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Abstract The potential of mid-infrared spectroscopy in

combination with partial least-squares regression was

investigated to estimate total and phosphate-extractable

arsenic contents in soil samples collected from a highly

variable arsenic-contaminated disused cattle-dip site. Prin-

cipal component analysis was performed prior to mid-infra-

red partial least-squares analysis to identify spectral outliers

in the absorbance spectra of soil samples. The mid-infrared

partial least-squares calibration model (n = 149) excluding

spectral outliers showed an acceptable reliability (coefficient

of determination, R2
c = 0.75 (P \ 0.01); ratio of perfor-

mance to interquartile distance, RPIQc = 2.20) to estimate

total soil arsenic. For total soil arsenic, the validation of final

calibration model using 149 unknown samples also resulted

in a good acceptability with R2
v = 0.67 (P \ 0.05) and

RPIQv = 2.01. However, the mid-infrared partial least-

squares calibration model based on phosphate-extractable

arsenic was not acceptable to estimate the extractable (bio-

available) arsenic content in soil (R2
c = 0.13 (P [ 0.05);

RPIQc = 1.37; n = 149). The results show that the mid-

infrared partial least-squares prediction model based on total

arsenic can provide a rapid estimate of soil arsenic content by

taking into account the integrated effects of adsorbed arsenic,

arsenic-bearing minerals and arsenic associated with organic

components in the soils. This approach can be useful to

estimate total soil arsenic in situations, where analysis of a

large number of samples is required for a single soil type and/

or to monitor changes in soil arsenic content following

(phyto)remediation at a particular site.

Keywords Mid-infrared � Partial least-squares � Principal

component � Cattle-dip sites � (Phyto)remediation �
Prediction model � Contamination

Introduction

Arsenic (As) is an extremely toxic and carcinogenic ele-

ment, and therefore, contamination of soils with As is a

major environmental threat (Smith et al. 1998). The histor-

ical application of As-based pesticides at disused cattle-dip

sites across northern region of New South Wales (NSW)

state in Australia has resulted in the contamination of sur-

rounding soils with As concentrations up to 14,000 mg kg-1

(McLaren et al. 1998; Smith et al. 1998; Niazi et al. 2011b).

Arsenic concentration in soil in the vicinity of dip sites

varies significantly on a small scale, and analyses of a large

number of soil samples are required to estimate the con-

tamination level and distribution of As at a particular site

(Kimber et al. 2002; Niazi et al. 2011c, 2012). Estimation of

the total As content in soils is imperative to assess the extent

of contamination and risks posed to the environment, and to

evaluate the impact of remediation strategies (Smith et al.

1998; Mandal and Suzuki 2002).

The existing standard methods for estimating total As

concentration in soils are typically based on acid digestion

procedures, which requires the use of mixtures of
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concentrated acids (HNO3, HClO4, HCl, H2SO4 and HF)

(Huang and Fujii 1996; Chen and Ma 1998). Total As

concentration in soil digests is generally measured by

hydride generation atomic absorption spectrometer or

inductively coupled plasma-atomic emission spectrometer.

Although chemical techniques used to determine the total

soil As content in soil are highly accurate, the procedures

are hazardous and time-consuming. X-ray fluorescence

(XRF) spectroscopy is also used to precisely determine the

total As content in soil and sediment samples (Hubert

1983), however, the sample preparation in this technique is

also time-consuming and access to the equipment is not

widely available. There is a need for a rapid, inexpensive

and easy-to-use method, in order to routinely estimate total

As in large number of soil samples at a given site, to

monitor changes in soil As content at a specific site or to

estimate variability in total As in soil at a particular site

(Kimber et al. 2002; Niazi et al. 2011c, 2012).

Mid-infrared (MIR) spectroscopy in combination with

chemometrics has been used as a rapid method to estimate

the various soil physicochemical properties such as, pH,

cation exchange capacity, clay, sand and silt contents, and

sorption coefficient of pesticides in soil (Janik and Skj-

emstad 1995; Islam et al. 2003; Pirie et al. 2005; Minasny

et al. 2008). The MIR spectra of soils contain information

about the amount and composition of both organic and

inorganic components of the soil. The qualitative infor-

mation in the MIR spectra of soil is characterized by strong

stretching and bending vibrations of functional groups such

as, carboxyl, hydroxyl, amide, alkyl and aromatic groups

present in soil organic matter (Janik and Skjemstad 1995;

Janik et al. 1995; Islam et al. 2003). The vibrational fea-

tures (e.g. Fe–O, Al–O, Si–O and –OH) of soil minerals

also contribute to the MIR spectra (Johnston and Aochi

1996; Cornell and Schwertmann 2003; Jia et al. 2007;

Carabante et al. 2010). It is difficult to quantitatively

interpret spectral information; however, using chemomet-

rics approaches, particularly partial least-squares (PLS)

regression, this problem has been overcome (Janik and

Skjemstad 1995; Forouzangohar et al. 2008).

Partial least-squares regression in combination with the

spectroscopic techniques has been successfully applied to

construct the predictive models; for example, for estimat-

ing various soil properties and pesticide sorption coeffi-

cients (Geladi 1988; Haaland and Thomas 1988; Bellon-

Maurel et al. 2010; Sanghavi and Srivastava 2010). The

method is based on the assumption of a multilinear rela-

tionship between the predictor variables (e.g. absorbance

peaks in the spectra) and the dependent variable of interest

(e.g. As concentration in soil). The PLS regression analysis

reduces the number of independent variables (i.e. spectra of

samples) into a limited number of predictor variables,

called PLS factors (Haaland and Thomas 1988). Principal

component analysis (PCA) can provide a basis for the

MIR-PLS analysis as it can be useful to depict the exis-

tence of any spectral outliers in the absorbance spectral

data of soil samples (Forouzangohar et al. 2008). It is a

form of latent variable regression in which the spectral data

are resolved into a set of orthogonal components, which

represent most of the variability in the original data (Mark

1992; Sanghavi et al. 2013a, b).

Infrared spectroscopy has been used to evaluate the

adsorption mechanisms of As on the surface of Fe/Al

oxides and clay minerals in soils (Goldberg and Johnston

2001; Jia et al. 2007; Carabante et al. 2010). Goldberg and

Johnston (2001) used attenuated total reflectance Fourier

transform infrared (ATR-FTIR) spectroscopy to determine

the adsorption mechanism of arsenate on the surface of

amorphous Fe and Al oxides. They reported that arsenate

sorption bands were present at around *789 and 824 cm-1

on amorphous Fe oxide and at *850 and 862 cm-1 on the

surface of amorphous Al oxide. Jia et al. (2007) investi-

gated the effect of pH on arsenate adsorption on ferrihy-

drite using FTIR spectroscopy; they attributed spectral

bands at *808, 810, 833, 838 and 876 cm-1 to arsenate–

Fe oxides adsorption complexes depending on the pH (3–8)

and coverage density of As.

Limited efforts have been devoted to explore the

potential of MIR spectroscopy in conjunction with

chemometrics (e.g. PLS regression) to predict heavy

metal(loid)s in agricultural soils/estuarine sediments and

soils contaminated from mining activities (Moros et al.

2009; Niazi et al. 2011b; Song et al. 2012). Song et al.

(2012) employed MIR diffuse reflectance spectroscopy to

estimate total As and heavy metal (Cr, Cu, Cd and Pb)

contents in agricultural soils of Changjiang River Delta, in

China. The authors identified significant correlation of Cr,

Cu and As with the spectral region associated with Fe

oxides, clay minerals and organic matter. Moros et al.

(2009) were able to develop multivariate PLS calibration

models of acceptable accuracies using both near infrared

(NIR) (r = 0.86, RMSEC = 10, RMSEP = 25 and

RPD = 1.9) and ATR-MIR (r = 0.85, RMSEC = 17,

RMSEP = 26 and RPD = 1.8) spectra. However, a

selective particle size fraction (\63 lm) was used in the

study. Contrary to this, As prediction was relatively poor

(R2 = 0.46, RMSEC = 1.86, RMSEP = 1.61 and

RPD = 1.14) in the PLS regression model in agricultural

soils of Changjiang River Delta, China (Song et al. 2012).

In the current study, we have used a MIR-PLS-based

approach to predict total soil As content in a single soil

type (Oxisol) spread over a relatively small area

(*100 m2) with the hypothesis that MIR spectroscopy and

PLS regression-based model will provide estimates of total

As in soil with an acceptable reliability. The development

of the MIR-PLS-based approach to predict total soil As
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content might be able to provide a cheaper and time-

effective method compared to conventional chemical pro-

cedures. This method could be particularly useful for sit-

uations where a large number of soil samples need to be

analysed (Niazi et al. 2011c), or repetitive analyses are

needed for the samples (Niazi et al. 2012).

The primary objectives of this study were to (1) develop a

site-specific predictive model using the combination of MIR

spectroscopy and PLS regression to estimate total and

phosphate-extractable As contents in soil and (2) apply the

predictive model to unknown soil samples (not used in

developing the model), in order to estimate As concentration

in soils and to evaluate the prediction quality of the model.

The research was carried out at the Department of

Environmental Sciences, Faculty of Agriculture and

Environment, The University of Sydney, Sydney, Australia

(from January 2010 to 31 July 2011).

Materials and methods

Soil samples

Arsenic-contaminated soil samples were taken from a

disused cattle-dip site located at Wollongbar as described

elsewhere (Niazi et al. 2011a). The soil samples were taken

from three depths, i.e. 0–20, 20–40 and 40–60 cm. All soil

samples (n = 304) were dried at 40 �C and ground to

obtain \200 lm prior to chemical and spectral analyses.

The pH of the soil samples at the site was 4.82 (1:5, soil:

water), free Fe content 16 %, cation exchange capacity 88

mmolc kg-1 and organic carbon content 4.5 %.

Soil digestion to measure total As

The soil samples (*0.25 g) were digested in a mixture of

concentrated hydrofluoric (HF), sulphuric (H2SO4), perchloric

(HClO4), nitric (HNO3) and 1.2 M hydrochloric (HCl) acids

(Huang and Fujii 1996). The soil samples were soaked in a

mixture HNO3 and HCl overnight. The soaked samples were

then mixed with H2SO4, HF and HClO4 and heated at 120 �C
overnight until the mixture was dried. After cooling for 5 min,

the digest was dissolved in 25 mL of 6 M HCl and final vol-

ume made to 50 mL by adding E-pure� water. The digests

were analysed for As concentration (mg As kg-1 soil dry

weight) using an inductively coupled plasma-atomic emission

spectrometer (ICP-AES, Varian� Vista AX CCD).

Phosphate-extractable As in soil

Potassium dihydrogen phosphate solution (0.5 M KH2PO4,

1:25 soil:solution ratio, 4 h shaking time at room temper-

ature) was used to extract the specifically sorbed

(bioavailable) As in the soil samples (Niazi et al. 2011a).

The concentration of phosphate-extractable As (mg As

kg-1 soil dry weight) in the extracts was measured using a

hydride generation atomic absorption spectrometer (HG-

AAS, Varian� Spectraa 220Z).

The relative standard deviation (RSD) was\2 % for the

ICP-AES analysis and \1.5 % for HG-AAS analysis.

MIR spectroscopy

Finely ground (\200 lm) soil samples were dried at 105 �C

overnight before the spectroscopic analysis. Diffuse reflec-

tance (MIR) spectra were obtained using a Fourier transform

infrared (FTIR) spectrometer (Bruker TENSOR 37; Ettlin-

gen, Germany) with the Praying MantisTM diffuse reflec-

tance accessory (Harrick Scientific Products, Pleasantville,

NY). Approximately 0.4 g of finely ground soil sample was

placed in a 4 mm diameter cup without compression and

levelled using a stainless steel blade. Scans were collected in

the wavenumber range of 4,000–400 cm-1 at 8 cm-1 res-

olution; this range corresponds to the frequency range of

2,500–20,000 nm. Potassium bromide (KBr) powder was

used as a background reference and assumed to have a

reflectance of 1 (100 %). Data in whole spectral range

(4,000–400 cm-1) were used for the principal component

analysis (PCA) and partial least-squares (PLS) analysis. The

reflectance (R) values were log-transformed [log(1/R)] to

represent spectra in absorbance units using OPUS� software

supplied with the spectrometer. Before the chemometric

analyses (PCA and PLS), the data were pre-treated by taking

first derivative of the absorbance spectra for the baseline

removal (see Supplementary Material, Fig. A.1) using the

Savitzky–Golay method, with a second-order polynomial

and 9 smoothing points. The PCA and PLS regression were

performed using the JMP version 8.

Principal component analysis and partial least-squares

regression

Principal component analysis was carried out to detect

spectral outliers in the data, prior to the development of a

prediction model using PLS regression (Fig. 1). Primarily,

PCA is a feature reduction mathematical procedure that can

be useful to provide basis for the other multivariate linear

regression analyses (e.g. PLS regression) (Pirie et al. 2005;

Forouzangohar et al. 2008; Kookana et al. 2008). In a PCA,

the eigenvectors and their respective eigenvalues are cal-

culated. The data are then reduced to a smaller group of

principal components (Haaland and Thomas 1988; Fo-

rouzangohar et al. 2008). The loadings in PLS analysis

represent the components (factors) in the spectra which are

highly correlated with measured data (Haaland and Tho-

mas 1988; Janik and Skjemstad 1995).
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The data set contained 304 soil samples including the 6

spectral outliers identified using PCA (Fig. 1). After

excluding the spectral outliers, the remaining 298 samples

were randomly split into two sets, each containing 149

number of samples. One set of samples (calibration set;

n = 149) was used for constructing MIR-PLS calibration

model, and the second set (n = 149) was used for the

validation of the calibration model, referred to as the val-

idation set (Fig. 2).

The number of components used in the PLS calibration

model was determined using leave-one-out cross validation

(LOOCV). The LOOCV procedure estimates the prediction

error by removing samples one by one from the calibration

samples data and predicting them as unknown samples

using the remaining samples in the data.

It is also important to estimate the errors associated with

the prediction model using a set of soil samples not used in

building the model, i.e. validation set (n = 149) as men-

tioned earlier. The prediction equation obtained from the

calibration model was applied to the validation set in order

to predict As concentration in soil samples. To evaluate the

efficiency of the prediction model, predicted As concen-

tration values were plotted against the measured soil As

concentrations. The prediction ability of calibration and

validation models was assessed by determining coefficient

of determination in the calibration (R2
c) and validation (R2

v)

models, standard error of cross validation (SECV) in the

calibration model, standard error of prediction (SEP) in the

validation model, and ratio of performance to interquartile

distance (RPIQ) in the calibration (RPIQc) and validation

(RPIQv) models (Islam et al. 2003; Pirie et al. 2005;

Bellon-Maurel et al. 2010). The SECV and SEP were

calculated using Eq. 1:

SECV and SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

zi � ẑið Þ2

n

s

ð1Þ

where zi is the measured data, ẑi is the model predicted data

for the sample i, and n is the number of samples in the

calibration or validation set. In the case of calibration

Fig. 1 Principal component analysis (PCA) of the first derivative of

MIR absorbance spectra of all soil samples (n = 304). The green

filled circles are the six spectral outliers in the soil samples. PC-1

principal component-1, PC-2 principal component-2

Fig. 2 The frequency distribution (histograms and box-plots) of

measured total As concentration in the soil samples used for the MIR-

PLS regression analysis for the development of a final calibration

model and for b validation of the calibration model
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model, RPIQc is the ratio of interquartile distance

(IQ = Q3 - Q1) of the measured data in the calibration

set to SECV (Eq. 2). While SEP is used to estimate RPIQv

in the validation model (Eq. 3), Q3 - Q1 is linked to the

measured data in the validation set (Q1 is the value below

which we can find 25 % of the samples; Q3 is the value

below which 75 % of the samples fall) (Bellon-Maurel

et al. 2010).

RPIQc ¼
ðQ3 � Q1Þc

SECV
ð2Þ

RPIQv ¼
ðQ3 � Q1Þv

SEP
ð3Þ

Bellon-Maurel et al. (2010) indicated that the RPIQ index

is a more reliable and acceptable way for standardizing the

SECV/SEP than the ratio of prediction to deviation (RPD),

with respect to population spread. The use of RPIQ value is

particularly vital for soil sample sets, which usually show a

skewed distribution, as found in our study for soil As

concentration (Supplementary Material, Fig. A.2; Fig. 2).

To calculate the RPIQ value, standard deviation (SD) is

replaced by Q3 - Q1, which accounts much better for the

spread of the population (Bellon-Maurel et al. 2010).

Results and discussion

Total As concentration was highly variable in both the

calibration (89–1,761 mg kg-1) and validation

(70–1,486 mg kg-1) sets of the study (Fig. 2). The distri-

bution of As in the two (calibration and validation) data

sets was similar with mean As concentrations of 531 and

509 mg kg-1, respectively (Fig. 2). A slightly positive

skewness was observed in both the calibration (1.21) and

validation (1.02) samples. Phosphate-extractable As con-

centration data also showed high variability in the cali-

bration and validation sets (13–141 and 7–117 mg kg-1,

respectively) (Supplementary Material, Fig. A.2). The

variability in the measured soil As content at the site has

been attributed to contamination processes, including the

cattle-dipping process, pumping out of the dip fluid and

disposal of As-containing dip sediment in the vicinity of

the cattle-dip (Kimber et al. 2002; Niazi et al. 2011b, c).

MIR spectral features

MIR spectra of the 6 (surface and subsurface) representa-

tive first derivative absorbance of the soil samples are

shown in Fig. 3a. The spectra show several peaks that were

attributed to mineral and organic components in the soil.

For example, the presence of hydroxyl (–OH) stretching

and bending bands in the spectral region from 3,695 to

3,394 and 764–1,022 cm-1 was due to the presence of

structural –OH groups in clay minerals (kaolinite) and Fe/

Al oxides (goethite/gibbsite), respectively (Schroeder

2002; Cornell and Schwertmann 2003; Song et al. 2012).

The soil at the site is an Oxisol, and according to the

Australian Soil Classification, the soil is a Red Ferrosol

(Isbell 2002). The clay fraction of the soil at the site is

composed of kaolinite, hydroxy-interlayered vermiculite

and metal oxides including: goethite, hematite, gibbsite and

anatase (Mckenzie et al. 2004; Niazi et al. 2011b). The

spectral peaks observed at 3,695, 3,657 and 3,626 cm-1

were attributed to the presence of –OH stretching band for

kaolinite (Fig. 3a) (Schroeder 2002; Cornell and Schwert-

mann 2003; Janik et al. 2007; Song et al. 2012). The bands

observed at 413, 428, 470 and 522 cm-1 in the spectra of

soil samples (Fig. 3a) were attributed to the Fe–O/Al–O

bending vibrations (Schroeder 2002; Cornell and Schw-

ertmann 2003; Ibrahim et al. 2008). The presence of a band

at 3,142 cm-1 in the spectra of samples tested in this study

was attributed to –OH stretching in Fe oxides (i.e. goethite)

(Cornell and Schwertmann 2003).

The spectral band identified at *1,720 cm-1 (Fig. 3a)

was associated with the presence of carboxylic (-COOH)

functional group in the soil organic fraction. The results

concur with those obtained by Janik and Skjemstad (1995)

and Islam et al. (2003), who observed spectral band at

1,730 cm-1 for the presence of –COOH group in the

spectra of soil samples. The carboxylic acids (–COOH) are

the low molecular weight organic acids present in the soil

organic matter fraction and have the ability to make

complexes with the metal cations, such as Fe and Al (Smith

et al. 2000; Grafe et al. 2001, 2002; Mandal and Suzuki

2002). Arsenic (as arsenate) adsorption to organic acids/

humic substances is enhanced by the presence of cations,

particularly Fe and Al, whereby they act as bridging

complexes for arsenate (Lin et al. 2004). The positive

contribution of –COOH group of organic fraction to As

sorption was revealed by the sharp peak at *1,720 cm-1

(see Fig. 3b). The bands at 2,902 and 2,989 cm-1 were

attributed to the aliphatic (–CH2) stretching vibrations in

the soil organic fraction (Fig. 3a, b) (Janik and Skjemstad

1995; Song et al. 2012).

Figure 3b shows the strength of relationship between the

model coefficients and the spectral regions of the soil

samples. This represents the significance of soil compo-

nents which were most strongly and positively correlated

with the As concentration in soil and explain variation in

the prediction model, as described above. The positive

peaks at 3,695 and 3,657 cm-1 (Fig. 3b) showed that

kaolinite strongly contributed in the MIR-PLS model to

estimate As in the soil samples. The presence of very

strong and positive sharp peaks (Fig. 3b) at around 413,

428, 470 and 522 cm-1 (as mentioned above) reveals the
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strong contribution of Fe/Al oxide minerals, including

goethite, hematite and gibbsite in the PLS regression

loadings. The contribution of Fe/Al oxides (goethite,

hematite and gibbsite) and kaolinite spectral bands in the

PLS loadings (model coefficients) to predict soil As con-

tent is attributed to the high adsorption capacity of these

minerals, particularly Fe/Al oxides (Goldberg and Johnston

2001; Goldberg 2002; Chabot et al. 2009; Song et al.

2012).

Goldberg and Johnston (2001) used FTIR spectroscopy

to investigate arsenate sorption complexes on the surface of

synthetic Fe and Al oxides. Arsenate adsorption was

identified by the presence of spectral bands at 789 and

824 cm-1 on the surface of Fe oxides, and the bands

appeared at 850 and 862 cm-1 for arsenate adsorption on

the surface of Al oxides. Jia et al. (2007) reported spectral

bands in the region from 808 to 838 cm-1 for arsenate

adsorption on ferrihydrite. In the present study, a small

band at 829 cm-1 could be associated with the existence of

Fe–O–As and/or Al–O–As groups due to the adsorption of

arsenate on the surface of Fe or Al oxides in the soil

(Fig. 3a). The presence of small positive peaks (Fig. 3b) at

Fig. 3 a The mid-infrared

(MIR) absorbance spectra of the

six representative soil samples

collected from the surface

(0–20 cm) and the subsurface

(20–40 and 40–60) depths, and

b the MIR partial least-squares

(PLS) regression coefficients

obtained in the calibration

model (n = 149), in relation to

the wavenumber

(4,000–400 cm-1) used for the

MIR spectroscopy
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around 764, 795, 798, 814 cm-1 probably also indicates

the contribution of specifically sorbed arsenate on the

surface of Fe/Al oxides (goethite, hematite and ferrihydrite/

gibbsite) (Wenzel et al. 2001; Niazi et al. 2011b; Song

et al. 2012).

Principal component analysis

Principal component analysis was performed on the (first

derivative pre-treated) absorbance spectra of all soil sam-

ples (n = 304), which enabled us to detect 6 spectral out-

liers in the data (Fig. 1, green colour filled circles). The

absorbance spectra of these (spectral outlier) samples were

included in the preliminary calibration model (data not

shown), however, excluded from the PLS analysis per-

formed to develop the final calibration model (Fig. 4a).

Calibration model using MIR spectra and PLS

regression for total As

A preliminary calibration model was generated for total As

using MIR absorbance spectra of soil samples (n = 155)

including the 6 outliers that were identified from the PCA

(data not shown), as mentioned earlier. This was done to

determine the effect of outliers on the prediction model.

The preliminary calibration model (n = 155) explained

35 % of variation (R2 = 0.35, P [ 0.05) between the

measured and model predicted total As concentration in the

soil samples. The calculated RPIQ and SECV values for

this preliminary calibration model were 1.42 and

244 mg kg-1, respectively. The MIR-PLS final calibration

model (Fig. 4a) was re-constructed using the first deriva-

tive absorbance spectra of 149 samples (excluding the six

outliers) in the calibration set (see Fig. 2a). The statistical

assessment of the MIR-PLS calibration model showed that

the model performed much better than the preliminary

calibration model, as demonstrated by the reduced SECV

(148) and increased R2
c (P \ 0.01) and RPIQc values (0.75

and 2.20, respectively; Fig. 4a) (Forouzangohar et al. 2008;

Bellon-Maurel et al. 2010). The results show that identifi-

cation of spectral outliers using PCA and their subsequent

exclusion from the prediction model substantially

increased the efficiency and robustness of the MIR-PLS

calibration model for total As. The measured and model

predicted As concentration values were uniformly distrib-

uted around the reference equation (1:1; dotted) line

(Fig. 4a).

Validation of MIR-PLS model for total As

The validity of the resulting preliminary and final cali-

bration models built using the calibration set of 155 and

149 samples, respectively, was tested using a validation set

(n = 149; Fig. 2b). The prediction equation obtained from

the final calibration model (n = 149; Fig. 4a) was applied

to the validation set, in order to calculate the statistical

parameters related to the estimation of total As concen-

trations in unknown soil samples (Fig. 4b). The results

showed that 67 % of variation (R2
v = 0.67, P \ 0.05)

between the measured and predicted total As concentration

values was described by the MIR-PLS calibration model

(Fig. 4b). The resultant RPIQv value of 2.01 demonstrated

an acceptable reliability of the proposed MIR-PLS pre-

diction model (Islam et al. 2003; Bellon-Maurel et al.

2010). The RPIQ value is considered to be highly useful to

assess the prediction quality and is much better index to

determine the prediction model reliability and acceptability

compared to RPD value, as described earlier. Based on the

RPIQ value and the purpose of prediction, the

Fig. 4 The measured values of total soil As concentration are plotted

against the MIR-PLS model predicted As values; a final calibration

model developed excluding the six spectral outliers (n = 149) and

using the calibration set data as shown in Fig. 2; b validation of the

final calibration model constructed with n = 149 samples. The R2
c and

R2
v are coefficient of determination in the calibration and validation

sets, respectively, SECV standard error of cross validation, SEP

standard error of prediction, RPIQc and RPIQv represent ratio of

performance to interquartile distance in the calibration and validation

sets, respectively
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appropriateness of a calibration model can be decided

(Bellon-Maurel et al. 2010). For soil analysis such as soil

As concentrations in this study, RPIQ values can be divi-

ded into three categories: poor \1.6; acceptable 1.6–2.0;

and [2.0 as excellent (Bellon-Maurel et al. 2010). The

application of the preliminary calibration model (including

6 spectral outliers) on the same validation set explained

only 38 % variation (R2 = 0.38, P [ 0.05) between the

measured and predicted total As concentration values; the

SEP increased to 237 mg kg-1 and RPIQ dropped down to

1.46. It is evident from the results that the inclusion of

outliers led to development of poor MIR-PLS calibration

and validation models, which were limited to estimate total

As above *900 mg kg-1 As concentration in soil at the

site (data not shown).

MIR-PLS model based on phosphate-extractable soil

As concentration

A calibration model was also developed using the phos-

phate-extractable As concentration data (data not shown)

of soil samples investigated in this study. The calibration

model (n = 149) explained no variation (R2
c = 0.13,

P [ 0.05) between the measured and model predicted

phosphate-extractable As concentration values. The cal-

culated RPIQc and SECV values for phosphate-extractable

As based on the MIR-PLS calibration model were 1.29 and

23.02 mg kg-1, respectively, indicating that the proposed

MIR-PLS prediction model for phosphate-extractable As

estimation in soils is unacceptable. Phosphate-extractable

As is considered to represent arsenate sorbed on to the

surfaces of Fe/Al oxides (e.g. ferrihydrite and goethite/

gibbsite), as discussed earlier (Niazi et al. 2011c). The poor

predictability of phosphate-extractable As could be due to

the relatively narrow range for the phosphate-extractable

As in the studied samples and long-term ageing of As-

adsorbed samples in the field. The site has been contami-

nated over 40 years, and with ageing (or residence time),

adsorbed As must have changed to some stable phases and

the extractability of As from such phases is relatively poor

compared to relatively freshly adsorbed As on Fe/Al oxides

(O’Reilly et al. 2001; Niazi et al. 2011b). O’Reilly et al.

(2001) evaluated the effect of residence time on desorption

of arsenate from goethite surface using phosphate solution,

whereby arsenate sorption was carried out for a period of

up to *12 months. The authors observed that over 40 % of

arsenate was desorbed from goethite using phosphate

suggesting that ageing of arsenate (from 5 to 12 months)

led to the formation of stable innersphere (arsenate-goe-

thite) complexes.

ATR-FTIR could be employed to improve spectral sig-

nals from As sorption at low concentrations (i.e. phosphate-

extractable As), in order to develop an acceptable and

robust prediction model. The predictability for total As is

better than the phosphate-extractable As because the MIR-

PLS prediction model based on the total As content took

into account spectral regions represented by arsenate

adsorbed onto various minerals and organic matter as well

as As present in minerals and/or organic components in the

soil (Fig. 3a) (Song et al. 2012).

Conclusion

Our results showed that combination of MIR spectroscopy

and PLS regression can be useful in estimating total As

concentration in soil for the contaminated sites containing

highly variable soil As content, such as As in soil adjoining

the cattle-dip sites. Significant improvement in the pre-

diction statistics of the MIR-PLS calibration model was

attained by removing 6 spectral outliers, which were

identified by the PCA of the MIR spectra. The MIR-PLS

prediction model has the capability to estimate total As

content based on the spectral bands originating from

adsorbed As, As present in minerals and organic compo-

nents of soils. The soil components, particularly Fe and Al

oxides and kaolinite, appeared to have pertinent roles in the

sorption of As in the soil samples used in this study.

The MIR-PLS-based predictive model has possible

application to estimate the total soil As in situations where

total As concentration is required for a large number of soil

samples, for example (1) for monitoring the effect of

phytoremediation technology on soil As content at a par-

ticular site (Niazi et al. 2011c) or (2) to estimate the var-

iability in total soil As at contaminated sites, such as cattle-

dip sites (Niazi et al. 2011a). The MIR-PLS model is site

specific, and a more robust prediction model is needed for

estimating total soil As at sites for other soil types and

where As may also be present in different mineral forms,

e.g. scorodite and arsenopyrite. The model is not useful for

identifying and differentiating the valence forms of As

(arsenate, AsV/arsenite, AsIII) in soils.
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