediction.

ARIMAX

Recently, the trend of the tertiary industry has been studied

by many researchers using time series, but mostly, they use

the ARIMA model with one time series as it is an effective

way of studying time series with one time series in systems.

However, since ARIMA works only with one variable, it

could not explain the relationships among system variables.

The complex systems always are expressed by more than

one variable in practice. According to observations or

applications, the multivariate time series could be obtained

similar to recording a few different variables of a study

system such as the following variables: atmospheric pres-

sure, temperature, humidity in the meteorology, cardiac

rate, blood pressure, breathe and oxygen saturation of

blood in the physiology, rates of exchange in some cur-

rencies, and sub-index in securities markets or in space

expanded systems. More than one record could be obtained

from the different spaces including over falls, satellite data,

electrocardiograms, electroencephalograms, and such. In

the case of these multivariate time series, the aforemen-

tioned variables are influenced by other variables, while

they change their rules as well. It is not possible to express

the multivariate time series’ changing rules using the

ARIMA model with only one time series. The reason is that

the mensuration model is imperfect. Therefore, it is nec-

essary to create a model with multivariate ARIMAX model

(Fan et al. 2009; Chadsuthi et al. 2012).

Analysis of multivariate time series has been performed

so far. Cox and Jenkins modeled steady multivariate time

series using ARIMA model and input variables. Techni-

cally, it is necessary to stabilize input series and studied

series. The condition limiting the development of the

analysis to multivariate time series has to be met as well.

Engle and Granger put forward the concept of cointegra-

tion. Based on the cointegraty theory, the regression

residual time series of input time series and output time

series are needed to be stabilized, and thus, it is not nec-

essary to stabilize them. Introduction of the concept of

cointegration contributed to the development of the ana-

lysis to multivariate time series. The analysis of multiple

regression and time series was introduced into the concept

to improve the precision of forecasting.

Structure

The model with the following structure was defined as the

dynamic regression model, simplified as the ARIMAX

model.

yt ¼ lþ
Pk

i¼1

Hi Bð Þ
Ui Bð Þ B

li xit þ et

et ¼ H Bð Þ
U Bð Þ at

8
><

>:
ð20Þ

where Ui(B) denotes the auto-regression coefficients’

multinomial of the I-th input time series, Hi(B) denotes the

average coefficients’ multinomial of the i-th input time

series, li represents the lag degree of the i-th input vari-

ables, {et} shows the regression residual time series,

U(B) denotes residual series’ auto-regression coefficients’

multinomial, denotes residual series’ moving average

coefficients’ multinomial, and {at} is white noise time

series with zero average.

Concept

The basic concept of the ARIMAX model is as follows:

Assuming that both output time series {yt} and input time

series {xit} (i = 1, 2,…, k) are steady; first, the regression

model for output time series and input time series is created:

yt ¼ lþ
Xl

i¼1

Hi Bð Þ
Ui Bð Þ Bli xit þ et ð21Þ

And since the linear combinations of steady time series

are also steady, the residual time series {et} is steady as

well because {yt} and {xit}(i = 1, 2,…, k) are steady.

et ¼ yt � lþ
Xk

i¼1

Hi Bð Þ
Ui Bð Þ Bli xit

 !
ð22Þ

In order to extract the interrelated information from the

residual time series {et}, the final model (1) will be

obtained. The detailed model and mathematical

background of ARIMAX can be found in Fan et al.

(2009) study.

Fig. 4 Illustrative figures for a e-insensitive loss function and

b quadratic loss function
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Comparison of performances of models

Coefficient of determination (R2) and root-mean-squared

error (RMSE) were used to compare the performances of

models and select the best one.

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Pn

i¼1 SPIi� SbPIi
� �2

Pn
i¼1 SbPIi� SPIi
� �2

vuuuut ð23Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 SPIi� SbPIi
� �2

N

vuut
ð24Þ

where RMSE is the root-mean-square error and R2 is the

coefficient of efficiency. In addition, SbPIi is the measured

value, SPIi is the predicted (estimated) value, and SPIi is

the measured values mean. n is the total number of events

considered. According to previous sections about the

structure of the models, a general review is provided to

better illustrate the advantages and disadvantages of the

models employed in this research as shown in Table 3.

Results and discussion

Combinations presented in Table 4 were calculated using

the aforementioned models for 3-, 6-, 9-, 12-, 18-, and

24-month timescales. These combinations were selected

from so many other combinations obtained through trial

and error. The best combination for each timescale pre-

sented in Table 5 was compared to the best results of other

scales.

Parameters used in this stage to implement the ANFIS

model included the type of Gaussian membership function,

number of membership functions, number of iterations

obtained through trial and error to prevent over-fitting and

under fitting. Moreover, the MLP neural network, sigmoid

transfer function, and the number of intermediate layers

neurons (which increased by order) were examined for

each SPI time series as well. Results showed that MLP

artificial neural networks and intermediate layer neurons

fewer than input neurons yield the minimum error and

maximum correlation coefficient. In this study, the ARI-

MAX method was used to forecast drought. The following

software was also used to forecast drought and estimate the

models: STATISTICA, SPSS, Eviews, DIP, and

MATLAB.

Table 3 Summary of the advantages and disadvantages of the employed models

Model Advantages Disadvantages

ANN Requiring less formal statistical training, having the capability of

implicitly detecting complex nonlinear relationships between

dependent and independent variables, having the capability of

detecting all possible interactions between predictor variables, and

having access to multiple training algorithms

Being of a ‘‘black box’’ nature, greater computational

cost, proneness to over-fitting, and the empirical

nature of model development

ANFIS There is a need for adaptability or learning algorithms to produce

outputs, whereas a combination of ANN and fuzzy systems, called

Neural-Fuzzy system, is capable of eliminating the basic problems

in fuzzy system design (generating a set of fuzzy if–then rules),

using the learning capability of an ANN for automatic fuzzy if–then

rule generation and parameter optimization

ANFIS is sensitive to initial number of fuzzy rules

(number of clusters), the computational complexity

grows as the number of fuzzy rules increases

SVM There are four main advantages: First, it has a regularization

parameter, which makes the user conscious of avoiding over-fitting.

Second, it uses the kernel trick, so it can be built expert knowledge

about the problem through engineering the kernel. Third, an SVM is

defined by a convex optimization problem (no local minima), for

which, there are efficient methods. Fourth, it is an approximation to

a bound on the test error rate, and there is a substantial body of

theory behind it, suggesting it as a good idea

The biggest limitation of the support vector approach

lies in the choice of kernel. The second limitation in

concerned with speed and size, both in training and

testing stages. Although SVMs have good

generalization performance, they can be significantly

slow in the testing phase

ARIMAX The advantage of the model is the wide utilization of times series

modeling and forecasting techniques, which makes few parameters

adequate for explaining time series

The disadvantages of the method, above all, are difficult

interpretation of the model and the need for time

series with a minimum of 50 observations, which will

sometimes be very problematic to obtain if some

values are measured only annually

Table 4 Structures of forecasting models

Combination Input structure Output

M1 SPI(t)(t-1)(t-2)(t-3), P(t)(t-1) SPI(t?1)

M2 SPI(t)(t-1)(t-2), Tmax(t)(t-1), Tmin(t)(t-1) SPI(t?1)

M3 SPI(t)(t-1)(t-2), Tmax(t)(t-1)(t-2),

Tmin(t)(t-1)(t-2)

SPI(t?1)

M4 SPI(t)(t-1), Tmax(t)(t-1), Tmin(t)(t-1), P(t)(t-1) SPI(t?1)
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Table 5 shows values of the R and RMSE parameters

for short-term and long-term prediction of SPI along

with best combinations of the following models: ANFIS,

SVM, MLP, and ARIMA. Short term refers to

3–6 months, while long term refers to 9–24 months.

Results presented in this table indicate that the maximum

value of R obtained by the four models and the afore-

mentioned timescales was associated with SPI 9 and the

M4 combination. This value was obtained using the

ARIMAX model.

As seen in Table 5, MLP, SVM, ANFIS, and ARI-

MAX demonstrated more capability and sensitivity in

forecasting drought by SPI 9. In addition, it was

observed that in other timescales, the ARIMAX model

has higher R compared to the other three models.

Moreover, RMSE value of this model is lower than

others. As can be seen in Table 5, results from different

timescales are very close, and the input combination of

M4 in different timescales has the highest frequency.

However, it is not recommended to use SVM model in

the study area, since it has the weakest results in

different timescales. Furthermore, from the four combi-

nations, combination 4 (M4) demonstrated the best per-

formance of all in most timescale. Hence, a combination

of SPI, precipitation, maximum temperature, and mini-

mum temperature has the highest contribution to esti-

mation of results.

According to Table 5 and Fig. 5, the ARIMAX

model yields the maximum correlation coefficient and

minimum error in all timescales. That is to say, in the

9-month timescale, combination 4 (M4) yields 0.900

and 0.313 for correlation coefficient and error,

respectively.

Finally, using the Schwarz Bayesian criterion (SBC) and

Akaike information criterion (AIC), the most cost-effective

model was selected based on which prediction and data

generation were started. The model that gives the minimum

AIC and SBC values is selected as the best model. In this

research, the minimum values of AIC and SBC were

0.7877 and 0.8570, respectively.

Figure 6 was used to determine the parameters (Q, q, P,

p) through the autocorrelation function (ACF) and partial

autocorrelation function (PACF). ACF is one of the means

of validation. Since the ACF and PACF curves did not

exceed the limits, the assumption of independence of

residuals holds true.

In the following, the curves of the related time series are

included for better analysis of the performance of models

using M4 in the 9-month timescale.

As seen in Fig. (7), results of the ARIMAX model were

more realistic in a 9-month timescale using M4. Therefore,

this model was able to forecast descents (i.e., droughts)

better than other models. However, the ANFIS was able to

predict ascends (peaks) better than other models. Accord-

ingly, results indicated that time series forecast variations

of SPI better than artificial neural networks and neuro-

fuzzy systems. Moreover, short-term timescales are more

fluctuating than long-term timescales and also rapidly

respond to small changes of monthly precipitation. Since

short-term droughts are more frequent, an increase in

Table 5 Results of examination of the MLP, SVM, and ANFIS

models and ARIMAX time series for the best learning case and the

best combination of various tested time series

Timescale Model Input

combination

R RMSE

3 ANFIS M4 0.852 0.471

3 SVM M4 0.731 0.621

3 MLP(8-7-1) M4 0.817 0.508

3 ARIMAX(1,0,1)(1,0,1) M4 0.895 0.404

6 ANFIS M3 0.808 0.551

6 SVM M4 0.713 0.606

6 MLP(8-3-1) M4 0.774 0.545

6 ARIMAX(1,0,1)(1,0,1) M4 0.880 0.411

9 ANFIS M4 0.855 0.423

9 SVM M4 0.819 0.465

9 MLP(9-5-1) M3 0.840 0.447

9 ARIMAX(1,0,1)(2,0,1) M4 0.900 0.313

12 ANFIS M4 0.790 0.437

12 SVM M3 0.782 0.458

12 MLP(9-4-1) M3 0.770 0.458

12 ARIMAX(1,0,1)(1,0,1) M1 0.847 0.431

18 ANFIS M4 0.826 0.395

18 SVM M3 0.732 0.497

18 MLP(7-5-1) M2 0.791 0.426

18 ARIMAX(1,1,0)(1,0,1) M3 0.871 0.346

24 ANFIS M2 0.826 0.392

24 SVM M3 0.752 0.440

24 MLP(9-6-1) M3 0.838 0.362

24 ARIMAX(1,0,1)(1,0,0) M4 0.876 0.354

Fig. 5 Comparison of four models in the 9-month timescale
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timescale leads to a decrease in the frequency of droughts.

Hence, it is concluded that in a 9-month timescale,

droughts in the study area last longer than droughts in 3-

and 6-month timescales.

Conclusion

In this study, the precision of the results of the ANFIS,

SVM, MLP, and ARIMAX multivariate time series in

Fig. 6 ACF and PACF

diagrams for SPI 9

Fig. 7 Comparison of performances of the ARIMAX, MLP, SVM, and ANFIS models using actual values in a 9-month timescale in the test

period (2003–2012): a SVM, b ANFIS, c MLP, d ARIMAX
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forecasting meteorological drought was examined. Results

of this study indicated that the ARIMAX(1,0,1)(2,0,1)

model demonstrates a performance better than other mod-

els in a 9-month timescale in forecasting meteorological

drought. Results of this research imply that all the MLP,

SVM, ANFIS, and ARIMAX models are useful means of

forecasting meteorological drought which work on recor-

ded data. Therefore, it can be noted that these models could

be very useful in the continuous monitoring of regional

meteorological drought in order to manage limited water

resources in different periods. A comparison of the results

of models in a 9-month timescale revealed that the highest

precision for drought prediction is obtained by the ARI-

MAX model which is followed by the ANFIS, MLP, and

SVM models. However, with increase in meteorological

parameters, the results of the models would more reliable

and accurate. According to the results, the MLP, SVM,

ANFIS, and ARIMAX models demonstrate more capability

and sensitivity to drought forecast in a 9-month period.

Based on the results obtained for a 9-month timescale, it

was concluded that droughts in the area are less frequent

but more lasting.
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