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Abstract Forest plays a vital role in regulating climate

through carbon sequestration in its biomass. Biomass

reflects the health and environmental conditions of a forest

ecosystem. In context to the climate change mitigation

mechanisms like REDD (reducing emissions from defor-

estation and forest degradation), an extensive forest mon-

itoring campaign is especially important. Remote sensing

of forest structure and biomass with synthetic aperture

radar (SAR) bears significant potential for mapping and

understanding forest ecological processes. Limitations of

the conventional forest inventory procedures, like the

extensive cost, labor and time, can be overcome through

integrated geospatial techniques. Optical sensor or SAR

data are suitable for extracting information about simple

and homogeneous forest stand sites. However, optical

sensors face serious limitations, specifically in tropical

regions, like the cloud cover that SAR can overcome along

with targeting saturation and penetration aspects. Simul-

taneous use of spectral information and image texture

parameters improves the biomass assessment over

undulating terrain and in radical conditions. Also, synergic

use of multi-sensor optical and SAR has better potential

than single sensor. Interferometric (InSAR) and polari-

metric (PolSAR) SAR or a combination of the both (Pol-

InSAR) serves as effective alternatives. These techniques

could serve as valuable methods for biomass assessment of

heterogeneous complex biophysical environments. How-

ever, SAR data have its own limitations and complexities.

Identifying, understanding and solving major uncertainties

in different stages of the biomass estimation procedure are

critical. In this regard, the current study provides a review

of radar remote sensing-based studies in forest biomass

estimation.

Keywords Biomass � Interferometry � Polarimetry �
SAR � Uncertainty

Introduction

Forest is defined as an ecosystem dominated by trees and

other woody vegetation with land area [0.5 ha, with

[10 % canopy cover and not being utilized for agriculture

or any non-forest land use (FAO 2001). Essentially

important to mankind, the forest ecosystems have a control

over climate, streams, soil, oxygen–carbon dioxide bal-

ance, wood supply, aesthetic diversity, biodiversity and

provide various ecosystem services (Nabuurs et al. 2007).

Forests inherit key information about climate change and

are dynamic in terms of phenology, productivity and

flammability changes. In tropical forests, increase in res-

piration with warming and drying shows a positive feed-

back as predicted by coupled climate–carbon models (Field

et al. 2007), while for boreal and temperate forests, sig-

nificant range shifts and forest expansion can be potentially

S. Sinha � C. Jeganathan (&)

Department of Remote Sensing, Birla Institute of Technology,

Mesra, Ranchi 835215, India

e-mail: jegan_iirs@yahoo.com

S. Sinha

e-mail: sumanrumpa.sinha@gmail.com

L. K. Sharma

Centre for Land Resource Management, Central University of

Jharkhand, Brambe, Ranchi 835205, India

e-mail: laxmikant1000@yahoo.com

M. S. Nathawat

School of Sciences, Indira Gandhi National Open University

(IGNOU), Maidan Garhi, New Delhi 110068, India

e-mail: msnathawat@ignou.ac.in

123

Int. J. Environ. Sci. Technol. (2015) 12:1779–1792

DOI 10.1007/s13762-015-0750-0



caused due to climate change (Loehle 2000). Coordinated

temporal continuous forests monitoring can put forward an

evidence of the effect of climate change on natural systems

and can act as a warning indicator of sudden shifts, for

instance, changes in leaf water content before forest fires.

Deforestation affects the proper functioning of ecosys-

tem services and has serious impacts on the meteorology

and climate change scenario. Anthropogenic activities like

fossil fuel burning and land use changes including defor-

estation and fires have resulted in teeming release of CO2

into the atmosphere (Malhi 2002; Lu 2006). Hence, there is

a growing need for forest monitoring and management

especially for forest stand biomass, forest structure and

biodiversity. Biomass is the living plant and animal

material both aboveground and belowground usually

expressed as dry weight. Aboveground biomass includes

all living biomass above the soil including stem, stump,

branches, bark, seeds and foliage. Forest biomass act as an

indicator of climate change and forest health (Nabuurs

et al. 2007; Kumar et al. 2013). Numerous studies on

biomass assessment have focused on boreal and temperate

forests as mentioned below in Table 2; however, studies on

tropical forests are limited. This is due to the fact that

tropical forests are complex and dynamic with complex

species composition and structure, and environmental

conditions which is difficult to assess and model. Optical

remote sensing have been successful in forest biomass

studies but over limited geographical regions. But in the

tropical region, where cloud cover problem is predominant,

it could not be really used. In these conditions, radar

remote sensing provides the best solution as it has several

advantages over optical remote sensing as all weather, day

and night; penetrates clouds, vegetation, dry soil, sand, dry

snow; sensitive to surface roughness, dielectric properties

and moisture content; sensitive to polarization and fre-

quency; imaging possibility from different types of polar-

ized energy (HH, VV, HV and VH); and volumetric

analysis.

However, radar remote sensing also has limitations like

uncertainties in estimation, saturation, expensive datasets,

difficulties in data processing and complex interaction with

forests. This study attempts to provide a review of historic

developments associated with radar remote sensing espe-

cially related to synthetic aperture radar (SAR)-based

remote sensing applications for the forested environment

with a focus toward biomass extraction.

Changing carbon scenario and global initiatives

Terrestrial ecosystems have a significant role in absorbing

and emitting CO2 through vegetation growth and metabo-

lism, and respiration. While functioning as a carbon sink,

the ecosystems imbibe for almost a third of anthropogenic

fossil fuel emissions (Malhi 2002). Forests absorb nearly

one-twelfth of the total earth’s atmospheric CO2 stock,

most of which is stored as woody biomass or cycled into

the soil and accounts for about 72 % of the earth’s ter-

restrial carbon storage (Malhi 2002). Deforestation of

tropical forests destroys carbon sinks and hence posses

threat to future climate stabilization (Stephens et al. 2007).

The United Nations Framework Convention on Climate

Change (UNFCCC) agreed to provide financial incentives

to promote emission reduction from deforestation below a

baseline in developing countries, the concept referred to as

reduced emissions from deforestation and forest degrada-

tion (REDD) (Gibbs et al. 2007). The concept of REDD

evolved from reduced emissions from deforestation (RED),

while further concepts of REDD? and REDD??/REALU

(reducing emissions from all land uses) have developed

from REDD revealing the importance and severity of the

concept on a global scale (Gibbs et al. 2007; Plugge et al.

2010; Sharma et al. 2013). REDD? involves forest con-

servation and sustainable management and forest carbon

stock enrichment, in addition to the objectives of REDD

while REALU deals with the emissions from all the land

uses and not just restricted to forests. REDD regime

includes the following steps: assessment of forest carbon

stocks and change over time, quantifying the amount of

CO2 reduction, qualifying for accounting, identifying and

ranking of the relevant causes for human impact on forests

(Sharma et al. 2013), developing a reference baseline for

accounting changes of carbon stocks in forests and lastly

executing a framework for the transfer of benefits at ground

level (Plugge et al. 2010; Sharma et al. 2013). Townshend

et al. (2012) have shown the utility of global Landsat

optical datasets to account for cost-effective monitoring of

the earth’s land cover, forest cover and cover change along

with specific data inputs from MODIS that can serve as

important breakthrough in the field of REDD and climate-

related studies in a global aspect. However, due to high

uncertainty in carbon sink and emissions estimates, the

exact size and cause of the sink remain a matter of unsure.

Uncertainties in the assessment of biomass or carbon

stock are a major problem to cope up. The exact proportion

of carbon sink from secondary forest regrowth is unknown

apart from detailed studies for small areas; hence, the

estimation suffers a high degree of uncertainty (House

et al. 2003; Houghton 2005). Therefore, a better under-

standing of global carbon cycle can be made possible

through accurate and reliable methods for assessing forest

biophysical parameters including biomass, which in turn

reveal the carbon sink that would ultimately end up in

sustainable forest and natural resource management. Bio-

mass is quantified as a mass of living plant material per unit

area and includes above- and belowground living mass and
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the dead mass of soil litter. Estimation of aboveground

biomass (AGB) is rather easy as compared to belowground

biomass due to the intricacy involved in field data collec-

tion. Biomass has long-term impacts on carbon cycles, soil

nutrient allocations, wildlife habitats, etc. To reduce the

uncertainty in the measurements, precise estimations at

local to global scales are necessary which explains its roles

in environmental sustainability.

Remote sensing in biomass assessment

Maturing observation technologies and intense public

interest in protecting and managing forests provides a

necessity and opportunity to explore and better understand

the global forests. The remote sensing technology (capture

and analysis of satellite and aerial images) meets the steep

logistical challenge of measuring the global forests at local

to global levels in an accurate, precise, repeatable and

economical manner. Remote sensing techniques to estimate

biomass can account for the limitations of sample size,

timeliness, expense and access at a range of scales (Pat-

enaude et al. 2005). Remote sensing data can effectively

provide a synoptic view over the large areas and greatly

increase efficiency and usefulness of limited conventional

methods (Patenaude et al. 2005). Roy et al. (1994) have

used merged optical and airborne X-band SAR data for

forest stratification and canopy characterization. Lucas

et al. (2008) have hypothesized the synergic use of

hyperspectral and LiDAR data for retrieving forest bio-

mass. The technology offers temporal analysis with syn-

optic coverage that accounts for change detection of the

global forests and its biophysical parameters over varied

scales and levels. So, it can be used as a tool in AGB

estimation. Therefore, remote sensing using optical,

microwave, hyperspectral and LiDAR techniques for AGB

estimation has increasingly attracted scientific interest.

Herold et al. (2007) classified the techniques involved in

biomass estimation into primarily following four catego-

ries: (a) harvest mapping or destructive sampling-based,

(b) non-destructive sampling-based, (c) airborne/space-

borne remote sensing-based, (d) model-based (empirical

and semiempirical) techniques. The conventional method

includes the harvest or destructive sampling approach that

deals with the total removal of vegetation of pre-defined

sample unit of the forest area (Husch et al. 2003). The non-

destructive sampling approach which does not involve tree

harvesting has been the most widely used technique for

biomass estimation through in situ measurements. It

includes regression equations with parameters like tree

height, stem volume and basal area to estimate biomass.

The most common regression equations used for biomass

estimation are linear, quadratic, exponential and

logarithmic (Husch et al. 2003). Apparently, remote sens-

ing and model-based techniques can be included within the

non-destructive methods. Alternatively, it would be better

to classify the methods under three broad groups of

(a) field-dependent, (b) partial field-dependent and

(c) field-independent approaches. Destructive sampling

technique can be included in field-dependent approach,

while the non-destructive, remote sensing and model-based

techniques can be categorized within the partial field-

dependent approach. No method is purely field indepen-

dent; however, the semiempirical model-based technique

relies mainly on the theoretical basis along with experi-

mental or observational data, whereas empirical models are

developed using experimental or observational data only

(Kumar 2009). On the other hand, remote sensing could be

field independent, if the kind of biomass variation in a

particular forest type is known, which can then be extended

for biomass assessment of similar areas.

The unique characteristics of remote sensing data

obtained with synoptic view, high spatiotemporal resolution

and digital format that allow the handling of fast processing

of huge amount of data in addition to the availability of data

for inaccessible forest areas unavailable for field survey.

Optical remote sensing data, SAR (microwave) data and

LiDAR data are the main three types of remotely sensed

data that are used to extract information for biomass and

stand parameters. The use of remote sensing technology in

the assessment of biomass has proved to be a better alter-

native to the conventional methods of biomass estimation

(Lu 2005, 2006). Biomass estimation using optical remote

sensing data is usually realized by revealing the correlation

between biomass and spectral responses and/or vegetation

indices derived from multispectral images. Lu (2006)

classified the techniques used for estimation of AGB into

following three main categories as: (1) field measurement-

based methods, (2) remote sensing-based methods and (3)

GIS-based methods. Optical remote sensing uses the tech-

nique of modeling based on biomass–vegetation index

relations to estimate the aboveground biomass, as it uses the

interactions between the electromagnetic waves with the

leaf chemistry or structure to measure the vegetation indices

like normalized difference vegetation index (NDVI), leaf

area index (LAI), etc. (Kumar et al. 2013). On the basis of

spatial resolution of satellite data, Lu (2006) categorized the

optical sensor data for AGB estimation as fine, medium and

coarse spatial resolution.

SAR vis-à-vis optical remote sensing

In addition to the benefits provided by remote sensing

already mentioned, SAR offers certain unique capabilities

that have advantages over optical sensors which are as

follows:
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(a) All weather capability (penetration capability through

clouds), i.e., 24-h data

(b) Day and night capability (independent of intensity

and sun illumination angle)

(c) Penetration through vegetation, soil sand and dry

snow to a certain extent

(d) Sensitivity to surface roughness, dielectric properties

and moisture (in liquid or vapor forms)

(e) Sensitive to wave polarization and frequency

(f) Volumetric analysis

(g) Better analysis from inaccessible areas

Forest biomass assessment involves the volumetric analysis

of the vegetation, and this exploits the intrinsic capability

of penetration of SAR through the tree canopies which is

completely absent in optical remote sensing. The estima-

tion is also sensitive to wave polarization and frequency, as

higher wavelengths have greater penetration capacity and

cross-polarization waves are more sensitive to biomass.

The analysis also varies according to the moisture content

of the vegetation. These unique qualities of SAR provide

better estimation of biomass with reduced uncertainties in

the assessment, as microwaves saturates at higher levels of

biomass in comparison to optical electromagnetic waves.

In spite of such high potentials, there are some draw-

backs of using SAR that needs to be overcome. Compared

to optical data, the x- and y-resolutions are not same as

range resolution varies with local incident angle. Inter-

pretation requires good understanding of microwave fre-

quency interaction with various targets, as data

interpretation is affected by occurrence speckles and image

distortions (overlay, foreshortening and shadows) due to

undulating terrains. Speckle refers to a noise-like charac-

teristic produced by coherent systems such as SAR caused

by the constructive and destructive interference of radar

return scattered from surfaces or objects on ground which

makes image interpretation difficult. The speckle texture

depends on SAR wavelength and target spacing. Layover

occurs when the radar beam reaches the top of a tall object

before it reaches the base. The top of the object is displaced

toward the radar from its true position on the ground and

lay over the base of the feature. Foreshortening starts with

the gradual cease of layover at small depression angles.

Under moderate slope conditions, though the radar return

from foot reaches first followed by the top, the ground

range will be less than the actual ground distance causing

compression in the image called foreshortening. Shadows

occur toward the far range, behind vertical features or

slopes with steep sides. Since the radar beam does not

illuminate the surface, shadowed regions will appear dark

on an image as no energy is available to be backscattered.

These are some of the general image distortions associated

with the SAR images.

Unlike the optical data, the cost of SAR data is a serious

constraint in the development of commercial technology

for AGB estimation. Mission cost of ERS-2 was about 650

million US dollars (USD) and the data prices, varying with

the product type, processing level and mode of delivery,

ranged from 250 euro for a medium-resolution SAR scene,

to more than 2,000 euro for a terrain-corrected, geo-coded

SAR product covering an area of 100 km 9 100 km for

ERS datasets. Radarsat-1 also had a mission cost of 650

million dollars, however, without launching expenditures,

and the data cost is 3,600 Canadian dollars (CAD) per SLC

scene of 100 km 9 100 km for newly acquired standard

products and 1,500 CAD for archive products. Similarly,

data charges of Radarsat-2 are 3,600 CAD per SLC scene

of single polarized data and 3,800 for dual polarized data

for standard products. The rate varies between 3,600 and

8,400 CAD per scene depending on the data acquisition

mode. ALOS PALSAR archive standard products are

priced at 600 euro per scene. The rate of COSMO-SkyMed

standard products of new acquisition varies between 1,650

and 9,450 euro per scene depending on the acquisition

mode, while for archive, it ranges between 825 and 4,725

euro per scene. A scene of RISAT-1 is worth at 12,000 INR

(Indian Rupees) for Indian nationals. The huge cost

incurred in SAR data acquisition and initial processing

have created hurdles in the SAR-based researches, and

developing technology of low-cost SAR missions are a

burning issue that needs attention.

Several parameters are involved in SAR, like surface

roughness, dielectric property, azimuth and range resolu-

tion, image geometry, distortions, multi-looking, incidence

angle, polarization, etc. that adds to the complexity of the

data, and hence, data interpretation becomes more difficult

and complicated. Therefore, SAR data requires intricate,

accurate and specific processing so as to extract maximum

information from them. Processing of SAR comprises of

certain complex steps that can be performed in specific

software. Hence, SAR data acquisition and processing

incurs huge cost and occupies huge space. SAR techniques

are still in experimental mode, and the techniques need to

be developed commercially.

SAR for biomass estimation

Spectral responses recorded in optical images are mainly

due to the interaction between the solar radiance and forest

stand canopies that serve as a limitation in the ability to

predict forest biomass through optical remote sensing

technologies. This results in weak correlation between

biomass and spectral responses (or vegetation indices),

specifically for mature heterogenous forests where the

spectral responses start to saturate resulting in low
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sensitivities to branch and trunk biomass, i.e., the bole

biomass. These limitations can be overcome by the use of

SAR remote sensing, which has the additional capability to

penetrate the cloud cover unlike the optical sensors. The

unique qualities of the SAR data for forest biomass esti-

mation make SAR a remarkable technology for forest

investigations, particularly in the areas with frequent cloud

cover. Simultaneously, unlike optical, SAR has specific

characteristics like polarization, sensitivity toward mois-

ture (dielectric constant), surface roughness, different

incident angles, higher penetration capabilities, etc. that

adds to its potentialities.

Carl A. Wiley, a mathematician in Goodyear Aircraft

Company, Arizona, invented SAR in 1951 (Wiley 1985).

SEASAT is the first radar satellite for civilian applications

launched in June 27, 1978, by the National Aeronautics and

Space Administration/Jet Propulsion Laboratory (NASA/

JPL). SAR works on the principle of Doppler effect.

Doppler shift is the frequency shift in electromagnetic

waves due to the motion of scatterers toward or away from

the observer. Frequency decreases when the source moves

away from the receiver and vice versa. Doppler radar

determines the frequency shift through measurement of the

phase change in electromagnetic waves during a series of

pulses. Table 1 gives the list of some selected SAR sensors

till date (Ouchi 2013), along with their spatial resolution.

There is a unique relation between the spatial and temporal

(revisit) resolution, where revisit time for the wide-swath

mode can be reduced at the expense of spatial resolution.

Cosmo-SkyMed and SAR-Lupe with higher spatial reso-

lution have their revisit time of 7 and \10 h, respectively,

as compared to the nominal revisit times of 24, 25, 35 and

46 days of RADARSAT-2, RISAT-1, ENVISAT ASAR

and ALOS PALSAR, respectively (Ouchi 2013).

Table 2 summarizes the numerous works that have

revealed the ability of SAR data in estimating forest bio-

physical parameters, particularly the AGB. The most fre-

quently used methods in biomass estimation may be divided

into two groups: (1) using backscatter values and (2) inter-

ferometry technique (Ghasemi et al. 2011). It has been pro-

ven that longer wavelengths (L and P band) with HV and VH

polarizations yield better result than short wavelengths (X

and C band) with HH or VV polarizations (Le Toan et al.

1992; Dobson et al. 1992). Hyperspectral remote sensing

also has potential in retrieval of biomass (Treuhaft et al.

2003). Ghasemi et al. (2013) suggested the wavelet analysis

to be even more effective in terms of biomass estimation.

SAR wavelength and polarization

SAR data can be acquired in K, X, C, L and P bands

(different wavelengths) with different polarizations having

variety of range and azimuth resolutions. Each of these

bands has their own characteristics in relating to forest

stand parameters. The X band interacts with the leaves and

canopy cover surface, hence suitable for tree canopy sur-

face layer information. The C band penetrates through

leaves and are scattered by small branches and underlying

features. L band has the higher penetrating capacity that

penetrates through the surface layers and is scattered by the

trunk and the main branches. With the greatest penetration

capabilities, the P band penetrates into the canopy cover.

Most part of P-band backscattering is due to the trunk and

the trunk–ground interactions. Henceforth, the backscatters

of the L and P band are most related to the biophysical

parameters of the trees and are maximally used for forest

biomass-related studies.

Polarization of the SAR signals are an important

parameter of SAR data that interacts variably due to dif-

ferent orientations and structures of the features. Polari-

zation of the electromagnetic waves refers to the direction

of electric field and depends upon the interaction between

signals and the reflectors. Microwave sensors emit signals

in horizontal (H) or vertical (V) polarizations. The four

combinations SAR data polarizations: (1) HH: The emitted

and backscattered signals have horizontal polarization. (2)

HV: The emitted signal has horizontal polarization, and the

backscattered signal has vertical polarization. (3) VH: The

emitted signal has vertical polarization, and the backscat-

tered signal has horizontal polarization. (4) VV: Both

emitted and reflected signals have vertical polarization

(Ghasemi et al. 2011).

The C, L and P bands are frequently used in most of the

biomass estimation studies. The longer wavelengths (L and

P band) and the HV polarization are most sensitive to AGB

(Luckman et al. 1997; Kurvonen et al. 1999; Sun et al.

2002). It was found that the co-polarized (HH and VV) data

at the longer wavelengths, like P band, were sensitive to

changing surface conditions (Ghasemi et al. 2011). Cross-

polarized (HV and VH) backscattering mainly occurs from

multiple scattering within the tree canopy and is less

affected by the surface condition (Ranson and Sun 1994).

Backscattering at longer wavelengths is lower than that

from C band for low biomass sites, such as grassland, bogs,

clear cuttings, areas of forest regeneration and young

plantations, and hence, C band is preferred for lower

vegetation biomass estimations (Ghasemi et al. 2011). P

band gives very low backscattering for surfaces covered

with grass or juvenile plant species since these act as small

scattering elements as compared to P-band wavelength of

68 cm to give significant backscattering, while the same

surfaces would be rough at C band, resulting to strong

backscattering, where the leaves and small primary bran-

ches are the major scatterers for C band that saturates at

nearly 10 kg/m2 (Ranson and Sun 1994). The limitation of

C band is the inability of much penetration into the canopy
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and its saturation at around 60–70 tons/ha (Nizalapur et al.

2010). This limitation can be overcome using longer

wavelength bands which have higher forest canopy pene-

tration capability like the L band. The L and P band sat-

urates usually at 100 t/ha for complex heterogenous

tropical forest structures. The saturation level increases to

about 250 t/ha for stands with simple structure and few

dominant species. The best combination for biomass esti-

mation in deciduous forests is the C and L band with the

HH and HV polarization, while the same bands with just

HV polarization is the best for coniferous forests (Ranson

and Sun 1994). L band has the ability to estimate biomass

Table 1 Selected SAR sensors for earth observation

Platform/sensor Type Agency/country Band (polarizations) Spatial resolution

AIRSAR Airborne NASA/USA X/C/L (quad) 0.6, 3

ALMAZ-1 Spaceborne USSR S (HH) 8, 15

ALOS PALSAR Spaceborne JAXA/Japan L (quad) 5, 10

C/X-SAR Airborne CCRS/Canada X/C (quad) 0.9, 6

CALABAS Airborne FOA/Sweden HF/VHF 3, 3

Cosmo-SkyMed (4) Spaceborne ASI/Italy X (quad) 1, 1

CP-140 Spotlight SAR Airborne Lockheed Martin/Canada X \1, \1

DBSAR Airborne NASA/USA L 10, 10

EMISAR Airborne DCRS/Denmark C/L (quad) 2, 2

ENVISAT ASAR Spaceborne ESA C (dual) 10, 30

ERS-1/2 Spaceborne ESA C (VV) 5, 25

E-SAR Airborne DLR/Germany X/C/S/L/P (quad) 0.3, 1

F-SAR Airborne DLR/Germany X/C/S/L/P (quad) 0.3, 0.2

Global Hawk Airborne Northrop Grumman/USA X 1.8, 1.8

HJ-1-C Spaceborne China S (VV) 5, 20

I-MASTER Airborne Thales-Astrium/UK Ku \1, \1

Ingara Airborne DSTO/Australia X (quad) 0.15, 0.3

JERS-1 SAR Spaceborne NASDA/Japan L (HH) 6, 18

JERS-1 SAR Spaceborne NASA/USA C/L (quad) 7.5, 13

LiMIT Airborne MIT Lincoln Lab/USA X \1, \1

Lynx Airborne Sandia/USA Ku (quad) 0.1, 0.1

MiniSAR Airborne Sandia/USA Ka/Ku/X 0.1, 0.1

Mini-SAR Airborne TNO/Netherland X 0.05. 0.05

PAMIR Airborne FHR-FGAN/Germany X 0.1, 0.1

PHARUS Airborne TNO-FEL/Netherland C (quad) 1, 3

Pi-SAR Airborne NICT, JAXA/Japan X/L (quad) 0.37, 3

RADARSAT-1 Spaceborne CSA/Canada C (HH) 8, 8

RAMSES Airborne ONERA/France W/Ka/Ku/X/C/S/L/P (quad) 0.12, 0.12

RARDASAT-2 Spaceborne CSA/Canada C (quad) 3, 3

RISAT-1 Spaceborne ISRO/India C (dual) 3, 3

SAR-Lupe (5) Spaceborne Germany X (quad) 0.5, 0.5

SEASAT-SAR Spaceborne NASA/USA L (HH) 6, 25

SIR-A Shuttleborne NASA/USA L (HH) 7, 25

SIR-B Shuttleborne NASA/USA L (HH) 7, 13

SIR-C/X-SAR Shuttleborne DLR/Germany, ASI/Italy X (VV) 6, 10

SRTM Shuttleborne NASA/USA C (dual) 15, 8

SRTM Shuttleborne DLR/Germany X (VV) 8, 19

TanDEM-X Spaceborne DLR/Germany X (quad) 1, 1

TerraSAR-X Spaceborne DLR/Germany X (quad) 1, 1

UAVSAR Airborne NASA/USA L (quad) 1, 1.8

Spatial resolution expressed in meters in the azimuth (single-look) and range directions
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Table 2 SAR techniques and methods for AGB estimation

Study Sensor/datasets Study site Models

Le Toan et al.

(1992)

AirSAR Landes forest, France Regression analysis

Beaudoin et al.

(1994)

SAR L band Les Landes Forest, France Adapted theoretical model

Ranson and

Sun (1994)

AirSAR Maine, USA Regression analysis

Ranson et al.

(1997)

AirSAR Maine, USA Gap-type forest succession model, Canopy

backscatter models

Luckman et al.

(1997)

ERS-1, JERS-1 and

SIR-C

Tapajos, Brazil Forest backscatter model

Kurvonen

et al. (1999)

JERS-1 and ERS-1

SAR

Scandinavian forests, Finland Backscattering model, Inversion algorithm

Kuplich et al.

(2000)

JERS-1 Tapajos, Brazil; Southern Cameroon Regression analysis

Fransson et al.

(2001)

ERS-1/2, SPOT XS Kattbole, Sweden Regression analysis

Santos et al.

(2002)

JERS-1 Amazonia, Brazil Regression analysis

Sun et al.

(2002)

SIR-C Siberia Regression analysis

Austin et al.

(2003)

JERS-1 SAR New South Wales, Australia Regression analysis

Pulliainen

et al. (2003)

ERS1/2 Finland Interferometry, Empirical model

Santoro et al.

(2003)

ERS-1/2 Kattbole, Sweden; Tuusula, Finland; Thüringer Wald,

Germany; Bois de Boulogne, France

Interferometric water cloud model (IWCM)

Treuhaft et al.

(2003)

C-band radar

interferometry,

hyperspectral

Central Oregon Leaf area density (LAD) model

Santos et al.

(2004)

Airborne SAR Tápajos River region, Pará state, Brazil Interferometric and polarimetric analysis,

regression analysis

Rauste (2005) SEASAT, JERS and

airborne AIRSAR

sensor

Selected sites in Sweden, Germany, Finland and

Africa

Regression analysis

Jha et al.

(2006)

ENVISAT ASAR Western Ghats, Karnataka, India Regression analysis

Hyde et al.

(2006)

LiDAR, SAR/

InSAR, ETM?,

QB

Sierra Nevada, California, USA Regression analysis

Lucas et al.

(2006)

AirSAR, LiDAR Queensland, Australia Water cloud model (WCM)

Santoro et al.

(2006)

JERS-1 SAR Kattbole, Sweden; Tuusula, Finland; Bolshe-

Murtinsky, Siberia

Radiative transfer model

Kumar (2007) EnviSat ASAR,

Landsat ETM

Dudhwa National Park, India Regression analysis

Amini and

Sumantyo

(2009)

ALOS AVNIR-2,

PRISM, JERS-1

SAR

Northern forests of Iran Neural network

Neumann

(2009)

PolInSAR data Oberpfaffenhofen, Germany PolInSAR–RVoG modeling, Inversion

approaches, Model-based polarimetric

decomposition

Kumar (2009) Envisat ASAR Dudhwa National Park, India Interferometric water cloud model (IWCM)

Becek (2009) SRTM Nerang State Forest, Australia; Brunei Darussalam;

Kalimantan, Indonesia; Washington State, USA;

Bavaria, Germany

Canopy gap modeling, Interferometry
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from lower frequencies to 160 Mg/ha, whereas the capa-

bility range of P band is from 100 Mg/ha to 200 Mg/ha

(Nizalapur et al. 2010). Depending on the forest type,

specifically for the boreal forests, L band saturates at about

100–150 t/ha (Shugart et al. 2010), while P band is found

to be sensitive to forest biomass up to a saturation level of

100–300 t/ha (GTOS 2009). The problem of saturation is

dealt by Kasischke et al. (1997) where it is mentioned that

the saturation point is higher for longer wavelengths and

HV cross-polarization has the maximum sensitivity, while

VV co-polarization is least sensitive. Based on the empir-

ical relationships between AGB and SAR backscatter,

Lucas et al. (2006) established that C, L and P band satu-

rate at different levels with even stronger relationships at

higher incidence angles and a larger dynamic range and

consistency of relationships at HV polarizations. The most

worthy band for biomass estimation is the L band as it

interacts more with the trunk and branches with minimal

sensitivities to the environmental conditions (Luckman

et al. 1997; Kurvonen et al. 1999; Sun et al. 2002; Lucas

et al. 2006). According to Hoekman and Quinones (1997),

the combination of C and L bands has greater potential than

using any one of the bands for biomass estimation.

Biomass estimation methods

The two most widely used approaches used for forest

biomass estimations are (1) using backscatter values and

(2) interferometry technique, along with polarimetric

analyses. Detailed list of studies related to biomass esti-

mation using these techniques is summarized in Table 2.

Biomass estimation using backscatter

Regression analysis is the most preferred method for bio-

mass estimation relating backscatter values to field biomass

Table 2 continued

Study Sensor/datasets Study site Models

Nizalapur

et al. (2010)

DLR ESAR Rajpipla, Gujarat, India Regression analysis

Yu et al.

(2010)

SRTM, Landsat

ETM, NED

Maine, USA Biomass algorithms

Gama et al.

(2010)

OrbiSAR-1 São Paulo State, Brazil Regression analysis

Fatoyinbo and

Armstrong

(2010)

PolInSAR data Mangrove forests, Nigeria Regression analysis

Alappat et al.

(2011)

E-SAR Chandrapur Forest Division, Maharashtra, India Regression analysis

Le Toan et al.

(2011)

BIOMASS SAR Mawas region, Indonesia; Les Landes, France Regression analysis

Hamdan et al.

(2011)

ALOS PALSAR Forest Research Institute Malaysia, Malaysia Regression analysis

Wollersheim

et al. (2011)

POLSAR data Petawawa Research Forest, Ontario, Canada Polarimetric analysis

Englhart et al.

(2012)

ALOS PALSAR,

TerraSAR-X

Central Kalimantan, Borneo, Indonesia Multiple linear regression (MLR), Artificial

neural network (ANN), Support vector

regression (SVR)

Sambatti et al.

(2012)

Airborne X- and

P-band

interferometry data

Paragominas region, Pará, Brazil Regression analysis

Antropov et al.

(2013)

ALOS PALSAR Central Finland Semiempirical forest model, model inversion

Carreiras et al.

(2013)

ALOS PALSAR Mozambique, Africa BagSGB model

Ghasemi et al.

(2013)

ALOS PALSAR,

ALOS AVNIR

Temperate deciduous forest Wavelet analysis

Hame et al.

(2013)

ALOS PALSAR,

ALOS AVNIR

Lao PDR, Laos Regression analysis, probability method

Peregon and

Yamagata

(2013)

ALOS PALSAR Western Siberia Regression analysis, Water cloud model

(WCM)
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measurement. This has been tested on various sites of

coniferous forests of North Florida (USA) and Landes

(France) with accurate results (Le Toan et al. 1992; Dobson

et al. 1992). Beaudoin et al. (1994) observed relationship

between VV and HV backscatter returns with crown bio-

mass, while HH return was linked to both trunk and crown

biomass. Using JERS-1 for assessing biomass of regener-

ating forests reveals the potential for AGB estimation for

young forests as well (Kuplich et al. 2000). Longer wave-

lengths (L and P bands) with cross-polarizations (HV and

VH) produced better result for biomass-related studies than

short wavelengths (X and C bands) with co-polarizations

(HH or VV) (Le Toan et al. 1992; Dobson et al. 1992; Lucas

et al. 2006; Wollersheim et al. 2011; Hamdan et al. 2011).

The significant problem with this method is the satura-

tion level of different wavelengths and polarizations rele-

vant in several studies. The factors on which the saturation

levels depend are the wavelengths (different for SAR

bands), polarization (co- and cross-polarizations) and the

vegetation stand structure and ground condition charac-

teristics (Ghasemi et al. 2011). Santos et al. (2002) indi-

cated the use of the ratio between C and L or P band to

solve the saturation problem. Likewise, Hoekman and

Quinones (1997) suggested the use of combined C and L

bands in coniferous forest. Ranson et al. (1997) applied a

synergic approach of forest succession and radar back-

scatter models to determine forest biomass and observed

reasonably good results when biomass was \15 kg/m2.

Landscape properties like topography, surface water and

forest structure are beneficial for estimating forest biomass

using SAR showing more accurate results (Austin et al.

2003). Lucas et al. (2010) emphasized on the differences in

surface moisture conditions and vegetation structure for

developing AGB retrieval algorithms and concluded that

PALSAR (L-band) data acquired during minimal surface

moisture and rainfall showed better estimation of woody

vegetation AGB over Queensland, Australia.

Biomass estimation using interferometry

Interferometry is a technique based on interference of

waves. Interference, in physics, is a phenomenon where

two waves superimpose resulting in a wave of greater or

lower amplitude. It refers to the interaction of waves that

are correlated with each other, either due to their same

source of origin or due to same or nearly same frequency.

Interference can either be constructive or destructive

depending upon the phase difference between the waves.

Interferometric synthetic aperture radar (InSAR or IfSAR)

is a radar technique used in geodesy and remote sensing.

This technique simultaneously uses two or more SAR

images using differences in the phase of the waves

returning to the sensor.

The approach involving interferometry has the potential

to overcome the saturation problem demonstrated by

Fransson et al. (2001) as it has a relatively high saturation

point. The approach has the potential to yield more reliable

results than the traditional single-image approach. In con-

trast, Pulliainen et al. (2003) proposed that the accuracy of

this technique was highly dependent on certain factors

which inherit dynamic variation including the site condi-

tions (wind speed, moisture, temperature, etc.). It was

observed that the estimation accuracy can enhance while

using multi-temporal SAR images acquired under favor-

able conditions. This approach produced relative good

results in several studies of boreal forests (Fransson et al.

2001; Pulliainen et al. 2003). Pulse coherent SAR operat-

ing between 80–120 MHz can be used to measure heavy

forest biomass (Imhoff et al. 2000). Luckman et al. (1997)

compared the accuracy for biomass estimation using this

technique in boreal, temperate and tropical forests, where

the best result was obtained in boreal forests using L-band

images with 1-day interval. Tree heights were estimated

using L band (Mette et al. 2004) and X and P band (Santos

et al. 2004) interferometry with improved accuracy in

comparison to the backscatter approach. InSAR technique

can be combined with corresponding hyperspectral optical

remote sensing and LiDAR that can augment the vertical-

structure estimates following the biophysical parameters

including the biomass (Treuhaft et al. 2004). Classification

of biomass estimation methods can be grouped in four

approaches depending upon the type of data (or sensors)

and the techniques used (Fig. 1).

Limitations and uncertainties

Remote sensing systems provide variety of data acquisition

modes, such as in spectral, radiometric, spatial and tem-

poral resolutions and in polarization and angularity. Rec-

ognizing and understanding the strengths and weaknesses

of different types of sensor data are essential for selecting

suitable sensor data for AGB estimation in a specific study

area. In rugged or mountainous regions, topographic fac-

tors such as slope and aspect can considerably affect veg-

etation reflectance, resulting in spurious relationships

between AGB and backscattering values. Hence, removal

of topographic effects is necessary. Approaches have been

developed for topographic correction of SAR data (Soja

et al. 2010). The limitation in spatial and radiometric res-

olutions inherent in the remotely sensed data is an impor-

tant factor affecting the AGB estimation performance. The

remote sensors with coarse spatial resolution mainly cap-

ture canopy information, instead of individual tree infor-

mation. Different sensor data have their own characteristics

in reflecting land surfaces, and thus, integration of different
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sources of remotely sensed data may enhance the infor-

mation extraction process. The integration of radar and

optical sensor data has the potential to improve AGB

estimation because it may reduce the mixed pixels and data

saturation problems (Ban 2003).

The last decade witnessed some of the major milestone

researches targeting the subject of uncertainty in remote

sensing, GIS, spatial models and geographical sciences

(Congalton 1991; Sinha et al. 2012; Liang et al. 2013; Shen

et al. 2015). The three challenges identified by Dungan

(2002) include (a) the unavailability of appropriate refer-

ence data due to expensive and time-consuming issues,

(b) challenge to represent or visualize spatially varying

intervals and (c) inadequacy of statistical models that

assume errors to be independent and spatial units to be

dependent.

The five possible sources of uncertainty in remote

sensing analysis are described by Dungan (2002) as: (1)

variable uncertainty, (2) spatial support uncertainty, (3)

positional uncertainty, (4) model uncertainty and (5)

parametric uncertainty.

The geostatistical term ‘support’ refers to the spatial

resolution. Moreover, these variables also have a temporal

resolution. SAR remote sensing is no exception regarding

the issue of uncertainty in the analysis in addition to other

complexities and ambiguities that are specific to SAR

techniques. Several other limitations of SAR are as fol-

lows: (1) costly data, (2) temporal repeativity, (3) few

LITERATURELEVEL 2LEVEL 1

Approach 1: Based 
on data type

Single date

Multi-temporal/ 
data pairs

Santoro et al. 2006; Yu et al. 2010; Le Toan et al. 2011; Hamdan et al. 2011; 
Englhart et al. 2012; etc.

Fransson et al. 2001; Santoro et al. 2003; Kumar 2009; etc.

Approach 2: Based 
on sensor type

Single

Multiple/ 
Synergic

Nizalapur et al. 2010; Hamdan et al. 2011; Wollersheim et al. 2011; Carreiras 
et al. 2013; etc.

Hyde et al. 2006; Saatchi et al. 2007; Amini and Sumantyo 2011; Englhart et 
al. 2012; etc.

Approach 3: Based 
on SAR processing

Backscatter

InSAR

Kurvonen et al. 1999; Rauste 2005; Santoro et al. 2006; Kumar 2007; 
Neumann 2009; Nizalapur et al. 2010; Englhart et al. 2012; Carreiras et al. 

2013; etc.

Fransson et al. 2001; Becek 2009; etc.

PolSAR

Pol-InSAR

Wollersheim et al. 2011; etc.

Gama et al. 2010 ; Le Toan et al. 2011; etc.

Backscatter+ 
InSAR

Other: Texture 
measures, 
wavelet 

analysis, etc.

Santoro et al. 2003; Kumar 2009; etc.

Amini and Sumantyo 2009, 2011; Ghasemi et al. 2013; etc.

Approach 4: Based 
on modeling

Linear-
regression 

models

Non-linear 
complex models

Fransson et al. 2001; Hyde et al. 2006; Kumar 2007; Gama et al. 2010; 
Rahman and Sumantyo 2012; Sambatti et al. 2012; Peregon and Yamagata

2013; Hame et al. 2013 ; etc.

Kurvonen et al. 1999; Santoro et al. 2006; Kumar 2009; Amini and Sumantyo 
2009 ; Wollersheim et al. 2011; Carreiras et al. 2013; Ghasemi et al. 2013; etc.

Fig. 1 Classification of biomass estimation methods
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satellite constellation, (4) no time-composite data as the

case for optical data, (5) limited area coverage and (6) non-

availability of global-level coherent datasets of SAR.

Refinements in handling and processing SAR data can

improve the analyses which are promising prospects for

future researches.

Finally, it is often difficult to transfer one model

developed in a specific study area to other study areas

because of the environmental characteristics apart from the

limitation of the model itself and the nature of remotely

sensed data. Foody et al. (2003) discussed the problems

encountered in model transfer. Many factors, such as

uncertainties in the remotely sensed data (image prepro-

cessing and different stages of processing), AGB calcula-

tion based on the field measurements, the disparity between

remote sensing acquisition date and field data collection

and the size of sample plot compared with the spatial

resolution of remotely sensed data, could affect the success

of model transferability.

In addition to the sources of uncertainty in remote

sensing analysis, there are several possible loopholes for

uncertainties to slink in biomass assessment through

remote sensing. The key prerequisite for developing AGB

estimation models is the availability of a high-quality data

source. Allometric equations for calculating AGB requires

DBH (diameter at breast height) and/or height, which is a

source of uncertainty (Keller et al. 2001; Ketterings et al.

2001). Mode of AGB sample collection is another source

of ambiguity (Keller et al. 2001). Satellite, ancillary and

sample data need to be co-registered accurately for AGB

calculation (Lu 2006). The important sources of uncer-

tainties in AGB enumeration can be summarized as:

1. Mode of AGB sample data collection

2. Selection of proper sample data collection sites

3. Atmospheric corrections

4. Registration errors between satellite data and AGB

sample data

5. Incompetence between satellite image pixel size and

sample plot dimensions

6. Selection of suitable remote sensing-derived variables

to derive relationship with field inventorized AGB

7. Algorithms and equations for developing AGB esti-

mation models

The level of uncertainty and the evaluation of the model

performance can be accounted by the coefficient of

determination (R2) and root-mean-squared error (RMSE)

(Deepika et al. 2014). A high R2 or low RMSE value

denotes good-fit between the sample data and the model

developed. Most of the earlier AGB studies suffered from

difficulties in collection of field data and resulting incon-

sistencies between field measurements and AGB estima-

tion. However, the accuracy can enhance on improving

certain parameters. For example, the canopy height can be

calculated more accurately using laser or LiDAR technol-

ogy. Zolkos et al. (2013) proved that airborne LiDAR-

generated AGB models are more accurate than those

developed from radar or passive optical data. This is

attributed to the strong relationship of the LiDAR systems

to the biomass level even beyond 1,000 t/ha that greatly

exceeds the normal saturation level of passive optical or

radar sensors (Yavasli 2012). Variables that are strongly

correlated should be used for developing algorithms, and

SAR backscatter coefficients often have shown better

relationship than optical-derived parameters. However, this

selection is a complex process that requires good under-

standing of the interactions among the tested variables and

forest structural and biophysical attributes. Selection of

satellite sensors is hence vital for AGB estimation.

Integration of optical and radar data can reduce the data

saturation in optical sensor images. Development of

advanced models using multi-source data is important for

reducing uncertainties. Methods of data integration, devel-

opment of advanced models, better selection and quanti-

fication of variables are hotspots for future research to

improve current technology for biomass estimation by use

of radar data. Interferometry and polarimetry are the two

radar-based techniques that need to be explored further in

AGB studies. Improvements in SAR data resolution are

also a matter of research. Using digital beam-forming

techniques, wide-swath coverage can be obtained without

degrading the spatial resolution. Hence, a new generation

spaceborne SAR systems is planned using this technology,

for example, TanDEM-L shall cover a swath width of

350 km with spatial resolution of 10 m, and the revisit time

will be 8 days (Ouchi 2013). As already mentioned,

interferometry gives information on height and research

is required for further improvement in this. Combined

polarimetric and interferometric SAR (PolInSAR) has a

greater potential for calculating biomass at higher densities

(Yavasli 2012). With the advent of different SAR missions

in future like follow-up of ALOS and RISAT, NISAR,

MAPSAR, etc., there are further possibilities of improve-

ment in this technology for AGB estimation.

Conclusion

Estimation of AGB in tropical forests are difficult to carry

out due to high dynamism of these forests as well as

tedious accessibility conditions. Although use of multi-

sensor or multi-resolution data has the potential to improve

AGB estimation performance, the time and labor involve-

ment in image processing will be significantly increased.

The economic factor will be an important aspect in the use

of multi-source remotely sensed data in a large area. In
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spite of these limitations, SAR provides an efficient means

for assessment of AGB and it can overcome important

limitations of optical remote sensing. High wavelength and

cross-polarization in SAR are more sensitive to biomass.

Texture analysis along with backscatter, interferometry and

polarimetric analysis of SAR improves the estimation of

biomass. Regression analysis remained the most common,

effective and easy-to-use technique for biomass estimation.

Model-based approaches using semiempirical models

including radiative transfer models, WCM and IWCM are

used for AGB estimations using SAR. Though LiDAR act

as the most suitable single sensor for biomass estimation,

the synergic use of optical and SAR would be the obvious

choice due to their easy availability, cheaper cost and time

of processing. Synergic use of multi-temporal optical,

microwave (SAR/InSAR/PolInSAR) and LiDAR can

potentially be the best combination in remote sensing

integrated with the use of model-based approach (semi-

empirical) for the estimation of biomass. Overall, it can be

concluded that AGB can be estimated with reliable accu-

racy using backscatter intensity values, polarimetric and

interferometric techniques.

Acknowledgments The authors express sincere gratitude to the

editor and reviewers for constructive comments and suggestions to

improve this paper. The authors wish to acknowledge the support

from Department of Science and Technology (DST), Government of

India, for providing funds under DST/INSPIRE Program (Ref. No.

DST/INSPIRE FELLOWSHIP/2010/[316]).

References

Alappat VO, Joshi AK, Krishnamurthy YVN (2011) Tropical dry

deciduous forest stand variable estimation using SAR data.

J Indian Soc Remote Sens 39(4):583–589

Amini J, Sumantyo JTS (2009) Employing a method on SAR and

optical images for forest biomass estimation. IEEE Trans Geosci

Remote Sens 47(12):4020–4026

Antropov O, Rauste Y, Ahola H, Hame T (2013) Stand-level stem

volume of boreal forests from spaceborne SAR imagery at

L-band. IEEE J Sel Top Appl Earth Obs Remote Sens

6(1):35–44. doi:10.1109/JSTARS.2013.2241018

Austin JM, Mackey BG, van Niel KP (2003) Estimating forest

biomass using satellite radar: an exploratory study in a

temperate Australian Eucalyptus forest. For Ecol Manag

176:575–583

Ban Y (2003) Synergy of multitemporal ERS-1 SAR and Landsat TM

data for classification of agricultural crops. Can J Remote Sens

29(4):518–526

Beaudoin A, Le Toan T, Goze S et al (1994) Retrieval of forest

biomass from SAR data. Int J Remote Sens 15:2777–2796

Becek K (2009) Biomass representation in synthetic aperture radar

interferometry data sets. Dissertation, The University of Brunei

Darussalam, Brunei

Carreiras JMB, Melo JB, Vasconcelos MJ (2013) Estimating the

above-ground biomass in Miombo savanna woodlands (Mozam-

bique, East Africa) using L-band synthetic aperture radar data.

Remote Sens 5:1524–1548. doi:10.3390/rs5041524

Congalton RG (1991) A review of assessing the accuracy of

classifications of remotely sensed data. Remote Sens Environ

37:35–46

Deepika B, Avinash K, Jayappa KS (2014) Shoreline change rate

estimation and its forecast: remote sensing, geographical infor-

mation system and statistics-based approach. Int J Environ Sci

Technol 11(2):395–416

Dobson MC, Ulaby FT, Le Toan T et al (1992) Dependence of radar

backscatter on coniferous forest biomass. IEEE Trans Geosci

Remote Sens 30:412–416

Dungan JL (2002) Toward a comprehensive view of uncertainty in

remote sensing analysis. In: Foody GM, Atkinson PM (eds)

Uncertainty in Remote Sensing and GIS. Wiley, West Sussex,

pp 25–35

Englhart S, Keuck V, Siegert F (2012) Modeling aboveground

biomass in tropical forests using multi-frequency SAR data—a

comparison of methods. IEEE J Sel Top Appl Earth Obs Remote

Sens 5(1):298–306. doi:10.1109/JSTARS.2011.2176720

FAO (2001) Global forest resources assessment 2000—main report.

FAO Forestry Paper 140, Food and Agriculture Organization of

the United Nations, Rome, pp 363

Fatoyinbo TE, Armstrong AH (2010) Remote characterization of

biomass measurements: case study of mangrove forests. In:

Momba M, Bux F (eds) biomass. InTech Publishers, Croatia

Field CB, Buitenhuis ET, Ciais P et al (2007) Contributions to

accelerating atmospheric CO2 growth from economic activity,

carbon intensity, and efficiency of natural sinks. Proc Nat Acad

Sci USA (PNAS) 104:18866–18870

Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical

forest biomass from Landsat TM data and their transferability

between regions. Remote Sens Environ 85:463–474

Fransson JES, Smith G, Askne J, Olsson H (2001) Stem volume

estimation in boreal forests using ERS-1/2 coherence and SPOT

XS optical data. Int J Remote Sens 22(14):2777–2791

Gama FF, Santos JR, Mura JC (2010) Eucalyptus biomass and

volume estimation using interferometric and polarimetric SAR

data. Remote Sens 2:939–956

Ghasemi N, Sahebi MR, Mohammadzadeh A (2011) A review on

biomass estimation methods using synthetic aperture radar data.

Int J Geomat Geosci 1(4):776–788

Ghasemi N, Sahebi MR, Mohammadzadeh A (2013) Biomass

estimation of a temperate deciduous forest using wavelet

analysis. IEEE Trans Geosci Remote Sens 51(2):765–776

Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and

estimating tropical forest carbon stocks: making REDD a reality.

Environ Res Lett 2:1–13

GTOS (Global Terrestrial Observing System) (2009) Biomass—

assessment of the status of the development of the standards for

the terrestrial essential climate variables. Rome, p 18. http://

www.fao.org/gtos/doc/ECVs/T12/T12.pdf

Hamdan O, Aziz HK, Rahman KA (2011) Remotely sensed L-band

SAR data for tropical forest biomass estimation. J Trop For Sci

23(3):318–327

Hame T, Rauste Y, Antropov O, Ahola HA, Kilpi J (2013) Improved

mapping of tropical forests with optical and SAR imagery, Part

II: above ground biomass estimation. IEEE J Sel Top Appl Earth

Obs Remote Sens 6(1):92–101

Herold M, Brady M, Wulder M, Kalensky D (2007) Biomass ECV

report. ftp.fao.org/docrep/fao/011/i0197e/i0197e16.pdf

Hoekman DH, Quinones MJ (1997) Land cover type and forest

biomass assessment in the Colombian Amazon. In: Geoscience

and remote sensing, 1997. IGARSS ‘97. Remote sensing—a

scientific vision for sustainable development. 1997 IEEE Inter-

national. IEEE IGARSS 4:1728–1730

Houghton RA (2005) Aboveground forest biomass and the global

carbon cycle. Global Change Biol 11:945–958

1790 Int. J. Environ. Sci. Technol. (2015) 12:1779–1792

123

http://dx.doi.org/10.1109/JSTARS.2013.2241018
http://dx.doi.org/10.3390/rs5041524
http://dx.doi.org/10.1109/JSTARS.2011.2176720
http://www.fao.org/gtos/doc/ECVs/T12/T12.pdf
http://www.fao.org/gtos/doc/ECVs/T12/T12.pdf
http://ftp.fao.org/docrep/fao/011/i0197e/i0197e16.pdf


House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M

(2003) Reconciling apparent inconsistencies in estimates of

terrestrial CO2 sources and sinks. Tellus 55B:345–363

Husch B, Beers TW, Kershaw JA (2003) Forest mensuration, 4th edn.

Wiley, New Jersey

Hyde P, Dubayah R, Walker W et al (2006) Mapping forest structure

for wildlife habitat analysis using multi-sensor (LiDAR, SAR/

InSAR, ETM?, Quickbird) synergy. Remote Sens Environ

102:63–73

Imhoff ML, Johnson P, Holford W et al (2000) BioSar (TM): an

inexpensive airborne VHF multiband SAR system for vegetation

biomass measurement. IEEE Trans Geosci Remote Sens

38(3):1458–1462

Jha CS, Rangaswamy M, Murthy MSR, Vyjayanthi N (2006)

Estimation of forest biomass using Envisat-ASAR data. Proc

SPIE 6410:641002

Kasischke ES, Melack JM, Dobson MC (1997) The use of imaging

radars for ecological applications—a review. Remote Sens

Environ 59:141–156

Keller M, Palace M, Hurtt G (2001) Biomass estimation in the

Tapajos National Forest, Brazil: examination of sampling and

allometric uncertainties. For Ecol Manage 154:371–382

Ketterings QM, Coe R, van Noordwijk M, Ambagau K, Palm CA

(2001) Reducing uncertainty in the use of allometric biomass

equations for predicting aboveground tree biomass in mixed

secondary forests. For Ecol Manage 146:199–209

Kumar NR (2007) Forest cover, stand volume and biomass assess-

ment in Dudhwa National Park using satellite remote sensing

data (optical and EnviSat ASAR). Dissertation, Andhra Univer-

sity, India

Kumar S (2009) Retrieval of forest parameters from Envisat ASAR

data for biomass inventory in Dudhwa National Park, UP, India.

Dissertation, IIRS, Dehradun, India and ITC, Enschede,

Netherlands

Kumar P, Sharma LK, Pandey PC, Sinha S, Nathawat MS (2013)

Geospatial strategy for tropical forest-wildlife reserve biomass

estimation. IEEE J Sel Top Appl Earth Obs Remote Sens

6(2):917–923. doi:10.1109/JSTARS.2012.2221123

Kuplich TM, Salvatori V, Curran PJ (2000) JERS-1/SAR backscatter

and its relationship with biomass of regenerating forests. Int J

Remote Sens 21:2513–2518

Kurvonen L, Pulliainen J, Hallikainen M (1999) Retrieval of biomass

in boreal forests from multitempotal ERS-1 and JERS-1 SAR

images. IEEE Trans Geosci Remote Sens 37(1):198–205

Le Toan TB, Beaudoin A, Riom J, Guyon D (1992) Relating forest

biomass to SAR data. IEEE Trans Geosci Remote Sens

30(2):403–411

Le Toan T, Quegan S, Davidson MWJ et al (2011) The BIOMASS

mission: mapping global forest biomass to better understand the

terrestrial carbon cycle. Remote Sens Environ 115:2850–2860

Liang J, Zeng GM, Shen S et al. (2013) Bayesian approach to quantify

parameter uncertainty and impacts on predictive flow and mass

transport in heterogeneous aquifer. Int J Environ Sci Technol.

doi:10.1007/s13762-013-0453-3

Loehle C (2000) Forest ecotone response to climate change:

sensitivity to temperature response functional forms. Can J For

Res 30:1632–1645

Lu D (2005) Aboveground biomass estimation using Landsat TM

data in the Brazilian Amazon Basin. Int J Remote Sens

26:2509–2525

Lu D (2006) The potential and challenge of remote sensing-based

biomass estimation. Int J Remote Sens 27(7):1297–1328

Lucas RM, Cronin N, Lee A et al (2006) Empirical relationships

between AIRSAR backscatter and LiDAR-derived forest bio-

mass, Queensland, Australia. Remote Sens Environ

100(3):407–425

Lucas RM, Lee AC, Bunting PJ (2008) Retrieving forest biomass

through integration of CASI and LiDAR data. Int J Remote Sens

29(5):1553–1577

Lucas RM, Armston J, Fairfax R et al (2010) An evaluation of the ALOS

PALSAR L-band backscatter—above ground biomass relation-

ship Queensland, Australia: impacts of surface moisture condition

and vegetation structure. IEEE J Sel Top Appl Earth Obs Remote

Sens 3(4):576–593. doi:10.1109/JSTARS.2010.2086436

Luckman A, Baker JR, Kuplich TM, Yanasse CCF, Frery AC (1997)

A study of the relationship between radar backscatter and

regenerating forest biomass for space borne SAR instrument.

Remote Sens Environ 60:1–13

Malhi YP (2002) Forests, carbon and global climate. Phil Trans R Soc

Lond A 360:1567–1591

Mette T, Papathanassiou K, Hajnsek I (2004) Biomass estimation

from polarimetric SAR interferometry over heterogeneous forest

terrain. In: Geoscience and remote sensing symposium

(IGARSS), 2004 IEEE International. Anchorage, AK. IEEE

IGARSS 1:511–514

Nabuurs GJ, Masera O, Andrasko K et al (2007) Forestry. In: Metz B,

Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate

change 2007: mitigation. Contribution of working group III to

the fourth assessment report of the intergovernmental panel on

climate change. Cambridge University Press, Cambridge

Neumann M (2009) Remote sensing of vegetation using multi-

baseline polarimetric SAR interferometry: theoretical modeling

and physical parameter retrieval. Dissertation, University of

Rennes 1, France

Nizalapur V, Jha CS, Madugundu R (2010) Estimation of above

ground biomass in Indian tropical forested area using multifre-

quency DLR-ESAR data. Int J Geomat Geosci 1(2):167–178

Ouchi K (2013) Recent trend and advance of synthetic aperture radar

with selected topics. Remote Sens 5:716–807. doi:10.3390/

rs5020716

Patenaude GM, Milne R, Dawson TP (2005) Synthesis of remote

sensing approaches for forest carbon estimation: reporting to the

Kyoto Protocol. Environ Sci Policy 8:161–178

Peregon A, Yamagata Y (2013) The use of ALOS/PALSAR

backscatter to estimate above-ground forest biomass: a case

study in Western Siberia. Remote Sens Environ 137:139–146

Plugge D, Baldauf T, Ratsimba HR, Rajoelison G, Köhl M (2010)
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