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Abstract Blocking as an interruption of the climato-

logical storm tracks means an extreme disturbance in the

synoptic scale of atmospheric circulation. In this study,

we aimed to describe the main role of atmospheric

blocking on the earthquake prediction in the southern

Iran. We gathered the subjective evidences of a block

generation during April 5–9, 2013, which was clearly

identified by anomalous data of geopotential height, air

temperature, vertical velocity, rainfall rate and latent heat

flux. Analysis of geopotential heights at the 500 and 300

hPa levels revealed that there was a dipole split-flow

block with associated of a remarkable low-pressure

anomaly (-76 m), which has established over southern

Iran during April 5–9, 2013. This low pressure into three

temporal sequences has influenced three epicenters of

upcoming earthquake swarms in south parts of Iran during

April and May 2013. Hence, we detected an atmospheric–

lithospheric cycle as a climatic conceptual model that

describes the chain of the blocking-associated rainfall,

preceding rainfall-triggered seismic stress, cyclogenesis,

thunderstorm and subsequent stress-induced seismicity.

We claimed that the blocking-associated anomalies toge-

ther with the persistence of low pressure could be the

earthquake precursors within 3–33 days before the main

seismic shocks in Iran.

Keywords Atmospheric–lithospheric cycle � Blocking-

associated anomaly � Earthquake swarms � Geopotential

heights � Rainfall-triggered stress

Introduction

The recent research in earthquake prediction depends on

the analysis of the specific variations in the lithosphere and

atmosphere associated with upcoming earthquakes.

Therefore, theoretical and experimental studies explicitly

demonstrated the ability of remote sensing technologies to

identify the geophysical earthquake precursors, which

appear several days before the seismic stress over the

seismically active areas (Pulinets 2006). Synchronism of

the precursors prior to the earthquakes, which can be

accounted in earthquake prediction, has been registered

using different methods in different fields. In this regard,

there is a geophysical list of precursors including of radon

migration, air ionization, latent heat release, changes in

atmospheric electricity, thermodynamic processes leading

to outgoing long-wave radiation, changes in surface air

temperature, relative humidity, air pressure, earthquake

clouds formation, coupling with rainfall, ionosphere and

magnetosphere effects, radio wave propagation and gen-

eration of electromagnetic emissions (Pulinets 2011).

Recent development of lithosphere–atmosphere–iono-

sphere coupling (LAIC) model has demonstrated the geo-

physical anomalies within the few days before the seismic

shock (Pulinets and Ouzounov 2011). However, the LAIC

model focuses just on fault activation and gas migration as

the main source of precursor’s chain without climatologic

attitude. Now, we can present a new climatic conceptual

model. In this regard, we can claim that the atmospheric

blocking-associated anomaly is the main triggering chain
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of lithospheric gas exhaustion, stress-induced seismicity

and subsequent atmospheric anomalies. These reactions are

tracked along a systematic feedback mechanism between

atmosphere, lithosphere and atmosphere. Recently, Iaff-

aldano et al. (2011) have defined the continuous feedback

mechanisms between lithospheric motions and atmospheric

dynamics, where at times one controls the other and vice

versa. One of the atmospheric dynamics is atmospheric

blocking that plays an important role in the mid-latitude

climate variability and anomalous extreme climate (Sill-

mann and Croci-Maspoli 2009). Atmospheric blocking is a

weather phenomenon where the strength of the westerly

circulation is temporarily reduced (Rex 1950). When the

stationarity and the persistence of blocking is combined

with the anomalous-flow conditions, it can be into an

important source of abnormal weather (Trigo et al. 2004;

Cattiaux et al. 2010; Sillmann et al. 2011; Buehler et al.

2011). According to published literature, the blocking

events arise from Rossby waves, which extend across the

mean westerly troughs and then a large-scale ridge locks

with the smaller scale flows. The blocking systems are

identified using anomalies of the geopotential height at 500

hPa together with atmospheric anomalies of rainfall rate,

surface temperature, vertical velocity, latent heat flux,

specific humidity and surface pressure. The abnormal

waves are mainly due to internal atmospheric dynamical

processes that produce and maintain a blocking event (Dole

et al. 2011). From the other side, the aforementioned

atmospheric anomalous data are widely applied as the

earthquake precursors in the scientific research. The main

aim of the present study was to expose an atmospheric–

lithospheric cycle as a climatic conceptual model, which

describes the chain of blocking-associated anomalies and

following stress-induced seismicity. Hence, the new

hypothesis in the present study relates to the role of asso-

ciated-blocking anomalies as the synoptic precursors of

induced earthquakes. To examine the assumption we

investigated, the three recent seismic swarms comprised

three major earthquakes (M [ 6) in the southern Iran.

Materials and methods

Study area

The extracted data via (http://earthquake.usgs.gov/

earthquakes) revealed that about 200 earthquakes (M [ 3)

have occurred in the Middle East within April and May 2013,

which have been regulated along five longitudes as shown in

Table 1. Meanwhile, about 150 earthquakes have shaken the

south parts of Iran, along the longitudes of 50 and 60, on the

pattern of three swarm clusters, which are considered in the

Table 1 The list of earthquakes (M [ 3) in the Middle East during

April and May 2013 along five longitudes

No. Date 30E 40E 50E 60E 70E

1 2013/04/01 1

2 2013/04/04 3

3 2013/04/05 1 1

4 2013/04/07 1 1

5 2013/04/09 27

6 2013/04/10 14

7 2013/04/11 3

8 2013/04/12 2 1

9 2013/04/13 3

10 2013/04/14 3

11 2013/04/16 2 4

12 2013/04/17 3 1

13 2013/04/18 2

14 2013/04/19 3 2

15 2013/04/20 1 1

16 2013/04/21 1 1

17 2013/04/22 1

18 2013/04/23 1

19 2013/04/24 2 2

20 2013/04/25 2

21 2013/04/26 2

22 2013/04/27 1

23 2013/04/28 1 2

24 2013/04/30 2 1 4

25 2013/05/01 2 1 2

26 2013/05/02 2

27 2013/05/03 1

28 2013/05/04 3

29 2013/05/06 1

30 2013/05/07 2 1

31 2013/05/09 2

32 2013/05/11 1 28 1

33 2013/05/12 1 14 1

34 2013/05/13 1 1

35 2013/05/14 1 4

36 2013/05/15 1 1

37 2013/05/16 2

38 2013/05/18 3

39 2013/05/20 1 2 1

40 2013/05/21 1 1

41 2013/05/22 1 2

42 2013/05/23 2

43 2013/05/24 1 3

44 2013/05/26 1

45 2013/05/29 1 1

46 2013/05/31 1 1 1

Sum 10 3 87 66 35
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present study (Fig. 1). The M6.4 Bushehr earthquake with

hypocenter depth of 10 km and epicenter location of 28.5 N

and 51.6 E occurred on April 09, 2013. This earthquake a

before-shock with magnitude of M = 4.1 and 72 after-

shocks with magnitudes from M = 3.7 to 5.4 has produced

over the 28–29 N latitude and 51–52 E longitude within

April 07 to May 31, 2013. The M7.8 Saravan earthquake with

hypocenter depth of 82 km and epicenter location of 28.1 N

and 62.1 occurred on April 16, 2013. This earthquake some

12 after-shocks with magnitudes from M = 4.0 to 5.6 has

produced over the 28–29 N latitude and 62–63 E longitude

within April 16 to May 29, 2013. The M6.1 Angohran

earthquake with hypocenter depth of 15 km and epicenter

location of 26.5 N and 57.7 occurred on May 11, 2013. This

earthquake a before-shock with magnitude of M = 4.9 and

72 after-shocks with magnitudes from M = 3.9 to 5.5 has

produced over the 26–27 N latitude and 57–58 E longitude

during the May 09–31, 2013 (USGS 2013; EMSC 2013).

Therefore, the geological setting of three aforementioned

epicenter locations in this study is varied from Zagros sedi-

mentary basin in west to Makran subduction zone in east.

These areas are the active seismological regions in the

Middle East. The Makran subduction zone is the surface

expression of active subduction of the Arabia plate beneath

the Eurasia plate, and the Zagros basin is a complex collision

of the Arabia and Eurasia plates with the fold and thrust belt

(Mansouri Daneshvar et al. 2014b).

Fundamental theories in atmosphere–lithosphere

relation

Rainfall-triggered seismicity

Potential trigger mechanisms of earthquakes may involve

atmospheric temperature, pressure and rainfall (Matthews

et al. 2009). Earthquakes occur when the stresses acting on

rock across the fault exceed some critical value so that

failure occurs. Fluids influence this failure by changing

stress. In this regard, both natural and engineering pro-

cesses that can increase pore pressures and hence influence

seismicity (Wang and Manga 2009). A correlation between

precipitation and earthquakes (Jiménez and Garcia-Fern-

ández 2000; Ogasawara et al. 2002; Hainzl et al. 2006;

Kraft et al. 2006; Husen et al. 2007) supports the idea that

pore pressure changes caused by rainfall recharge can

influence seismicity. The distinctive signature of earth-

quakes triggered by pore pressure stress is a spatial

migration of swarm epicenters. Tadokoro et al. (2000) have

Fig. 1 The seismicity of the

Middle East on April and May

2013 and three seismic swarms

in the south parts of Iran

including of 1 Bushehr, 2
Saravan and 3 Angohran

earthquakes, the stars are

pointed to epicenter locations of

the major earthquakes with

M [ 6
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identified a migration of seismicity along a fault zone

following water loading. Shapiro et al. (2006) document a

similar migration of seismicity over a fault zone. Recently,

Muço (2013) has presented evidence that seismic activity

in North American tectonic zones can be triggered clearly

with the effects of abundant rainfall. For the separate

earthquakes in Europe, Miller (2008) has showed that the

unambiguous rainfall-triggered seismicity and the seis-

micity rates increase after the catastrophic storms. Such

effects can increase tectonic stress, which exceeds the

rainfall amounts when an earthquake occurs. Previously

was pointed the role of water on the generation of intra-

plate seismicity by Costain et al. (1987). Hainzl et al.

(2006) have found the clear evidence that pore pressure

changes induced by rainfall are able to trigger earthquake

activity even at surficial depth via the mechanism of fluid

diffusion. However, Kraft et al. (2006) have revealed the

two cases of earthquake swarms that follow heavy rainfall

events. In the shallower focal depths, induced earthquakes

will be caused by stresses in pore pressure changes. Nev-

ertheless, in deep focal depths, it is dominantly caused by

dynamic stresses with the passage of the natural seismic

waves (Wang and Manga 2009). Therefore, in profound

seismicity, Mastin (1994) had observed an increase in

explosive tephra emissions at Mount St. Helens within

2–15 days after rainfall storms. Using minute-by-minute

records of rainfall and seismic activity, Matthews et al.

(2002) have observed a volcano-seismic response within

2 h after rainfall. Analysis of long-term time series have

shown that rainfall can also trigger the volcanic seismicity

over several months at least (Neuberg 2000; Violette et al.

2001; Mason et al. 2004).

Cyclogenesis and thunderstorm

In the case of the earthquakes, some powerful thunder-

storm activities have been observed prior to the major

earthquakes (Freund 2003). Gousheva et al. (2008) have

exhibited that the anomalies of atmospheric responses

such as thunderstorms can be observed over the epicen-

ters, approximately 5 days before the earthquake event. In

a thunderstorm, the bottom part of the cloud layer with

large aerosol particles will be charged negatively and the

top part with small particles positively (Liperovsky et al.

2005). Then, it will be a geomagnetic disturbance as

reverse electric direction of the natural condition (Pulinets

and Ouzounov 2011). Ondoh (2009) for the M7.2 earth-

quake in Japan, has shown that a low atmospheric pres-

sure center was passing over the Japan Sea, upward

anomalous clouds, strong lightning discharges and intense

radio noises in associated with terrestrial gas emanations

had occurred around the cold front, 1 week prior to the

main shock on January 17, 1995. Liu et al. (2004) have

observed the thunderstorm occurrences, approximately

10 days prior to the M7.3 and M9.3 earthquakes on

September 21, 1999, in Taiwan and on December 26,

2004, earthquake in Indonesia, respectively. In recent

M7.8 north Saravan earthquake in Iran, Mansouri

Daneshvar et al. (2014a) have believed that the presence

of a powerful thunderstorm has played a main role in

triggering the chain of atmospheric anomalies, ascending

air turbulence, abnormal cloud circulation and the sig-

nificant reduction in air pressure, 1 week prior to the main

shock on April 16, 2013. Pulinets and Ouzounov (2011)

have revealed that the thunderstorm activity can trigger

the global electric circuit (GEC) and total electric content

(TEC). On this basis, for the M7.8 north Saravan earth-

quake, the seismo-ionospheric disturbances of TEC have

been indicated about 1 week prior to the earthquake

(Pundhir et al. 2014).

Data preparation

Atmospheric blocking objectively has been investigated

based on a set of criteria (e.g., Tibaldi and Molteni 1990;

Wiedenmann et al. 2002; Pelly and Hoskins 2003; Barri-

opedro et al. 2006). However, subjective analysis has been

probed based on synoptic scale experience and a set of

geopotential height anomalies at 500 hPa (e.g., Lejenäs and

Økland 1983; Dole and Gordon 1983; Scherrer et al. 2006).

In this study, we applied the subjective method in order to

investigate of blocking evidence. For the subjective detec-

tion of blocking events and its persistency, we have used the

daily NOAA1/NCEP2 reanalysis to composite data includ-

ing the atmospheric variations of geopotential height at

level 500 hPa, air temperature and vertical velocity (omega)

based on the normal climatology period (1981–2010) via

(http://www.esrl.noaa.gov/psd/data/gridded). Therefore, to

detect temporal anomalous records, we derived daily cli-

matic time series data during April and May 2013 for

rainfall ratio and surface latent heat flux (SLHF) according

to NASA3/Giovanni4 remote sensing data via (http://www.

disc.sci.gsfc.nasa.gov/giovanni).

1 National Oceanic and Atmospheric Administration (http://www.

noaa.gov).
2 National Centers for Environmental Prediction.
3 National Aeronautics and Space Administration (http://www.nasa.

gov).
4 Geospatial Interactive Online Visualization and Analysis Infra-

structure (Giovanni) is a Web-based application developed by

Goddard Earth Sciences Data and Information Services Center

(GES DISC) that provides an intuitive way to visualize, analyze,

and access of Earth science remote sensing data.
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Results and discussion

Synoptic analysis

The chain of several major earthquake and seismic swarms

in Middle East and particularly in southern Iran were

observed on April and May 2013, when some anomalies in

atmospheric data were recorded as synoptic extremes.

During April and based on the 500 hPa (300 hPa) level

heights, a remarkably abnormal low pressure persisted over

southern Iran, with a minimum anomaly of -30 m

(-40 m) (Fig. 2). This low-pressure anomaly is related to

abnormal variation of wave in the Jet stream over the

Northern Hemisphere. In general, it has been confirmed

that North Hemisphere blocking occurred most frequently

over the Pacific and Atlantic Ocean basins (Lejenäs and

Økland 1983; Huang et al. 2004). Nevertheless, Dole and

Gordon (1983) had identified a distinct block formation

region over Eastern Europe and Western Asian continents.

In this regard was gained a blocking archive based on

Northern Hemisphere blocking events during April and

May 2013 via (http://weather.missouri.edu/gcc) as shown

in Table 2. The table indicates a list of about 15 blocking

events over the Pacific, Atlantic and continental territories

of NH. One of the aforementioned continental events is a

blocking during April 2–8, 2013, that has influenced the

Middle East region in eastern longitude of 60�. Hence, the

blocking episode is exposed during the early days of April

2013. Analysis of mean 5-day geopotential height at the

500 and 300 hPa levels via (http://www.esrl.noaa.gov/psd/

data/gridded) revealed that there was a dipole split-flow

block during April 5–9, 2013 (Fig. 3a, b). It was associated

with a low pressure, which established by minimum neg-

ative anomaly of -75 m over the south parts of Iran. Based

on the 500 hPa (300 hPa) level heights, the high pressure

extended over Central Asia and Kazakhstan with a

maximum positive anomaly of ?150 m (?225 m) (Fig. 3c,

d). The effects of the aforementioned block over the

southern Iran could be divided into three sequences. The

first sequence on April 6–7 was the period of extreme low-

pressure wave, which has influenced the southwest parts of

Iran with associated rainfall and cyclogenesis events.

According to NOAA/NCEP reanalysis data, this sequence

is detected by composite mean and anomalies of 500 hPa

geopotential height, air temperature and vertical velocity

upon the Bushehr epicenter (Fig. 4a–d). Both the temper-

ature and 500 hPa vertical motion fields revealed the

occurrence of cold temperature and upward vertical motion

in a deep trough over the southwestern Iran. This trough

Fig. 2 Remarkable low-geopotential height anomaly over southern Iran at a 500 hPa and b 300 hPa levels during April 2013

Table 2 The list of blocking events in North Hemisphere during April

and May 2013

No. Territory Began

date

Ended

date

Persisted

days

Genesis

longitude

(�)

1 Atlantic 2013/03/31 2013/04/05 5 -30

2 Continent 2013/04/02 2013/04/08 6 60

3 Pacific 2013/04/08 2013/04/18 10 160

4 Pacific 2013/04/11 2013/04/14 33 -140

5 Pacific 2013/04/24 2013/05/07 13 180

6 Atlantic 2013/04/25 2013/05/01 6 -50

7 Atlantic 2013/04/27 2013/05/07 10 30

8 Continent 2013/05/01 2013/05/09 8 -80

9 Continent 2013/05/03 2013/05/08 5 90

10 Atlantic 2013/05/06 2013/05/23 17 30

11 Pacific 2013/05/10 2013/05/15 5 150

12 Atlantic 2013/05/11 2013/05/29 18 -30

13 Continent 2013/05/18 2013/05/25 7 130

14 Pacific 2013/05/21 2013/05/28 7 -110

15 Continent 2013/05/25 2013/06/07 13 50
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wave is caused to air disturbance with moist and cold

condition, severe rainfall rate and suddenly enhanced

SLHF (Fig. 4e, f). Likewise, the second and third

sequences on April 7–8 and April 8–9, 2013, were the

periods of low-pressure wave, which have influenced the

south parts of Iran with associated extreme rainfall events.

These sequences are detected by composite mean and

anomalies of 500 hPa level height, air temperature and

omega together with abnormal rainfall rate and SLHF upon

the Angohran and Saravan epicenters, respectively

(Figs. 5, 6). The results revealed that a dipole block was

persisted over the Middle East and was associated with a

strong westerly air current aloft over southern Iran within

5–9 April 2013. The splitting of westerly winds into two

branches occurred over the Iran, the first branch passed

toward the north of Iran, Caspian Sea and Central Asia,

while the second extended to the south toward Red Sea and

Persian Gulf. This equatorward branch of the flow could

have received enough water vapor from the sea surface and

then deposited this moisture in the form of rain over

southern Iran.

Temporal data and time series

According to NASA/Giovanni reanalysis data, the time

series for rainfall rate and SLHF is revealed the sudden

enhancement of abnormal rainfall and SLHF over three

epicenter locations during April 5–9, 2013 (Fig. 7). This

figure clearly illustrates the block structure associating

with the extreme rainfall events and SLHF. According to

the temporal data, the accumulated rainfall was more than

105, 55 and 85 mm during the block presence over the

earthquake epicenter locations of Bushehr, Saravan and

Angohran, respectively. In addition, the maximum values

of surface latent heat flux are occurred about 390, 370

and 440 W m-2 during the block presence for earthquake

epicenter locations of Bushehr, Saravan and Angohran,

respectively. This figure indicates that the sudden

Fig. 3 Geopotential height means at a 500 hPa and b 300 hPa levels and geopotential height anomalies at c 500 hPa and d 300 hPa levels

during April 5–9, 2013
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enhancement of rainfall and SLHF is induced by the

blocking event prior to the upcoming seismic shocks.

According to the earthquake list provided by USGS dur-

ing April and May 2013, the frequencies of the

earthquakes were generated for each swarm in the

aforementioned Fig. 7. Therefore, the figure confirms that

the lag seismicity of the study area may be partially

caused by blocking-associated rainfall and SLHF prior to

Fig. 4 500 hPa composite NCEP/NCAR reanalysis maps of a geo-

potential height mean, b geopotential height anomaly, c air temper-

ature anomaly and d omega anomaly, and surface NASA/Giovanni

reanalysis maps of e rainfall rate and f latent heat flux during April

6–7, 2013 upon the Bushehr epicenter
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the earthquake events. The following Bushehr, Saravan

and Angohran earthquake swarms were commenced

within 3, 9 and 33 days after the blocking-associated

rainfall in their impressed epicenters. The aforementioned

time delays between rainfall stress and seismicity support

a geological mechanism of pore pressure changes (Wang

and Manga 2009). The crustal structure and geology

determines the arrival time delays in both deep and

shallower hypocenters (Ma 2010). In addition, the

teleseismic depth phase can be impressive on arrival time

Fig. 5 500 hPa composite NCEP/NCAR reanalysis maps of a geo-

potential height mean, b geopotential height anomaly, c air temper-

ature anomaly and d omega anomaly, and surface NASA/Giovanni

reanalysis maps of e rainfall rate and f latent heat flux during April

7–8, 2013 upon the Angohran epicenter
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delays in geological zones (Goldstein and Dodge 1999).

The various geological setting of the investigated epi-

center locations in this study from Zagros sedimentary

basin to Makran subduction zone can be influenced to

arrival time delays rainfall stress and seismicity. How-

ever, we can conclude that a model in which rainfall

triggers the stress on the earth’s lithospheric crust and

following feedbacks can be proposed.

Fig. 6 500 hPa composite NCEP/NCAR reanalysis maps of a geo-

potential height mean, b geopotential height anomaly, c air temper-

ature anomaly and d omega anomaly, and surface NASA/Giovanni

reanalysis maps of e rainfall rate and f latent heat flux during April

8–9, 2013 upon the Saravan epicenter
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A new climatic conceptual model in earthquake

prediction

The recent developments of lithosphere–atmosphere–ion-

osphere coupling (LAIC) model as an interdisciplinary

space-terrestrial framework (ISTF) is demonstrated by the

observed anomalies within the preceding time before the

seismic shock and exhibited some synergy in their

behavior, space and time synchronism (Pulinets and Ou-

zounov 2011). The main advantage of the aforementioned

model is the merger of the most of the observed phe-

nomena before the earthquakes by physical mechanism.

Nevertheless, the LAIC model has focused only on the

fault activation and gas migration as the main source of

precursor’s chain without climatologic attitude. Now in

the present study, we present a new climatic conceptual

Fig. 7 Temporal data of rainfall rate and enhanced SLHF (NASA 2013) over the earthquake epicenters during April and May 2013 together with

frequency of the earthquake swarms (USGS 2013), a, b Bushehr earthquake, c, d Angohran earthquake and e, f Saravan earthquake
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model. In this regard, we can claim that the atmospheric

blocking-associated anomaly is the main triggering chain

of lithospheric gas exhaustion, stress-induced seismicity

and subsequent atmospheric anomalies. For this purpose,

we observed a chain of lithospheric–atmospheric events,

which occurred consecutively after a blocking event and

before the earthquake swarms in the south parts of Iran.

On this basis, the blocking event has reflected the large-

scale changes in the atmospheric condition such as the

persistence of low pressure, trough formation, blocking-

associated rainfall anomalies and extreme events. The

rainfall event with the long persistency is considered as

an extreme event (Nazaripour and Mansouri Daneshvar

2014). The blocking events have a significant correlation

with the deepening rate of the preceding upstream troughs

(Wiedenmann et al. 2002) and prevailing of the storm

tracks (Schwierz et al. 2004). Hence, after the onset of a

blocking, the intensification of blocking-associated rain-

fall rate occurred on the eastern flank of trough over

southern Iran. Previously, blocking-associated rainfall was

observed in the 2010 Pakistan extreme and anomalous

rainfall (Hong et al. 2011). Blocking-associated rainfall

with the largest significant anomalies usually happens to

the east of a blocking ridge (Marshall et al. 2013). In a

blocking, the high-pressure condition tends to be main-

tained over of the ridge, and low pressure and storm

tracks are generated in east of the trough with a funda-

mental effect on regional climates and rainfall events.

Then, the seismological regions are affected by the rain-

fall-triggered stress, where the lithospheric natural gasses

are exhausted from the tectonic fractures. The gas

exhaustion from stressed seismic areas may include of

radon (Rn), noble gases (e.g., He, Ne and Ar), and

reaction gasses (e.g., CO2, SO2, and CH4) (Hsu et al.

2010) together with a localized greenhouse condition

(Choudhury et al. 2006). The increased rainfall-triggered

stresses may be related to earth’s crust electromagnetic

(EM) emissions (Pulinets 2011) and sub-surface degas-

sing. Transient electric currents that flow in the Earth’s

crust with low-frequency electromagnetic emissions

(Freund et al. 2006) can influence to geomagnetic reac-

tion. This lithospheric reaction causes to several atmo-

spheric anomalies such as air ionization, abnormal cloud

hydration, greenhouse condition and latent heat release

(Pulinets et al. 2009; Pulinets and Ouzounov 2011;

Mansouri Daneshvar et al. 2014a), which influence on the

anomalous SLHF and rainfall event. Anomalous fluxes of

latent heat release are due to air ionization and water

vapor condensation on ions (Pulinets 2011). Ionization

increases air velocity and up-streaming airflows (Lipe-

rovsky et al. 2005). Likewise, in recent theories, it have

been proposed that the climate abnormal change is caused

by the terrestrial heat exhaust of the earth’s crust (Mu and

Mu 2013), which can be categorized as a reaction of

lithospheric heat insulation against the external stresses.

The matter and energy transferred from the earth’s crust

to atmosphere ceaselessly influences atmospheric pro-

cesses (Mu and Mu 2013). This lithospheric reaction

provides the way to reach the main precursors of

upcoming earthquakes in the seismological regions.

Therefore, the aforementioned lithospheric reaction is a

positive feedback, which eventuates to abnormal atmo-

spheric instability such as air disturbance, cyclogenesis,

thunderstorms and the persistence of low pressure in the

equatorward region of the block. The aforementioned

abnormal characteristics have directly synergic effects on

genesis the low-geopotential heights through the dipole

blocking patterns of split-flow and cut-off low blocks.

These blocking types can be commenced after an atmo-

spheric disturbance (McWilliams 1980; Verkley 1990). In

any case, we can detect an atmospheric–lithospheric cycle

as a climatic conceptual model, which describe the chain

of blocking-associated rainfall, preceding rainfall-trig-

gered seismic stress, cyclogenesis and subsequent stress-

induced seismicity in the seismological regions. In this

regard, we believe that when the atmospheric blocking

together rainfall-induced stresses is causes of the fault

motions then its associated anomalies could be the

earthquake precursors before the main seismic shocks.

The schematic presentation of this conceptual modeling is

shown in Fig. 8. Comparing the model and case studies

revealed that if has been occurred an atmospheric

blocking and following abnormal rainfall and SLHF over

the seismological regions of Iran, then we can predict a

major earthquake (M [ 6) and its seismic swarm within

next 3–33 days along the active faults. The deductive

generalization of this hypothesis is required the more

inductive and experimental studies in other seismological

Fig. 8 The schematic presentation of the climatic conceptual model

in earthquake prediction
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regions. Recently, an investigation of relationships

between preceding atmospheric variations and 39 major

earthquakes (M [ 6) in Middle East has revealed that

abnormal rainfall (about ?35 mm above the mean) and

maximum values of SLHF (about 115 W m-2) occurred

within 3–23 days prior to the main shock of earthquakes

(Mansouri Daneshvar et al. 2014b). Hence, the presented

conceptual model has utility as a predictive tool and can

be applied to all seismological regions in the Middle East

within less lag time.

Conclusion

The essence of block formation can be described as a large-

scale region of high pressure with low-potential vorticity,

which extends poleward over a large-amplitude slow-

moving cyclone (Pelly and Hoskins 2003). Previously,

some researchers have examined the intensity of the

upstream cyclogenesis, which dynamically associates with

the formation and maintenance of blocking events (e.g.,

Konrad and Colucci 1988; Tsou and Smith 1990; Lupo and

Smith 1995; Lupo 1997). In the present study, we observed

that the seismological region in southern Iran experienced a

deep cyclone during April 2013. Then, the deep trough

caused enhanced extreme rainfall and anomalies of geo-

potential height, vertical velocity and latent heat flux over

the epicenter locations. Hence, we concluded that a sig-

nificant blocking episode during the early days of April

2013. The core of our study was to show the feedback

mechanism of the aforementioned blocking effects on

associated rainfall and following rainfall-triggered seis-

micity over the seismological regions. We finally presented

a new climatic conceptual model. In this regard, we claimed

that the atmospheric blocking-associated anomaly is the

main triggering mechanism of lithospheric gas exhaustion,

stress-induced seismicity and subsequent atmospheric

anomalies. These reactions are tracked along a systematic

feedback mechanism between atmosphere and lithosphere.
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