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Abstract In this study, a multi-objective method for

allocating the number and configuration of an air quality

monitoring network based on non-dominated sorting

genetic algorithm II has been presented. The multiple cell

approach based on the solution of an Eulerian Model built

on K-theory was used to predict the dispersion of emitted

pollutants (SO2, CO, NOx) from different emission sources.

The multi-objective optimization method proposed in this

study utilized two objectives: (1) maximum coverage area

with respect to continuity of covered area and minimum

overlap among coverage areas and (2) detection of viola-

tions over ambient standards. The concept of sphere of

influence was used to determine the spatial area coverage

of the monitoring station, and a weighing function was

employed to measure the capability of a designed network

to detect violations of air quality standards. The results

show that three stations are suitable for the study region

with coverage efficiency of 80 %. Analyzing the effect of

cutoff correlation coefficient rc shows that, when the rc

increases, although the coverage area decreases, the cov-

ered region will be well represented and overlap region will

decrease.

Keywords Air quality � Genetic algorithm �
Multi-objective � Multi-pollutant � Optimization

Introduction

Ambient air quality monitoring is important in air quality

management and plays a key role in identifying the air

quality problems and formulating policies to control

emission sources of air pollutants. It is also important in

many other aspects such as to clarify local/regional specific

sources and sinks of air pollutants, to study the dynamic

behavior of air pollutants, to verify dispersion models, to

check compliance of statistical models, and to risk

assessment of traffic-related air pollution (Sheng and Tang

2013; Venkanna et al. 2014). Therefore, air quality moni-

toring network (AQMN) provides a database which enables

policy-makers to take informed decisions to protect public

health and the environment.

The optimal design of AQMN is highly desirable, since

in this case AQMN will be able to meet air quality

objectives while reducing the overall number measurement

devices which minimizes costs (Nejadkoorki et al. 2011).

Primary studies on monitoring site planning were done

based on an ad-hoc fashion by installing pollutant sensors

in hot spots but the majority of multi-objective and multi-

pollutant approaches which were considered relevant

parameters such as population density and pollution vari-

ability have been developed in recent researches (Ne-

jadkoorki and Baroutian 2012). Generally, the objectives of

AQMN can be summarized in the terms of spatial repre-

sentativity (i.e., siting criteria, including fixed or mobile

sites and numbers of sites), time resolution, and measure-

ment accuracy (Kuhlbusch et al. 2013).

Modak and Lohani (1985a) performed the design of an

AQMN, based on the objectives of maximum violation

detection and coverage monitoring for single and multiple

pollutants in Taipei City, Taiwan, in which the design

principles of a Minimum Spanning Tree algorithm were
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illustrated. They proposed two approaches: the first one

was based on the utility function and the other one was

based on the principles of sequential interactive compro-

mise. The comparison showed that utility function

approach was more effective than the sequential approach

in the case of Taipei City. Noll and Mitsutomi (1983)

developed an approach that locates monitoring stations

using ambient dosage as an index which ranks potential air

monitoring sites according to their ability to represent the

ambient dosage. The results of application of this method

to a power plant located in Northern Illinois denoted that

15 stations are required to monitor the area around the

power plant. Liu et al. (1986) applied the concepts of

‘sphere of influence’ (SOI) and ‘figure of merit’ (FOM) to

determine the number and disposition of ambient air

quality stations in a monitoring network. The proposed

method also is useful for modification (through addition or

relocation) of an existing network. However, in this

research, the method had not been applied to any case

study. Jain and Sharma (2002) proposed a simple and

generalized method for designing an optimum AQMN

based on entropy concepts, which are central to the infor-

mation theory. This methodology was applied to the

existing network of nine stations in Delhi. The results

suggested different optimal networks for each pollutant.

This method addressed the following issues for AQMN

design of Delhi: (1) priority locations for sampling and (2)

optimal size of network. Chang and Tseng (1999) pre-

sented a new approach based on grey compromise pro-

gramming for siting of new air quality monitoring stations.

Results of application of this method to the AQMN for the

city of Kaohsiung in South Taiwan indicated that the grey

compromise programing model is a useful tool in evalu-

ating the expansion alternatives with respect to different

types of decision-making processes. Tseng and Chang

(2001) in a companion study of Chang and Tseng (1999)

developed a GA-based compromise programming tech-

nique to assess relocation strategy of air quality monitoring

stations. Experience gained in this study pointed out that as

the number of pollutants and objectives increases simul-

taneously, the higher number of candidate location are

selected in the relocation strategy. Mofarrah and Husain

(2010) and Mofarrah et al. (2011) presented an objective

methodology for determining the optimum number of

ambient air quality stations in a monitoring network. They

used the fuzzy analytic hierarchy process (FAHP) with

triangular fuzzy numbers (TFNs) and concept of sphere of

influences (SOIs). The expansion of AQMN of Riyadh city

in Saudi Arabia was used as a case study. Based on the

results of this study, ten optimal locations for monitoring

stations were proposed. McElroy et al. (1986) presented an

objective methodology that applies the concepts of SOI and

FOM developed by Liu et al. (1986) for determining the

optimum number and disposition of ambient air quality

stations in a monitoring network. The application of pre-

sented method for determining the optimum number and

disposition of monitoring stations for CO2 in the Las

Vegas, Nevada area indicated that networks with fewer

stations would be selected if smaller minimum detection

capabilities of concentration variations are acceptable, and

vice versa. Kao and Hsieh (2006) performed the design of

an AQMN in an industrial district (Toufen Industrial Dis-

trict in Miaoli County, Taiwan) in which the objectives of

pollution detection, dosage, coverage, and population

protection were considered. This study compared the

effects of various objectives on the selection of monitoring

sites, with the intention to devise a suitable monitoring

network and to demonstrate the applicability of the estab-

lished model. Elkamel et al. (2008) proposed a heuristic

optimization approach to determine the optimum number

and location of air quality monitoring stations in which

multiple cell approach (MCA) was used to simulate

monthly distributions for the concentrations of the pollu-

tants emitted from different emission sources. The

approach was applied to a network of existing oil refinery

stacks, and the results showed that three stations provide a

total coverage of more than 70 %. Serón Arbeloa et al.

(1993) presented a methodology based on a heuristic

approach introduced by Liu et al. (1986) and on the ideas

presented by Modak and Lohani (1985a, b) in which the

objectives of prediction of the spatial and temporal patterns

of the concentration field and detection of violations over

legal standards were considered. The implementation of

this method for optimization of a network around a hypo-

thetical potash plant indicated that six stations are required

for monitoring and control of the pollution. Nejadkoorki

et al. (2011) proposed a cost-effective approach for

designing a long-term air pollution monitoring network for

an urban area. The methodology was applied to the existing

monitoring stations of or Yazd, Iran in different seasons.

The results indicated that the existing monitoring network

is not ideal and could benefit from being redesigned and the

minimum number of required sites for fall, winter, spring,

and summer were 28, 21, 9, and 10, respectively. Zheng

et al. (2011) established a methodological framework for

site location optimization in designing a regional AQMN,

on the basis of analyzing various constraints such as cost

and budget, terrain conditions, administrative district,

population density, and spatial coverage. The results

showed that the presented method can be used as a refer-

ence to guide site location optimization of a regional

AQMN design in China or other regions of the world.

Lozano et al. (2011) developed a method to design or

adjust air quality networks for monitoring NO2 and ozone

in compliance with the legislation. The method was applied

to the optimization of the air quality assessment network in
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Granada. The results indicated that one traffic-orientated

and one background control station were necessary for NO2

assessment, as well as one control station for O3. Littidej

et al. (2012) applied mathematical model and GIS to

determine a proper zone of air quality monitoring stations

to monitor CO and NOx concentration in a municipality

area. Based on the results, it can be concluded that proper

location of a monitoring station can be found effectively by

using optimization multi-objective decision analysis.

In this research, a GA-based method is presented to

represent multi-objective multi-pollutants AQMN design.

The optimization algorithm is an extension of methodology

presented by Modak and Lohani (1985a, b) which was used

and extended by Serón Arbeloa et al. (1993). A mathe-

matical model based on the MCA, delineated in Fatehifar

et al. (2006), Kahforoshan et al. (2008) and Fatehifar et al.

(2007), was developed to be used for simulating pollutant

distributions and determining ground level concentration of

the pollutants emitted from different emission sources. The

MCA model is based on the solution of the three-dimen-

sional diffusion equation to predict the dispersion of

emitted pollutants from refinery stacks. The output results

of MCA were used as the input of optimization algorithm.

A MATLAB program was written based on the method-

ology discussed in this paper. The objective of this AQMN

design is optimization of station locations with respect to:

(1) maximum coverage area with respect to continuity of

covered area and minimum overlap among coverage areas

and (2) detection of violations over ambient standards. The

continuity of coverage area also was taken into account to

increase the accuracy of monitoring. The research was

done in Tabriz Oil Refining Company, from 2010 to 2012.

Materials and methods

The strategy for design and operation of AQMNs are

dependent on monitoring objectives. Typical monitoring

objectives reported in the WHO (1999) include: (1) Pop-

ulation exposure and health impact assessment; (2) Iden-

tifying threats to natural ecosystems; (3) Determining

compliance with national or international standards; (4)

Informing the public about air quality and establishing alert

systems; (5) Providing objective input to air quality man-

agement, and also transporting and land-use planning; (6)

Identifying and apportioning sources; (7) Developing pol-

icies and setting priorities for management actions; (8)

Developing and validating management tools such as

models and geographical information systems; and (9)

Quantifying trends to identify future problems or progress

in achieving management or control targets.

A monitoring station is generally located in a place

where it can measure the pollution distributions in the best

way. Figure 1 shows the pollutant concentration profile on

ground level for a single point source. The potential zone

has been defined as the zone with pollutant concentration

of more than a definite threshold value. It has been sug-

gested that a monitoring station should be located in a

potential zone (Kao and Hsieh 2006).

In this paper, firstly, the dispersion model and meteo-

rological uncertainty will be explained. Then, the

description of the applied optimization model will be fol-

lowed, which includes objective formulations and non-

dominated sorting genetic algorithm II (NSGA-II) method.

Dispersion model

The MCA model, which has been developed and intro-

duced in former papers (Fatehifar et al. 2006, 2007, 2008;

Kahforoshan et al. 2008), is improved in a way that con-

siders wind direction in the simulation of pollutants dis-

persion in order to make it more comfortable for the

AQMN optimization. A brief description of main consid-

erations and assumptions of the model is included below.

The MCA model is based on the solution of an Eulerian

Model built on K-theory to predict the dispersion of

emitted pollutants from point sources. The model uses

graphical user interface (GUI-MATLAB program based),

and it is applicable for network of refinery stacks, petro-

chemical complexes, and urban and industrial stacks. The

basis of the model is mass conservation equation in which

the transfer and diffusion of pollutants from point source

(at Cartesian coordinates, constant wind velocity, and tur-

bulent diffusivities) are described by advective–diffusive

equation (Eq. 1) (Fatehifar et al. 2008):
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¼ � o UxCSð Þ

ox
�

o UyCS
� �

oy
� o UzC

Sð Þ
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� �
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� �
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ð1Þ

Fig. 1 Pollutant concentration profile on ground level (Kao and

Hsieh 2006)
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where CS is the concentration of the chemical species

involved in the model (CO, NOx and SO2), U is wind

velocity, Kx, Ky, and Kz are diffusion coefficients, ES is the

emission sources, k1
S and k2

S are deposition coefficients (for

the dry deposition and the wet deposition, respectively) and

Q(CS) represents chemical reactions.

Some assumptions and approximations should be taken

into account in order to solve the problem formulated by

the Eulerian approach (Seinfeld and Pandis 2006). The

following items are employed:

1. The initial conditions are arbitrarily set to zero. The

initial conditions have been found to be important only

for the initial period of modeling.

2. Transport by bulk in wind direction exceeds diffusion

in that direction i.e., molecular diffusion is negligible

compared with turbulent diffusion (Kx = 0).

3. The wind velocity is constant, a function of z and only

in x direction (Uy = Uz = 0). The pollutants are

advected downwind and are diffused vertically and

laterally by the turbulent eddies in the atmosphere. The

wind and diffusivity profiles vary with height above

the ground and are dependent on the net heat flux to

the air and the local roughness of the surface (Ragland

and Dennis 1975).

4. There is no chemical reaction in the system (Q = 0).

This assumption is valid, given that only primary

pollutants were considered in this study (Olcese and

Toselli 2005).

5. There is no deposition in the system (kS
1 = kS

2 = 0). This

assumption is valid considering that study area is

relatively flat, dry, and smooth with negligible grass and

vegetation. Also, the modeling is not done on rainy days.

Dispersion parameters such as meteorological condi-

tions and emission rate are approximately constant while

the plume is in route from the source to the receptor,

which leads to considering the steady state condition

(oCS

ot
¼ 0). Applying following boundary conditions leads

to the finite difference representation as given in

Eq. 2:At x = 0, C(0,j.k) = 0 (considering the specific

location of refinery and the prevailing wind directions,

the background concentration is zero with a good

approximation).

At y = 0 and y = W, oC
oy
¼ 0 (Given that, the emission

sources were located at the center of domain and also the

large enough width of domain was considered in the

modeling; this boundary condition is acceptable).

At z = 0, oC
oz
¼ 0 (there is no mass transfer between the

ground surface and atmosphere).

At z = mixing height, oC
oz
¼ 0 (the pollutant plume can

progress upwards from the release height until the mixing

height (Beychok 1994). The mixing height changes on a

daily and seasonal basis (Ghermandi et al. 2014) which

were considered in the model. W and mixing height are

illustrated in Fig. 2.

Uxk
CS

iþ1;j;kDyDzþ ðKyÞkDxDzðCS
iþ1;j;k � CS

iþ1;jþ1;kÞ=Dy

þ ðKyÞkDxDzðCS
iþ1;j;k � CS

iþ1;j�1;kÞ=Dy

þ ðKzÞkþ1=2DxDyðCS
iþ1;j;k � CS

iþ1;j;kþ1Þ=Dz

þ ðKzÞk�1=2DxDyðCS
iþ1;j;k � CS

iþ1;j;k�1Þ=Dz

¼ Uxk
CS

i;j;kDyDzþ ES
i;j;kDyDz ð2Þ

where the empirical equations, which are dependent on the

stability classes of atmosphere and functions of surface

roughness length and friction velocity, were used to cal-

culate eddy diffusivities in the lateral (Ky) and vertical (Kz)

directions and get wind velocity as a function of height

above ground (Uxk
). The modified Holland’s equation was

used for plume rise calculation (Fatehifar et al. 2006, 2007,

2008; Kahforoshan et al. 2008).

Figure 2 presents the schematic view of selected

domains for modeling of pollutants dispersion. As can be

seen, two domains for modeling procedure were intro-

duced: main and modeling domains. The main domain is

defined in a way which includes all the areas that pollu-

tion gets dispersed over it in different wind directions. The

modeling domain is a moving domain which can rotate

based on the wind direction, around the central point of

the main domain. The network of the point sources is

located in the center of the main domain. Application of

the MCA model to industrial stacks has been verified in

former papers (Fatehifar et al. 2006; Kahforoshan et al.

2008). The flowchart of the proposed model is shown in

Fig. 5.

Meteorological uncertainty

Wind velocity and direction as well as the air temperature

in the study area are the meteorological conditions that

impose significant effect on the distribution of pollutants.

Figure 3a shows the wind rose diagram for the study area

based on monthly average from 2002 to 2012 and high-

lights that the prevailing wind directions were from the east

and northeast. The percentage of east, northeast, and west

wind directions occurrence were 49.25, 42.42, and 8.33,

respectively. Thus, only east and northeast wind directions

were considered in this study. Figure 3b illustrates the

evolution of temperature throughout the year 2012. As
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shown in this figure, the study area has relatively cold

winters and hot summers.

Description of optimization objectives

Spatial coverage representation

The concept of SOI suggested by Liu et al. (1986) was

employed to determine the special area coverage of the

monitoring station. SOI is defined as the zone over which the

air quality data for a given monitoring location can be con-

sidered representative (Elkamel et al. 2008). The spatial cor-

relation coefficient (r) was used to calculate the SOI. This

coefficient is based on the similarity between values of pol-

lutant concentration at a given potential location and the

corresponding values at its neighboring points. For instance, if

C1 = (C11, C12,…Cln) and C2 = (C21, C22,…, C2n) denote the

pollutant concentrations at two potential locations calculated

by the MCA model at the same time, then the spatial corre-

lation coefficient for a sample size n can be expressed as:

r ¼

Pn

i¼1

C1i � C1

� �
C2i � C2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

C1i � C1

� �2Pn

i¼1

C2i � C2

� �2

s ð3Þ

and

C1 ¼
1

n

Xn

i¼1

C1i and C2 ¼
1

n

Xn

i¼1

C2i ð4Þ

C1 or C2 is the average pollutant concentration calculated

at point 1 or 2, respectively.

Fig. 2 Schematic of selected domains for simulation
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The spatial correlation coefficient (r) for concentra-

tion fluctuations decreases by increasing the distance

from the monitoring station. Therefore, a cutoff distance

could be established in a way that the correlation

coefficient in that distance is expected to be less than a

certain cutoff value rc. In order to determine SOI of

each potential location, the calculated spatial correlation

(r) coefficient for each point was compared with a pre-

defined cut off value (rc). If spatial correlation coeffi-

cient (r) was higher than rc, the corresponding points

would be considered as correlated. The coverage area of

a potential location is defined as the number of poten-

tial locations placed inside the SOI that can be quan-

tified in terms of pattern scores. The pattern scores for

an ith candidate location are denoted by Np
i . This

approach was also applied by Liu et al. (1986), Serón

Arbeloa et al. (1993), Kao and Hsieh (2006) and Mo-

farrah and Husain (2010) to determine coverage areas.

In this study, as shown in Fig. 4, continuity of SOI was

considered to increase the accuracy of monitoring. Thus,

the pattern score for an ith candidate location was rede-

fined as the number of potential locations placed inside

the SOI of candidate location i and is contiguous to each

other.

Therefore, the first interest of AQMN designing is to

determine the optimum number and location of monitoring

stations, where the overall pattern score of the network is

maximized.

Violations over ambient standards

The terms of violation scores were considered to measure

the capability of a designed network to detect violations of

air quality standards which are denoted by Nv. A weighted

scoring was used to determine the violation scores based on

the concentration of SO2, NOx, and CO. In this approach,

all of the violations do not have the same severity.

Therefore, these scores are dependent on the threshold

levels and the weighing factors between each threshold

range and the weighing function.

In this work, among the various weighing functions to

calculate the violation score of a site, a segmented non-

linear weighing function (Modak and Lohani 1985a, b) was

chosen. The violation score for each candidate location is

calculated by the equation below:

Ni
v ¼

XT

i¼1

XNt

k¼1

wkþ1 � wkð Þ xi � xkð ÞX
xkþ1 � xkð Þ ð5Þ

where Nv
i is the violation score for the ith candidate loca-

tion, wk is the weighing factor corresponding to threshold

xk, xk is the kth threshold, X = 0 if (xi - xk) B 0, X = 1

otherwise, Nt is the total number of thresholds, and T is the

total number of simulated observations. The threshold

values based on the US-EPA limit values of common

pollutants are shown in Table 1.

The second interest of optimization problem could

therefore be deliberated as the identification of the opti-

mum number (m) and locations of monitoring sites so that

the overall violation score is maximized.

Fitness function

In order to meet the two objectives described above, a

composite objective function is formulated as

F ¼ Np � Nvð Þb with b� 0ð Þ ð6Þ

The value of parameter b depends on the purpose of the

network to be developed and is used to weigh the relative

importance given to each objective. This structure of the

objective function ensures that if any of the two sub-

objectives becomes zero, the overall objective function

(F) will also have a zero value.

A weighted sum objective function was used to extend

the function to multiple pollutants:

Fig. 4 Continuity of SOI

Table 1 Air pollution index assigned to weighing factors values for

the violation (Elkamel et al. 2008)

SO2 (lg/m3) NOx (lg/m3) CO (lg/m3) Weighing factors

80 30 4,000 0.5

120 80 6,000 1

140 100 8,000 2.5

160 130 13,000 3

190 160 20,000 5

1336 Int. J. Environ. Sci. Technol. (2015) 12:1331–1342

123



UFiðuÞ ¼
Xp

j¼1

wjF
i
j ð7Þ

and

Xp

j¼1

wj ¼ 1 ð8Þ

where wj is the importance associated with pollutant j, Fj
i is

the objective function for pollutant j at location i, and

UFi(u) is the additive/overall objective for P pollutants at

location i.

Since the interest of the optimization problem is to

achieve maximum coverage effectiveness and overall

violation score at a minimum overlap, two dimensionless

parameters were defined as follows:

UFn ¼
maxðUFÞ � ns

Pns

i¼1

UFi uð Þ
ð9Þ

OLn ¼
number of overlaped grids

maximum number of possible overlaped grids

ð10Þ

where UFn is the utility function number of the network,

OLn is overlap number, ns is the number of stations, and

max(UF) is the maximum value of UF(u) among all

UF(u)s of the potential locations.

Therefore, the optimization problem is transformed

into the identification of the location of stations in which

UFn and OLn are in minimum amounts. The NSGA-II

was used to find the optimal solution for optimization

problem.

Non-dominated sorting genetic algorithm (NSGA-II)

Non-dominated sorting genetic algorithm II which is

proposed by Deb et al. (2002) is the most famous multi-

objective optimization algorithm, which is widely used

for generating the Pareto frontier (that is a set of solu-

tions which would represent the best trade-off among the

objectives) and satisfying both goals of Pareto multi-

objective optimization (Tao et al. 2014; Erfani et al.

2013). Fast non-dominated sorting procedure, fast

crowded distance estimation procedure, and simple

crowded comparison operator are the special character-

istics of NSGA-II (Deb et al. 2002).

In sum, the algorithm can be outlined as follows:

Initial generation:

1. Generating random parent population P0 (Each chro-

mosome of population includes a set of stations)

2. Finding cost of each chromosome (Cost is calculated

based on the UFn and OLn)

3. Non-dominated sorting of initial population and cal-

culate crowding distance

4. Creating an offspring population Q0 of size N by using

the usual binary tournament selection, recombination

and mutation operators

The ith generation:

5. Combining parent and offspring (Qt) to form Rt

(Rt = Pt[Qt)

6. Sorting the population Rt according to non-domination

(each solution is assigned a fitness (or rank) equal to its

non-domination level: F1 is the best level, F2 is the

next best level, and so on)

7. Forming the population Pt?1 (If the size of F1 is smaller

than N, all the members of F1 should be placed in Pt?1

and the remain members of Pt?1 from subsequent non-

dominated fronts are placed in the order of their ranking

until the parent population is filled)

8. Using the population of Pt?1 to create an offspring

population Qt?1 by using selection, crossover and

mutation

9. Checking the stopping criteria (If the end condition is

satisfied, stop and show the current population as the

best solution, otherwise go to step 5) (Deb et al. 2002).

Crowding distance uses in selection operator to keeps

the population diverse and helps the algorithm to

explore the fitness landscape by making sure each

member stays a crowding distance apart (Carlos A.

Coello Coello et al. 2007). Details of the method can

be found in Deb et al. (2002).

Overall, the AQMN designing procedure can be sum-

marized by a flowchart as shown in Fig. 5. This algorithm

has been implemented in MATLAB.

In the following section, the multi-objective model with

varied weight sets is applied in a case study for planning an

AQMN for a network around the oil refinery plant.

Results and discussion

Illustrative case

The multi-objective and multi-pollutant optimization

method outlined above was applied around Tabriz Oil

Refining Company. The refinery is situated on a plot area

of 1.5 square kilometers located at 15 km of Tabriz-

Azarshahr road, East Azarbayjan province, Iran. The

refinery was originally built to process 80,000 BPD of
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Ahvaz-Asmari’s crude oil to meet the region requirements.

However, the capacity was enhanced to 110,000 BPD in

recent years. The refinery complex, as a whole, contains

refining units, utility services, waste water treatment plant,

and storage tanks. In sum, CO, NOx, and SO2 release from

20 stacks and one flare of refinery. In order to predict

pollutant concentration at potential locations, 96 sets of

collected data of pollutants concentrations which have been

measured in the stacks and also wind velocities and tem-

peratures of vicinity of the refinery stacks for 8 years (from

2005 to 2012) were used in MCA model. A matrix of

96 9 3,245 for SO2, NOx, and CO concentrations that has

been generated at the specified 3,245 candidate locations

was used as an input to the optimization algorithm. Fig-

ure 6a shows Tabriz Oil Refining Company and the loca-

tions of air pollution sources. Location 1, 2, and 3 include

19 stacks, one stack, and one flare, respectively. It is noted

that Tabriz Oil Refining Company is located at a smooth

plate. Figure 6b–d shows the concentration of pollutant at

ground level for selected main domain and different wind

blowing angels in different conditions.

According to the Fig. 6, potential zone can be diagnosed

from pollutant concentration profile on ground level of

simulation examples.

Optimization results

The heuristic optimization algorithm was implemented for

different cutoff rc values in the correlation coefficient

matrix. The value of rc varied from 0.75 to 0.95 in order to

study the effect of rc on the coverage effectiveness of the

monitoring networks. The outputs of optimization program

are Pareto set of solution. The solution with maximum

number of covered grids was selected as the best solution.

Fig. 5 Flowchart of proposed method for optimal allocation of monitoring stations
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Table 2 shows the optimal locations of the monitors for a

maximum number of six stations.

Figure 7 illustrates the coverage efficiency of the AQMN

for different rc values. As shown in the figure, three stations

for AQMN are suitable because by increasing the number of

stations from 3 to 6, there is no significant increase in cov-

erage efficiency. A concurrent comparison of UFi of net-

work and number of overlapped grids indicates that by

increasing the number of stations (from 4 to 6), the

increasing rate of overall UFi of network decreases and in

contrast the number of overlapped grids increases sharply. In

general, it can be concluded that increasing of overall UFi of

network is due to covering of identical points by several

stations or in the other words increasing the number of

overlapped grids. In conclusion, establishing a network with

more than three stations would not be economically justified

for the study area. However, the final decision in such a case

is of course left to the air quality monitoring organization.

For illustration purposes, three stations locations were

selected and, Fig. 8 shows the location and coverage area of

stations and overlap region for pollutant NOx. As shown in

the figures, when the cutoff value increases, the coverage

region decreases, but the covered region will be well rep-

resented and overlap region will decrease.

For a stipulated budget, the air quality monitoring

organization (i.e., Iran EPA, US-EPA) could maintain

either a high or a low value rc based network. A high rc

based network may not necessarily cover the entire region,

but the covered region will be well represented. A low rc

based network on the other hand would offer more cov-

erage of the region, but the covered region may not be

satisfactorily represented (Elkamel et al. 2008).

A comparison between the results of current study and

previous paper (Elkamel et al. 2008) was done to evaluate

the performance of proposed method. In comparison with

previous study, an evolutionary algorithm (NSGA-II) was

Fig. 6 Location of industrial district and air pollution sources (a) and concentration of pollutants at ground level with wind blowing angles: b 10,

c 45, d 90
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used instead of sequential minimum Spanning Tree algo-

rithm. Using NSGA-II allowed consideration of two

objectives simultaneously: (1) maximization of objective

function (2) minimization of overlap among coverage

areas, which causes to maximize network performance and

reduces the number of stations. Also, in the current study,

the continuity of coverage area of stations was considered

which leads to enhance the quality of monitoring. The

MCA model which was used in the current study was

developed in a way which can consider wind blowing angle

and easily be used at optimization procedure. Table 3

shows some general characteristics of both studies.

As shown in the table, new method provides more

coverage efficiency in comparison with the previous study.

This increase in coverage efficiency will be remarkable

Table 2 Optimal locations for AQMN for multi-pollutant (x and y are in m)

Station number rc = 0.75 rc = 0.8 rc = 0.85 rc = 0.90 rc = 0.95

x y x x x y y y x y

1 Station

1 2,100 3,000 2,100 3,000 2,100 3,000 2,100 3,000 2,300 2,600

2 Station

1 1,800 3,300 2,600 2,700 2,300 2,900 2,100 3,000 2,300 2,600

2 1,500 3,000 1,300 1,600 2,000 700 1,500 2,700 1,500 2,700

3 Station

1 1,900 3,200 1,400 2,800 1,800 3,200 3,900 2,600 2,600 2,300

2 1,400 3,100 2,600 3,400 1,400 2,900 1,500 2,700 1,900 1,600

3 2,200 3,400 2,000 3,100 3,800 2,400 2,000 3,100 2,600 3,400

4 Station

1 1,900 3,200 2,600 3,400 3,400 2,600 3,400 2,600 2,600 3,400

2 700 500 2,600 2,300 2,300 2,600 2,300 2,600 2,600 2,300

3 2,700 3,800 1,000 1,700 1,000 1,700 1,000 1,700 1,000 1,700

4 1,500 3,200 1,900 1,600 1,900 1,600 1,900 1,600 1,900 1,600

5 Station

1 1,900 1,000 4,500 3,500 2,000 3,100 3,800 2,500 1,900 3,000

2 4,400 2,000 2,000 3,100 900 1,500 2,300 3,200 1,500 2,400

3 1,500 2,700 1,400 2,900 2,100 900 1,500 2,600 600 3,600

4 4,400 300 700 400 1,600 3,000 2,300 2,700 3,300 2,500

5 1,800 3,400 3,600 2,500 4,100 2,500 2,200 3,800 3,100 3,400

6 Station

1 1,400 2,500 4,700 4,900 2,000 3,100 3,300 2,300 1,400 2,500

2 2,400 2,900 2,900 3,100 900 1,500 3,100 2,900 2,400 2,900

3 2,600 3,200 4,700 600 2,100 900 4,700 300 2,600 3,200

4 800 1,300 2,000 1,500 1,600 3,000 1,400 2,900 800 1,300

5 2,500 2,400 1,800 3,400 4,100 2,500 900 2,200 2,500 2,400

6 1,700 2,700 1,500 3,100 2,900 3,100 1,900 3,100 1,700 2,700

Bold values are the selected locations for monitoring stations
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Fig. 7 Coverage efficiency versus number of stations for multi-

pollutants as a function of rc
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when the increase of network coverage area (due to con-

sidering the prevailing wind directions) and accuracy of

monitoring (due to considering the continuity of coverage

area) being considered. In the other words, the coverage

area of designed network in current study is almost double

the coverage area of designed network of former paper

while both networks have three stations which leads to low

cost and more information.

Conclusion

Air quality monitoring network is an essential tool for air

quality management and control sources of air pollutants.

This study presented an approach for determining the

optimal configuration of AQMN. This approach optimizes

the location and number of monitoring stations with respect

to maximum coverage area with minimum overlap and

detection of violation over ambient standards for primary

gaseous pollutants such as SO2, CO, and NOx. In order to

increase the accuracy of monitoring, the continuity of

coverage area of monitoring stations was considered in the

optimization procedure.

In this study, a mathematical model based on MCA was

developed in a way that considers wind direction in the

prediction of ground level pollutant concentrations in order

to make it more comfortable for the AQMN optimization.

The model was used to determine ground level concen-

tration of pollutant in the study area (Tabriz Oil Refining

Company) for 96 different scenarios. The output results of

MCA were employed to determine the pattern score and

violation score of the potential locations. An algorithm was

formulated to find optimal number and location of moni-

toring stations using NSGA-II.

The effect of the correlation coefficient on total cover-

age and effectiveness of the network was also studied. The

results showed that for the area under study, three stations

are suitable and for rc = 0.75 can give a coverage effi-

ciency of about 80 %. Evaluation of performance of pro-

posed method indicated that the method has good

efficiency in designing of AQMN.

The proposed design for the network around the oil

refinery plant provides a cost-effective solution to envi-

ronmental monitoring. The presented method is a suitable

and effective method of designing a proper AQMN around

an oil refinery which can be used for other industrial pro-

cess plants such as petrochemical complexes and power

plants.

Fig. 8 Location and coverage region for three selected stations:

a rc = 0.75, b rc = 0.95

Table 3 Some general characteristics and results of both studies

Current

study

Our previous study

(Elkamel et al. 2008)

Model of air pollution

dispersion

MCA MCA

Wind direction Considered Not considered

Wind velocity Considered Considered

Air temperature Considered Considered

Used data set 96 set 72 set

Optimization method NSGA-II Minimum Spanning

Tree algorithm

Continuity of coverage area Considered Not considered

Overlap among coverage

areas

Minimized Not considered

systemically

Number of proposed stations 3 stations 3 stations

Coverage efficiency of

proposed network

(rc = 0.75)

80 % 75 %
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