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Abstract Land use classification is often the first step in

land use studies and thus forms the basis for many earth

science studies. In this paper, we focus on low-cost tech-

niques for combining Landsat images with geographic

information system approaches to create a land use map. In

the Golestan region of Iran, we show that traditional

supervised and unsupervised methods do not result in

sufficiently accurate land use maps. Therefore, we evalu-

ated a synthetic approach combining supervised and

unsupervised methods with decision rules based on easily

accessible ancillary data. For accuracy assessment, confu-

sion matrices and kappa coefficients were calculated for the

maps created with the supervised, unsupervised and syn-

thetic approaches. Overall accuracy of the synthetic

approach was 98.2 %, which is over the 85 % level that is

considered satisfactory for planning and management

purposes. This shows that integration of remote sensing

data, ancillary data and decision rules provides better

classification accuracy than traditional methods, without

significant additional use of resources.
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Introduction

Up-to-date land use maps are very important to scientists,

planners, resource managers and policy makers. Satellite

images have been widely used over the past 20 years as a

basis for such maps and to improve our understanding of

land use and land cover changes (LUCC). Remote sensing

technology is an effective tool for spatial data acquisition

to maintain the sustainable management of natural

resources and economical perspective (Cetin 2009). A

range of satellites delivers images with varying spatial and

temporal resolution. One of the best sources for land use

studies is the Landsat series of satellites. Landsat data are

useful for land surface mapping, change detection and

monitoring (Cohen and Goward 2004; Alesheikh et al.

2007; Hansen et al. 2008; Masek et al. 2008; Cetin 2009).

Landsat data are particularly applicable for land use clas-

sification on a regional scale because of their lower cost,

longer history and higher frequency of archives than other

remote sensing data sources (Rozenstein and Karnieli

2010). As a result, Landsat images have been successfully

used to classify land use in a large variety of landscapes

from homogeneous tropical landscapes to heterogeneous

Mediterranean landscapes (Alrababah and Alhamad 2006;

Koutsias and Karteris 2003; Manandhar et al. 2009; Schulz

et al. 2010; Brandt et al. 2013; Sexton et al. 2013; Zegre

et al. 2013). Landsat’s spatial resolution is 30 m. The

Landsat sensors include the Landsat 5 Thematic Mapper

(TM), the Landsat 7 enhanced thematic mapper plus

(ETM?) and the Landsat 1–5 multispectral scanners
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(MSS) (Chen et al. 2011). At the time of writing, two

Landsat sensors are operational: TM on board Landsat 5

and ETM? on board Landsat 7.

Several methods are available to map land use using

satellite images. The simplest method is visual interpre-

tation. This method is suitable in some limited cases, but

visual interpretation is limited to a single-band or a

three-band (red–green–blue) color composite, which

means that not all available information is used. More-

over, visual interpretation is subjective and manual dig-

itization of land use polygons is labor intensive.

Therefore, automatic methods of mapping are more

popular, especially for large areas (Rozenstein and Kar-

nieli 2010). Automatic methods are divided into super-

vised and unsupervised methods, according to the need

for information from the map’s producers. It has been

shown that in geomorphologically homogenous areas

either of the automatic (supervised or unsupervised)

methods can be successfully used for mapping, but in

heterogeneous regions, it has been suggested that it is

better to use synthetic methods (Lillesand and Kiefer

2000). Synthetic methods use additional maps next to

satellite images to separate land use types with the same

reflectance. This integration of remotely sensed data with

other data sources such as previously existing land use

data, geology, transportation network or digital elevation

models (DEMs, with possibly derivatives such as slope

and curvature) can result in higher classification accuracy

(Manandhar et al. 2009; Stefanov et al. 2001; Shalaby

and Tateishi 2007). Synthetic methods can take the form

of decision rules that use data sources in combination

(Lillesand and Kiefer 2000). The objective of this study

was to use and evaluate supervised, unsupervised and

synthetic methods for land use mapping with a case

study in the Baghsalian watershed in Iran. The study was

carried out in March to June 2012 with financial support

of Tarbiat Modares University. The main land use types

in this watershed are broadleaf forest, conifer forest,

rangeland, agricultural land, water bodies and residential

land. The Baghsalian watershed is subject to natural

hazards such as floods and landslides, which makes land

use mapping essential in terms of future planning (Mo-

hammady et al. 2012).

Study area

The Baghsalian watershed is in the north of Iran and covers

approximately 1,800 km2. It lies between the latitudes 36�
430 1800 to 37� 140 0500 N and the longitudes 54� 430 2400 to

55� 160 5200 E in the southern part of the Golestan province,

Iran (Fig. 1). The main cities in this watershed are Aliabad,

Khan bebebin, Daland and Ramian. Altitude ranges from 0

to 2,950 m above m.s.l. The study area is heterogeneous in

terms of land use, terrain complexity and climatic regimes.

In particular, the relations between reflectance and land use

differ between the mountainous south and the flatter north

of the watershed. Annual average temperature is 18 �C,

and the total annual rainfall is about 600 mm, respectively.

Rainfall varies between 390 mm in the south and 815 mm

in the north of the watershed at Baghsalian and Zaringol

meteorological stations, respectively (Golestan Regional

Water Co 2007).

Fig. 1 Location of the Baghsalian watershed in the north of Iran
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Materials and methods

Data collection and image preprocessing

Six TM and ETM? images from 2010 were prepared for

the study area (path 162, row 34 and 35, Table 1). These

images are freely available from the United States Geo-

logical Survey (USGS). Because of the scan-line corrector

(SLC) failure for the ETM? sensor on board Landsat 7,

some pixels of each ETM? image were missing (Abd el-

kawy et al. 2011). We applied a gap-fill algorithm to cor-

rect these images (Mohammady et al. 2013). Preprocessing

of satellite images prior to land use classification is

essential and has the unique goal of establishing a stronger

linkage between the data and biophysical phenomena (Abd

el-kawy et al. 2011). Satellite images were therefore geo-

metrically corrected to the UTM projection (zone 40 north

and with datum WGS 1984). Further preprocessing of the

image included one-step radiometric and atmospheric

corrections using the dark-object subtraction method (Ro-

zenstein and Karnieli 2010). Additionally, a detailed 10 m

contour map of the area at 1:25,000 scale was digitized.

A DEM was prepared from this contour map (Fig. 2), and

slope was derived from the DEM using ArcGIS 9.3 soft-

ware. A Normalized Difference Vegetation Index (NDVI)

was calculated from each satellite image. NDVI represents

a measure of canopy greenness, and dense green vegetation

canopies are generally greater than 0.6 (Wang et al. 2005;

Maxwell and Sylvester 2012). An annual maximum NDVI

image (NDVIann-max) was generated for each year by taking

the maximum NDVI value that occurred in the time series

(Maxwell and Sylvester 2012).

Finally, 370 spectral signatures were collected from all

land use types by field survey (GPS) where possible and

by Google Earth in the more mountainous regions where

forest is quite clearly distinguished on Google Earth

(Chen et al. 2011; Brandt et al. 2013). It was attempted

to divide the sample locations evenly over the research

Table 1 Data inventory

Data TM ETM? TM TM ETM? ETM? Topographical map

Date 2010.4.3 2010.5.29 2010.6.6 2010.8.9 2010.8.17 2010.9.2 1995

Fig. 2 DEM map of the Baghsalian watershed

Fig. 3 Spatially distributed map of training samples
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area (Fig. 3). These signatures located in the whole area

with different slope and altitude. Minimum and maxi-

mum areas of signatures for classification were 3,857 and

47,250 m2, respectively. For signatures of test, these

values were 4,072 and 38,121 m2. Slope of signatures

was about 0 to 80 %, and the range of signature altitude

was 0 to 2,700 m. Figure 4 shows land use types in the

study area including agriculture (A), broadleaf forest (B),

residential area (C), conifer (D), rangeland (E) and water

body (F). In the modeling process, usually 2/3 of data

are used for modeling and the rest will be used for

model test. We used 250 signatures for supervised clas-

sification and 120 signatures for accuracy assessment

(Fig. 3). Table 2 shows the number of training samples

per land use type. The number of signatures is dependent

on difference of spectral characteristic and area of each

land use types. In the homogeneous land use type, we

decreased number of signatures and increased area of

each signatures. For example, broadleaf forest covers

about 35 % of the study area, but the number of signa-

tures is lower than residential area that covers about 2 %,

because of difference of spectral characteristics of resi-

dential area compare to forest. Of course, area of sig-

natures in the broadleaf forest is more than residential

area.

Classification

Remote sensing image classification methods can be divi-

ded into unsupervised and supervised classification meth-

ods. For unsupervised classification, there is no need to

have a prior understanding of the study area. Therefore,

this method is time and cost efficient. The best-known

variant of unsupervised classification is ISODATA, which

groups pixels with similar spatial and spectral character-

istics into classes (Bakr et al. 2010). However, for practical

application, the quality of this classification is often not

enough. Supervised classification methods therefore use

Fig. 4 Land use types in the

study area
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prior knowledge, which often increases the classification

accuracy (Yiqiang et al. 2010).

In the study area, cropping type changes seasonally and

a close mix of agriculture with rangeland exists. It is

therefore difficult to extract a land use map using only one

satellite image. To attempt to solve this problem, we used a

synthetic method where satellite imagery from multiple

seasons is combined with ancillary data (Brandt et al.

2013). It was hoped that the added temporal information

extractable from the multi-date imagery, and the decision

rules governing the impact of the ancillary data resulted in

a more correct land use classification.

The six TM and ETM? images were first classified using

both supervised (maximum likelihood) and unsupervised

(ISODATA) methods with ENVI 4.8 software. Then, in the

synthetic method, broadleaf forest, conifer forest, water

bodies and residential areas were first derived from super-

vised classification. The spectral reflectance of these four

land use types is relatively constant throughout a year, so

that training signatures were a suitable basis for classifica-

tion. Second, agricultural land use for each image was

derived from unsupervised classification. There are several

agriculture types in the Baghsalian watershed that have

different reflectance, leading to difficulties with the tradi-

tional supervised classification. In addition, agriculture

pixels significantly change their spectral signature between

growth and fallow seasons. Therefore, we cannot use

supervised classification to classify agriculture. We used

spectral reflection and regular shape of agriculture (unsu-

pervised classification) to extract this class. All agricultural

land use types were then combined into one agricultural land

use class. The remaining unclassified land was considered

rangeland. For all land use types, expert knowledge of the

area was then used in decision rules based on slope, altitude

and NDVI maps to remove obvious classification errors.

Table 2 Land use types of training samples

Land use types Supervised classification Accuracy assessment

Agriculture 91 44

Broadleaf forest 50 22

Conifer forest 15 8

Rangeland 18 10

Residential area 62 30

Water body 14 6

Select of remaining areas as range

Combine all classes

Accuracy Assessment

Combine mask of residential, water 
body, forest and agriculture classes

Final land use map

Supervised
Classification

(Maximum Likelihood)

Field Data

Testing DataTraining Data

Unsupervised 
Classification 
(ISODATA)

Extract agriculture class

Remove areas with slope 
> 20%

Combine extracted classes 
in all images

Final agriculture class

Landsat 7 ETM+ (4images in 2010)

Radiometric & Atmospheric Corrections 

Geometric Correction

Synthetic

Landsat 5 TM (2images in 2010)

Select common 
residential area in 

all images
Select common water 

area in all images

Remove areas with 
slope > 5% 

Combine forest 
classes

Final residential classAdd areas with 
NDVI > 0.6

Extract residential 
area in all images

Extract Water body 
in all images

Extract Forest area 
in all images

Final forest classes Final water body class

Fig. 5 Synthetic classification flowchart of Baghsalian watershed
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Finally, the separate set of 120 field observations that

was not used in supervised classification was used to test

the accuracy of the final (supervised, unsupervised and

synthetic) land use maps.

Figure 5 shows a flowchart of the synthetic classifica-

tion method and the important intermediate results.

Agriculture class

The reflective bands (1–5 and 7) of the images were used to

classify agriculture classes with the unsupervised ISO-

DATA classification technique (Bakr et al. 2010).

This method is particularly suited for the classification

of agricultural land use, where fields with regular shape

and green colors must be defined. The ISODATA output

map, which has unique values for every regularly or

irregularly shaped area, was compared with a false color

composite where green areas show up in red. Regularly

shaped areas in the ISODATA map that had high green-

ness according to the false color composite were consid-

ered agriculture. As an illustration of this, Fig. 6 shows an

example false color composite and ISODATA map of the

same date (2010.8.9).

This procedure was repeated with satellite images of

different seasons to capture fields that were cropped in

different seasons. There are six unsupervised maps and six

agriculture maps extracted from unsupervised maps with a

large number common in the total maps. Combining these

maps adds pixels to final class of agriculture that are not

common in the maps, so no miss any pixel of agriculture.

Forest, residential and water body classes

Maximum likelihood classification (MLC) was used for

supervised classification (Bakr et al. 2010; Otukei and

Blaschke 2010; Petropoulos et al. 2012; Rojas et al. 2013).

MLC assumes that the statistics for each class in each band

are normally distributed and then calculates the probability

that a given pixel belongs to a specific class. MLC defines

the means and variances of the classes from training

samples, and then, those are used to compute the proba-

bilities of belonging to a certain class for every pixel in the

satellite image (Petropoulos et al. 2012). Using MLC,

broadleaf forest, conifer forest, water bodies and residential

areas were derived from images. This again resulted in six

output maps per land use that have a large number of cells

in common. Maps were combined in the same procedure as

mentioned for agriculture. Finally, all extracted classes

from the supervised and unsupervised methods were

combined in ENVI software and the unclassified land was

considered rangelands.

Using ancillary map

Ancillary maps were used to improve the accuracy of the

land use map based on expert knowledge. Such expert

Fig. 6 False color composite

(a) and ISODATA map (b) of

Baghsalian watershed
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knowledge, summarized in decision support systems

(DSS), can provide better classification accuracies than any

of the individual data sources used alone (Rozenstein and

Karnieli 2010). Ancillary maps of slope gradient, altitude

and NDVI were used. Rules were then defined according to

our knowledge of land use in the study area. To improve

the classification of water bodies, cells with a slope more

than 5 % were removed from the areas that were initially

classified as water, arguing that water should be in flat

terrain. To improve the classification of both forest classes

(broadleaf and conifer forest), the NDVI map was used

(Fig. 7). Areas classified as non-forest with NDVI higher

than 0.6 were considered forest and were added to the

previous map of forest class because it has been observed

that only forest has NDVI values over 0.6 (Wang et al.

2005; Maxwell and Sylvester 2012). Finally, this area with

NDVI over 0.6 was classified as either broadleaf or conifer

forest based on its spectral signature.

In addition, cells above 2,800 m were removed from the

areas that were initially classified as forest, because

2,800 m is the tree line in the north of Iran. A visual check

of the results of this procedure with aerial photographs

indicated that this part of the procedure was reasonable.

Finally, to improve the classification of agriculture, cells

with a slope more than 20 % were removed from the areas

originally classified as agriculture (Fig. 8), using our expert

knowledge that such steep areas are not cropped. All areas

that were forest, residential land or water bodies were

considered not agricultural land to solve overlap problems

between the supervised and unsupervised classifications.

Finally, the remaining unclassified areas were considered

rangeland.

Accuracy assessment

One hundred and twenty signatures were not used for

classification and considered for accuracy assessment.

These training samples were selected randomly from the

full set of 370 signatures. For accuracy assessment, a

confusion matrix was calculated (Brandt et al. 2013). From

this matrix, two factors can be calculated: the overall

classification accuracy and the kappa coefficient. The

overall classification accuracy indicates the percentage of

cells that were correctly classified. The kappa coefficient is

a measure for correspondence corrected for correspondence

by chance and was recommended as a standard by Ro-

senfield and Fitzpatrick-lins (1986). This standard has been

widely adopted (Hudson and Ramm 1987; Lillesand and

Kiefer 2000; Foody 2002; Bakr et al. 2010; Rozenstein and

Karnieli 2010; Abd el-kawy et al. 2011; Rojas et al. 2013;

Schmitt-harsh 2013). The USGS proposed a kappa

Fig. 7 NDVI map with value [0.6 in Baghsalian watershed Fig. 8 Agriculture classified in the slope [20 % in of Baghsalian

watershed
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coefficient of 85 % as the minimum requirement for land

use/cover mapping with Landsat data (Anderson et al.

1976).

Results and discussion

A total of 13 land use maps were extracted: 6 unsupervised

and 6 supervised maps from each of the individual satellite

images and 1 synthetic map combing information from the

satellite images. Figure 9 shows an example of a super-

vised classification result. For all maps, the accuracy was

calculated. Table 3 shows these results.

Overall indicates the value for the overall classification

accuracy, and kappa indicates the value for the kappa index.

It is clear that results for either the unsupervised or

supervised methods are unsatisfactory and that the syn-

thetic map result is satisfactory. Figure 10 shows the land

use map resulting after applying the unsupervised, super-

vised methods and the decision support system (synthetic

method).

As shown in Fig. 10, most of the agricultural area is

located in the plains in the north of the area and the forest

classes and rangeland are mostly in the highlands. Table 4

shows the area of the six land use classes in the synthetic

map. The largest class is agriculture, and the smallest class

is water bodies.

We applied supervised, unsupervised and synthetic land

use classification methods to classify a land use map. The

synthetic method that combined maximum likelihood

Fig. 9 Maximum likelihood

classification map of Baghsalian

watershed
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(supervised) classification, ISODATA (unsupervised)

classification and an expert knowledge-based decision

support system provided a better accuracy than the

supervised and unsupervised methods without expert

knowledge. The decision support system combined multi-

ple data sources.

Table 3 The accuracy assessment of the 13 calculated land use maps

Image Date Unsupervised Supervised Synthetic

Overall (%) Kappa Overall (%) Kappa Overall (%) Kappa

TM 2010.4.3 75.6 0.69 83.6 0.80 98.2 0.98

ETM? 2010.5.29 78.2 0.74 84.2 0.81

TM 2010.6.6 71.8 0.68 84.8 0.82

TM 2010.8.9 68.8 0.59 81.84 0.77

ETM? 2010.8.17 60.2 0.61 81.17 0.77

ETM? 2010.9.2 58.7 0.57 82.7 0.79

Fig. 10 Land use map of

Baghsalian watershed prepared

with the synthetic method

Int. J. Environ. Sci. Technol. (2015) 12:1515–1526 1523

123



The overall accuracy and kappa coefficient of the

synthetic method are both about 98 %, which are unusu-

ally high values. The kappa coefficient for agriculture,

broadleaf forest, conifer, residential area, rangeland and

water bodies is 96.6, 98.9, 97.4, 99.4, 96.8 and 99.3,

respectively. As mentioned in the previous section, there

is a strong mix of agriculture and range classes in the

studied watershed. About 60 % of the watershed is cov-

ered with these two land use type, and it is therefore

essential to correctly separate these classes. Despite

including many training samples of crops in different

phenological stages, there was still confusion between

agricultural land and rangelands using the supervised

method (maximum likelihood classification). The basis of

supervised classification is the similarity of spectral

reflection. Agriculture in the study area is very diverse,

and different plants are cultivated. In some areas, there are

green plants and plowed fields together, while both of

them are agriculture but have different spectral reflection.

Therefore in the heterogeneous area, collection of training

samples is challenging, and therefore, an unsupervised

approach (ISODATA) using several images at the same

year is more suitable (Rozenstein and Karnieli 2010).

Multiple images in each year allow capturing vegetation

peaks in all fields. This technique was previously used by

other researchers (Turner and Congalton 1998; Wolter

et al. 1995; Prishchepov et al. 2012; Brandt et al. 2013).

Forest, residential and water body classes were derived

using supervised (maximum likelihood) method. Spectral

characteristics of these classes do not change in different

season and training samples are useful for classification.

Ancillary data such as slope gradient, altitude and NDVI

maps were used through a DSS to update the classifica-

tion. The application of ancillary geographic data within

an expert system classification approach based on logical

decision rules (Stefanov et al. 2001) has been suggested as

a method to yield a more accurate alternative for the

classification of landscape features. This has been con-

firmed in this study: The overall accuracy and kappa

coefficient of the land use map produced with the syn-

thetic map are 98.2 % and 0.975, respectively. The

98.2 % accuracy is significantly higher than the 85 % that

has been set as satisfactory for planning and management

purposes (Anderson et al. 1976). This contrasts with a

value lower than 85 % in several other reported land use

classification studies (Foody 2002; Wilkinson 2005). For

example, Cingolani et al. (2004) showed overall accuracy

and kappa for maximum likelihood 78 % and 0.74,

respectively. In the study of Rozenstein and Karnieli

(2010), overall accuracy and kappa coefficient were

70.67 % and 0.65 for ISODATA, 60.53 % and 0.53 for

maximum likelihood, 73.50 and 0.68 for synthetic method.

Overall accuracy and kappa coefficient in the study of Sun

et al. (2011) were 84.89 % and 0.82 for maximum like-

lihood model. Huang et al. (2010) obtained 85 % and 0.76

for overall accuracy and kappa coefficient. The results of

Liu et al. (2011) showed 80 % and 0.7 for overall accu-

racy and kappa coefficient in the maximum likelihood

method. Finally, Rojas et al. 2013 were used maximum

likelihood to classify land use map with overall accuracy

and kappa coefficient equal to 75 % and 0.78, respec-

tively; meanwhile, agriculture has minimum accuracy

(64 %).

However, other studies have found better results, for

example Otukei and Blaschke (2010) applied decision tree,

maximum likelihood and support vector machines for

classification. Their best method was a decision tree with

94 % and 0.93 for overall accuracy and kappa coefficient.

Abd el-kawy et al. (2011) combined maximum likelihood

and visual interpretation to improve land use classification.

The overall accuracy and kappa coefficient were 95 % and

0.92, respectively, that shows visual interpretation map can

be useful in land use mapping. In the research of Petrop-

oulos et al. (2012), support vector machines showed

94.93 % and 0.937 in the overall accuracy and kappa

coefficient. Our results for the synthetic method showed an

overall accuracy and kappa coefficient that are higher than

in all these other studies. Therefore, it is safe to conclude

that the synthetic method has enough accuracy for land use

mapping in our study area.

In this respect, it must be noted though that some of our

decision rules must be changed if the approach is to be used

in other areas. For example, in the Baghsalian watershed,

there is no agriculture on slopes over 20 % or at elevations

over 2,800 m. These rules are likely to differ between

areas. Some of our rules are more constant across regions,

for example the rule that only forest can have NDVI over

0.6. Within Iran, many northern regions are similar to the

Baghsalian watershed in terms of land use and topography.

The method that we used here may well be useful for these

areas as well and the authors hope to apply it there in the

near future. In addition, the synthetic method used in this

study can easily be applied to earlier years to obtain a

multi-temporal set of land use maps.

Table 4 Area of land use classes

Land use class Area (km2) Percent

Agriculture 882.197 48.23

Broad leaf forest 643.045 35.16

Range 231.874 12.68

Residential area 39.226 2.14

Conifer forest 17.403 0.95

Water body 15.348 0.84
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Conclusion

There is multi-temporal agriculture in the case study, and

there are spectral mixes between agriculture and other

land use types. As a result, traditional methods did not

have enough accuracy for land use classification in this

region. A synthetic method combining supervised and

unsupervised classification with a decision support system

designed for this study delivers very high classification

accuracy and is therefore appropriate to classify land use

in our study area.
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