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Abstract A critical assessment of the use of a variable-

order, power-law type surface reaction rate equation to

correlate biosorption kinetics is presented. The general nth

order rate equation with three adjustable parameters was fit

to the kinetic data of lead uptake by inactivated cells of

Rhodotorula glutinis using a genetic algorithm search

method. The uptake process was fast, with apparent equi-

librium reached in approximately 30 min. According to the

Akaike information criterion test, the three-parameter nth

order equation was superior to the much used pseudo

second order equation with two fitting parameters. How-

ever, the strong fit of the former equation resulted in

unrealistic parameter estimates. Parametric sensitivity

analysis indicated that the available kinetic data with only

limited information content did not allow simultaneous

identification of three unknown parameters. As a result, the

three-parameter nth order equation was found to be over-

parameterized with highly correlated parameters. It was,

however, possible to retrieve meaningful parameter esti-

mates from the kinetic data when the number of fitting

parameters was reduced from 3 to 2.

Keywords Akaike information criterion � Genetic

algorithm � Parameter estimation � Sensitivity analysis

Introduction

Biosorption studies with nonliving materials of biological

origin such as dead or inactivated microbial biomass have

shown effective uptake for toxic metal ions (Park et al.

2010). The metal sequestration mechanism of microbial

biomass is attributed to the presence of a myriad of func-

tional groups or ligands on the biomass surface which are

able to interact with metal cations and anions (Naja and

Volesky 2011). Most inactivated microbial cells exhibit

surface binding phenomena of low specificity. This facili-

tates uptake of a broad range of toxic metal ions. Attempts

have been made to exploit the biosorption technology to

remove toxic metals at their source on a commercial scale,

albeit with limited success (Volesky and Naja 2007).

Batch techniques are commonly used to characterize

metal uptake by microbial cells. Experimental equilibrium

and kinetic results are conveniently generated from well-

agitated batch systems in the form of discrete data points.

Mathematical models are used to convert such data to a

form useful for process design and optimization. A number

of theoretical and empirical models are available in the

literature to correlate measured biosorption data (Haerifar

and Azizian 2013; Liu and Shen 2008a; Qiu et al. 2009).

For example, to correlate kinetic data from batch systems,

both mass transfer and surface reaction-based models may

be used. Generally, surface reaction models are preferred

by most practitioners because the models are available in

the form of simple equations, many of which can be line-

arized to allow the estimation parameters by linear

regression. Notable examples of such surface reaction

models are the so-called pseudo first order and second

order equations. Examples of the use of these two equa-

tions abound in the biosorption literature (Lang et al. 2013;

Zamani et al. 2013).
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Although popular, these simplistic pseudo reaction

equations have recently encountered criticisms on two

fronts. First, using linearized forms of these equations for

parameter estimation is fraught with statistical deficiencies.

As pointed out by McCuen and Surbeck (2008), a widely

used linearized form of the pseudo second order equation

suffers from the problem of ratio regression analysis, i.e.,

the time variable t appears on both sides of the linearized

equation, resulting in highly inflated goodness-of-fit

statistics.

Second, some investigators have argued that it makes no

modeling sense to restrict the reaction order to either one or

two. In accordance with the convention of chemical reac-

tion kinetics, the reaction order may be a noninteger and

should be treated as a fitting parameter in correlating batch

kinetic data (Liu and Shen 2008b; Liu and Wang 2008;

Morais et al. 2007; Özer 2007). Accordingly, they advocate

using a general nth order equation for kinetic modeling

rather than the simplistic pseudo first order and second

order equations. Note that an even more advanced form of

the nth order equation incorporating the concept of fractal

kinetics has been proposed by Brouers and Sotolongo-

Costa (2006). It seems that an ever increasing assortment of

surface reaction models is being promulgated today. With

this development, more sophisticated and presumably more

accurate surface reaction models are now available for

correlating biosorption kinetic data. A description of the

aforementioned surface reaction models has been presented

in a review by Plazinski et al. (2009). From a practical

standpoint, it is important to select an accurate kinetic

equation which is often embedded within a dynamic pro-

cess model (e.g., batch and fixed bed models) for design or

optimization studies. The performance of such dynamic

process models would be impaired if an imprecise kinetic

equation is used.

With the reaction order n being a fitting parameter, the

nth order equation with three adjustable parameters is

expected to exhibit higher correlative power relative to the

pseudo first order and second order equations with two

fitting parameters. However, it is not clear whether any

improvement in fit is significant enough to justify inclusion

of an additional adjustable parameter. To explore this

question, in the present study, we compare the three-

parameter nth order equation with the two-parameter

pseudo second order equation using the Akaike information

criterion (AIC) statistical test. The AIC is a model dis-

crimination technique that considers both model accuracy

and complexity in an objective manner. In addition, we

conduct parametric sensitivity analysis to assess the iden-

tifiability of the three parameters of the nth order rate

equation. This contribution provides, for the first time, an

in-depth analysis of the strengths and weaknesses of the nth

order rate equation in correlating biosorption kinetic data.

Batch kinetic data used in this study were obtained from

lead uptake experiments with inactivated yeast cells

(Rhodotorula glutinis) as the biosorbent. R. glutinis has

attracted some attention in recent years as a promising

metal biosorbent (Bai et al. 2010; Cho and Kim 2003; Cho

et al. 2011a, b; Suazo-Madrid et al. 2011).

Surface reaction rate equations

A general nth order rate equation based on surface reaction

mechanism and governed by a single rate coefficient takes

on the following form:

dq

dt
¼ kn qe � qð Þn ð1Þ

where q is the biosorbent phase concentration at time t, kn

is the nth order rate coefficient, qe is the equilibrium

biosorbent phase concentration, and n is the reaction order

which may be a noninteger. The solution to Eq. (1) for the

initial condition of q = 0 at t = 0 can be written as follows

(Özer 2007):

q ¼ qe � q 1�nð Þ
e þ kn n� 1ð Þt

� �1= 1�nð Þ
ð2Þ

Equation (2) has three adjustable parameters, kn,

n (n = 1), and qe, which cannot be estimated by using

standard linear regression.

When n = 2, Eq. (1) reduces to the much used pseudo

second order equation:

dq

dt
¼ k2 qe � qð Þ2 ð3Þ

where k2 is the pseudo second order rate coefficient and all

other variables are as defined above. Equation (3) has the

following analytical solution:

q ¼ q2
ek2t

1þ qek2t
ð4Þ

Of course, Eq. (4) may be recovered from Eq. (2) by

setting n = 2. According to Kumar (2006), Eq. (4) was

first proposed by Blanchard et al. (1984), albeit in a

different mathematical form. Equation (4) has two

adjustable parameters, qe and k2, which may be

estimated from the following widely used linearized

form (Ho 2006):

t

q
¼ 1

k2q2
e

þ 1

qe

t ð5Þ

As noted above, the validity of Eq. (5) for the estimation of

qe and k2 by linear regression has been called into question

because t appears on both sides of the equal sign, resulting

in grossly inflated goodness-of-fit statistics and errone-

ous parameter estimates. The speciousness of Eq. (5) for
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parameter estimation has been discussed at some length by

McCuen and Surbeck (2008).

Materials and methods

Microorganism and biosorbent preparation

The organism used in this study was R. glutinis KCTC

(Korean Collection for Type Cultures) 7989. The growth

medium consisted of 10 g/L of glucose, 3.0 g/L of yeast

extract, 3.0 g/L of malt extract, and 5.0 g/L of peptone.

The cells were grown in 500-mL Erlenmeyer flasks con-

taining 100 mL of the growth medium. Cultures were

incubated at 25 �C on an orbital shaker at 150 rpm. At the

end of exponential growth phase, i.e., after 30 h of incu-

bation, the biomass was harvested by centrifugation at

10,000 g for 10 min. After washing twice with deionized

water, the harvested cells were dried in an oven at 70 �C

for 24 h which led to the formation of clumps. The clumps

were broken up by grinding using a mortar and pestle to

obtain biomass particles for use in the lead uptake exper-

iments described below.

Lead uptake experiments

The lead solutions used were prepared by dilution from a

1,000 mg/L stock solution. All experiments were per-

formed at 25 �C and pH 6 using a biosorbent dosage of 2 g/

L and three different initial lead concentrations (50, 200,

and 300 mg/L). Both metal-free and biomass-free control

solutions were also prepared. During the experiments, the

mixture was shaken at 150 rpm in an orbital shaker, and at

selected time intervals, flasks were removed from the

shaker for centrifugation and analysis of solution phase

lead concentration using an atomic absorption spectro-

photometer (Varian AA-220FS, USA). The uptake on the

biosorbent was calculated by material balance. Each

kinetic experiment was repeated five times. The experi-

mental work reported here was conducted in 2010 in Seoul,

Korea.

Fitting of rate equations and goodness-of-fit indicators

A genetic algorithm optimization method implemented in

Microsoft Excel was used for parameter estimation. The

genetic algorithm is a type of stochastic global optimiza-

tion method based on an iterative procedure that mimics

the process of biological evolution. While gradient-based

nonlinear regression generally requires initial parameter

estimates that lie in the vicinity of the optimal values in

order to avoid convergence difficulties, the genetic algo-

rithm is able to optimize a nonlinear model within search

ranges that vary over several orders of magnitude, so good

initial estimates are not required. The genetic algorithm

optimization method has been successfully applied to a

variety of parameter estimation problems in biosorption

research (Chu et al. 2011a, b).

To conduct parameter identification using the genetic

algorithm, optimal parameters of a particular rate equation

with respect to a given set of data were determined by

minimizing the sum of the squared errors (SSE) between

measured and calculated values. The parameter identifica-

tion process for each case was repeated several times. The

final solution consistently converged to the same parameter

estimates. In this study, two statistical indicators, the

coefficient of determination (R2) and the Akaike informa-

tion criterion (AIC), were used to assess the goodness of fit

of a rate equation to measured data. These two indicators

are defined in the next section.

Results and discussion

Correlation of biosorption kinetics

Figure 1 depicts the kinetic profiles of lead uptake by R.

glutinis cells for three different initial concentrations

(Ci = 50, 200, and 300 mg/L). As shown, lead uptake in

each case was fast, with apparent equilibrium reached in

approximately 30 min. As expected, at a fixed biosorbent

Fig. 1 Experimental lead uptake by R. glutinis biomass showing

effect of initial metal concentration (Ci) on the uptake kinetics
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dosage of 2 g/L, the final equilibrium uptake value at large

times increased with an increase in Ci. For the

Ci = 300 mg/L data set, the biosorbent achieved an equi-

librium uptake value of about 65 mg/g. A previous equi-

librium isotherm study reported that under similar

experimental conditions, the Langmuir maximum sorption

capacity of R. glutinis for lead was 73.5 mg/g (Cho and

Kim 2003).

The two-parameter pseudo second order and three-

parameter nth order equations were fit to the Fig. 1 data

sets. Listed in Table 1 are the optimal parameter estimates

from the genetic algorithm search method. For the pseudo

second order equation, the optimal rate coefficient k2

decreased with increasing Ci. The optimal equilibrium

parameter qe, as expected, increased with an increase in Ci

and corresponded well to the experimental equilibrium

value at large times for each data set (see Fig. 1). As for the

three-parameter nth order equation, Table 1 shows that the

optimal rate coefficient kn for Ci = 50 mg/L was very

small compared to the optimal k2 value for the same Ci. kn

decreased significantly when Ci was increased from 50 to

200 mg/L. However, a further increase in Ci to 300 mg/L

caused a significant increase in this parameter. The optimal

reaction order n also did not show a consistent trend. When

Ci was changed from 50 to 200 mg/L, n increased from

4.23 to 6.74. It then decreased to 4.81 when Ci was

increased further to 300 mg/L. Furthermore, the optimal

equilibrium parameter qe was noticeably larger than the

corresponding experimental equilibrium value for each

data set at large times, contradicting the definition of qe.

To compare the fits of the two models in visual terms,

Fig. 2 shows a parity plot for the Ci = 200 mg/L data set.

For the pseudo second order fit denoted by open circles, it

is seen that calculated values of q [ 50 mg/g agreed well

with the observed q values, as indicated by their closeness

to the 1:1 line. By contrast, except for one data point cal-

culated values of q \ 50 mg/g demonstrated noticeable

discrepancy with the corresponding observed q values.

This is especially obvious for the first data point, showing a

deviation of more than 10 %. This suggests that the pseudo

second order equation with the single rate coefficient k2

was unable to track well the shape of the ascending part of

the kinetic profile at small times, i.e., small q values. At

large times the pseudo second order equation effectively

reduces to q = qe [qek2t � 1 in the denominator of

Eq. (4)], it is thus not surprising that Eq. (4) can fit accu-

rately the plateau part of the kinetic profile, i.e., large

q values.

For the three-parameter nth order fit, Fig. 2 shows that

all calculated q values, denoted by filled circles, lie on or

very close to the 1:1 line, indicating excellent agreement

with the observed q values. It is evident that the nth order

equation with three adjustable parameters possesses very

high correlative power, enabling it to track the entire data

range accurately. Model parameters extracted from bench-

scale experiments may be used to optimize investigations

involving pilot-scale biosorption systems or design full-

scale systems. Using suboptimal parameters in these tasks

would result in unacceptable levels of imprecision and

uncertainty.

Indicators of model fits

To compare the fits of the two rate equations in quantitative

terms, we use the following coefficient of determination

(R2) as an indicator of model fit (Anderson-Sprecher 1994):

Table 1 Parameter estimation in the pseudo second order and three-

parameter nth order equations

Ci

(mg/L)

Pseudo second order

equation

Three-parameter nth order

equation

k2

(g/mg min)

qe

(mg/g)

kn

[(mg/g)1-n/min]

n qe

(mg/g)

50 0.0244 17.42 7.6E-5 4.23 20.30

200 0.0069 53.40 3.2E-11 6.74 74.85

300 0.0066 65.05 9.6E-8 4.81 78.75

Fig. 2 Comparison between the uptake data for Ci = 200 mg/L and

q calculated from the pseudo second order equation (open circles) and

three-parameter nth order equation (filled circles) with the parameter

estimates listed in Table 1
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R2 ¼ 1�
Pm

j¼1 qexp;j � qcal;j

� �2

Pm
j¼1 qexp;j � �qexp

� �2
ð6Þ

where j is an index, m is the number of observations, qcal,j

is the model-calculated q value for observation j, �qexp is the

mean of measured q values, and qexp,j is the measured

q value for observation j. An R2 of 1 indicates a perfect fit

to the data. The two surface reaction equations may thus be

ranked on the basis of R2 statistics, with the one having the

highest R2 being the best.

R2 statistics computed for the three Fig. 1 data sets are

shown in Table 2. Discernible differences exist between

the R2 scores of the two surface reaction models. The three-

parameter nth order equation with R2 values [0.99 for all

three data sets consistently outperformed the pseudo sec-

ond order equation with R2 scores ranging from 0.914 to

0.944. There is no doubt that the three-parameter nth order

equation is a clear winner in fitting the Fig. 1 kinetic data,

as indicated by the parity plot of Fig. 2 and the R2 statistics

of Table 2. However, it should be borne in mind that a

model will always improve fit to some degree by adding

more adjustable parameters. Consequently, the three-

parameter nth order equation has an unfair advantage over

the two-parameter pseudo second order equation. Com-

paring models with different numbers of adjustable

parameters on the basis of goodness-of-fit statistics alone is

therefore a naı̈ve approach.

Several statistical tests that address the trade-off

between gain in fit and addition of parameters have been

developed in a branch of statistics called model selection

(Burnham and Anderson 2002). A commonly implemented

test is the corrected Akaike information criterion (AICc)

which can be written as follows:

AICc ¼ m ln
SSE

m

� �
þ 2 wþ 1ð Þ 1þ wþ 2

m� w� 2

� �
ð7Þ

where SSE is the sum of the squared errors between

measured and calculated q values, m is the number of data

points, and w is the number of adjustable parameters. Note

that the first term on the right in Eq. (7) has the units of q2,

while the second term is dimensionless (Motulsky and

Christopoulos 2004). Because the AICc value for a single

model can be manipulated by changing the units of q, and

hence, SSE, using Eq. (7) to compute AICc for a set of

candidate models should be based on consistent SSE units.

The AICc is used for model discrimination when the

sample size is small, i.e., when m/w \ 40 (Burnham and

Anderson 2002). Bolster and Hornberger (2007)

recommend m - w C 5 to ensure meaningful model

comparison. Practitioners in sorption research have

recently employed the AICc tool as a basis for model

comparison (Chu et al. 2011b; Pipı́ška et al. 2010; Praus

and Turicová 2007; Usunoff et al. 2009).

In Eq. (7), the first term measures fit, while the second

term penalizes complex models, i.e., models with more

adjustable parameters. Given a data set, multiple models

with different numbers of fitting parameters may be ranked

according to their AICc, with the one producing the lowest

value being the best. The two surface reaction models are

ranked according to AICc statistics computed from Eq. (7)

for the three Fig. 1 data sets, as shown in Table 2. Given

the data sets, the AICc test suggests that the three-param-

eter nth order equation having the lowest scores is clearly

the best model.

An alternative AICc-based indicator for comparing

candidate models is the difference in AICc values, as

follows:

DAICc;j ¼ AICc;j � AICc;min ð8Þ

where DAICc,j is the difference between the AICc value for

model j (AICc,j) and the smallest AICc value among all

candidate models (AICc,min). Note that Eq. (8) removes the

effects of SSE units on the AICc formula [Eq. (7)]. As a

rough rule of thumb (Burnham and Anderson 2002), if the

absolute value of DAICc,j is [10, model j receives no

support from the data and is deemed inferior to the model

with the smallest AICc. If DAICc,j B 2, there is no evi-

dence from the data to indicate that model j is inferior to

the model with the smallest AICc. If 3 B DAICc,j B 7,

model j receives less support from the data relative to the

model with the smallest AICc. Letting the pseudo second

order equation be model j and the nth order equation the

model with the smallest AICc, DAICc,j values computed for

the Ci = 50, 200, and 300 mg/L data sets are, respectively,

28.6, 26.7, and 27.3. It is immediately apparent that these

Table 2 Comparison of R2 and AICc statistics for the pseudo second

order equation and three-parameter nth order equation

Ci

(mg/

L)

R2 AICc

Pseudo

second

order

equation

Three-

parameter nth

order equation

Pseudo

second

order

equation

Three-

parameter nth

order equation

50 0.944 0.997 -12.1 -40.7

200 0.914 0.995 19.3 -7.4

300 0.935 0.997 18.4 -8.9
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values are bigger than 10. Consequently, it can be con-

cluded that there is overwhelming evidence in the data to

suggest that the three-parameter nth order equation is

superior to the pseudo second order equation.

While the AICc test endorses the use of the three-

parameter nth order equation to correlate the Fig. 1 data,

the optimal parameter estimates, as shown in Table 1,

are somewhat tricky to interpret. As previously men-

tioned, the kn estimates were exceedingly small com-

pared to the k2 estimates and both the kn and n values

exhibited erratic trends with increasing Ci. More

importantly, the qe estimates were noticeably larger than

the corresponding observed equilibrium values at large

times. Notwithstanding the fact that it is possible to

obtain unique estimates of kn, n, and qe using the genetic

algorithm search method, all these incongruities point to

the possibility that the three fitting parameters are highly

correlated.

Parametric sensitivity analysis

A parametric sensitivity analysis can provide useful

information about the identifiability of the three fitting

parameters of the nth order equation. Many of the

methods available for conducting sensitivity analyses

have been summarized by Saltelli et al. (2008). Here, we

use a ‘local’ sensitivity test based on partial differentia-

tion of the nth order equation. The sensitivity coefficient

for a particular parameter is obtained from the partial

derivative of the nth order equation with respect to the

parameter, as follows:

oq

oqe

¼ 1� q�n
e q 1�nð Þ

e þ kn n� 1ð Þt
� �n= 1�nð Þ

ð9Þ

oq

okn

¼ t q 1�nð Þ
e þ kn n� 1ð Þt

� �n= 1�nð Þ
ð10Þ

oq

on
¼ � exp

ln q
1�nð Þ

e þ kn n� 1ð Þt
� �

1� n

2
4

3
5

�
ln q

1�nð Þ
e þ kn n� 1ð Þt

� �

1� nð Þ2
þ knt � q

1�nð Þ
e ln qe

1� nð Þ q
1�nð Þ

e þ kn n� 1ð Þt
� �

2
4

3
5

ð11Þ

To remove the effects of units and facilitate comparison,

the partial derivative is multiplied by the ratio of the

parameter value (p) to the observed maximum q value

(qmax) for a given data set to obtain the following

dimensionless sensitivity coefficient (Sp):

Sp ¼
p

qmax

� �
oq

op

� �
ð12Þ

In the sensitivity analysis presented here, the

Ci = 200 mg/L data set is used as an example. Using the

fitted values of the three parameters (Table 1) and taking

the final data point measured at 180 min as qmax, the

dimensionless sensitivity coefficient is plotted as a function

of time for each parameter to form a sensitivity curve, as

shown in Fig. 3. It can be seen that the decreasing order of

the maximum dimensionless sensitivity values of the three

parameters is as follows: Sn [ Sqe
[ Skn

. Also, both Sn and

Skn
reached their maximum values within the first few

minutes. Generally, the likelihood for a parameter to be

identified is directly proportional to the magnitude of its

dimensionless sensitivity coefficient. Consequently, the

numerical dominance of Sn over Skn
practically eliminates

the possibility of identifying kn from the data. Additionally,

the sensitivity equations for kn and qe are nearly

proportional over most of the kinetic profile, resulting in

parameter estimations that are highly correlated.

For the purpose of comparison, the dimensionless sen-

sitivity curves for the two fitting parameters of the pseudo

Fig. 3 Dimensionless sensitivity coefficient profiles calculated for

the three-parameter nth order equation with the parameter estimates

for Ci = 200 mg/L given in Table 1
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second order equation are plotted in Fig. 4, using the fol-

lowing sensitivity equations:

Sqe
¼ qe

qmax

� �
oq

oqe

� �
¼ qe

qmax

� �
k2qet 2þ k2qetð Þ

1þ k2qetð Þ2

 !

ð13Þ

Sk2
¼ k2

qmax

� �
oq

ok2

� �
¼ k2

qmax

� �
q2

e t

1þ k2qetð Þ2

 !
ð14Þ

From Fig. 4, it is seen that the effect of k2 was transitory in

nature, exerting its influence on the model output in the

first few minutes and becoming less influential as equilib-

rium was approached. In contrast, the sensitivity equation

for qe increased rapidly within the first few minutes and

thereafter tended to a maximum asymptotically. These

trends are consistent with the structure of the pseudo sec-

ond order equation. Although the two dimensionless sen-

sitivity coefficients are quite different in magnitude, they

are not multiples of one another. This means that the data

set can constrain the parameter space created by the two

fitting parameters of the pseudo second order equation,

allowing unique and accurate estimates of qe and k2 to be

retrieved from the data.

Identification of unique model parameters

Although the much better fit of the three-parameter nth

order equation relative to the pseudo second order equa-

tion is well supported by the AICc test, it is clear that the

significant improvement in fit masks the reality that the

three-parameter nth order equation is overparameterized,

making simultaneous identification of its three parameters

problematic. An obvious solution to overparameterization

is to reduce the number of adjustable parameters. Of the

three parameters in the nth order equation, there is prior

information in qe which by definition is the equilibrium

uptake value at large values of time. It is thus possible to

fix the qe value by assigning the observed value of uptake

measured at the end of the kinetic experiments to it,

thereby reducing the number of unknown parameters from

three to two. Following this approach, the nth order

equation with two unknown parameters was fit to the

Fig. 1 data sets using the genetic algorithm and the con-

verged values of kn and n are given in Table 3. Listed

also in Table 3 are the assigned values of qe and asso-

ciated R2 and AICc statistics.

Comparing the R2 and AICc scores for the two-param-

eter pseudo second order, three-parameter nth order, and

two-parameter nth order equations (Tables 2, 3) indicates

that, for the given data, the three-parameter nth order

equation is the best model, outperforming the other two

models. The values of DAICc,j calculated for the pseudo

second order and two-parameter nth order equations ranged

from about 6–8. Since these values are \10, both models

with the same number of parameters are well supported by

the data and there is not enough evidence to confirm that

Fig. 4 Dimensionless sensitivity coefficient profiles calculated for

the pseudo second order equation with the parameter estimates for

Ci = 200 mg/L given in Table 1

Table 3 Parameter estimation in the two-parameter nth order

equation

Ci

(mg/L)

Fitted parameters Fixed parameter

kn

[(mg/g)1-n/min]

n qe

(mg/g)

R2 AICc

50 0.0118 2.35 17.65 0.967 -17.8

200 0.0016 2.45 54.48 0.948 13.8

300 0.0012 2.49 66.64 0.968 10.5
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one model is definitely better than the other. On the other

hand, the values of DAICc,j calculated for the two- and

three-parameter nth order equations ranged from about

19–23, suggesting that the former model is inferior to the

latter.

However, as previously mentioned, the three-parameter

nth order equation yielded unrealistic parameter esti-

mates. By contrast, fixing the qe value to turn the three-

parameter nth order equation into a two-parameter model

led to very reasonable estimates of kn and n. The estimates

of kn decreased with increasing Ci (Table 3). This is

consistent with the trend observed for the estimates of k2

obtained from the pseudo second order equation

(Table 1). Furthermore, the numerical values of kn are

much more realistic when compared to the exceedingly

small values obtained from the three-parameter nth order

equation. Interestingly, the optimal estimates of n did not

vary with Ci and remained essentially constant across the

three data sets. Using the Ci = 200 mg/L data set as

an example, the sensitivity equation plots for the

two-parameter nth order equation are presented in Fig. 5.

Comparing Figs. 3 and 5 indicates that the removal of qe

from the fitting procedure has the effects of decreasing the

maximum sensitivity value of n and enhancing the max-

imum sensitivity value of kn. The two sensitivity curves

are not linearly dependent, allowing unique and accurate

estimates of the two parameters to be retrieved from the

data. It is evident that the kinetic data only contain enough

information to constrain the nth order equation with up to

two fitting parameters.

Conclusion

The application of a general nth order surface reaction

rate equation with three adjustable parameters to the

kinetic data of lead uptake by yeast cells was systemati-

cally investigated. The lead uptake process in each case

was fast, with apparent equilibrium reached in about

30 min. The model parameters were estimated using a

genetic algorithm search method. According to the Ak-

aike information criterion test, the three-parameter nth

order equation was well supported by the data and it

outperformed the much used pseudo second order equa-

tion with two adjustable parameters. However, the

numerical values of the fitted parameters exhibited erratic

trends and contradicted observed data at large times when

equilibrium was established.

Parametric sensitivity analysis provided valuable

insights into the identifiability of the model parameters.

The three parameters, rate coefficient (kn), reaction order

(n), and uptake at equilibrium (qe), were found to exhibit

strong inter-correlations and broad differences in sensi-

tivity effects. When the qe parameter was fixed, it was

possible to obtain meaningful numerical values for kn and

n. Despite its excellent correlative power, it was surely

overkill to fit the three-parameter nth order equation to

the kinetic data of this biosorption system which simply

did not contain enough information to accommodate three

fitting parameters. The findings from this work indicate

that the use of the superior nth order rate equation in

biosorption modeling requires more sophisticated experi-

mental data in order to obtain meaningful parameter

estimates.
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Fig. 5 Dimensionless sensitivity coefficient profiles calculated for

the two-parameter nth order equation with the parameter estimates for

Ci = 200 mg/L given in Table 3
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Nomenclature

Ci Initial solution phase concentration (mg/L)

j Index

k2 Pseudo second order rate coefficient (g/

mg min)

kn nth order rate coefficient [(mg/g)1-n/min]

m Number of observations

n Surface reaction order

p Parameter value

q Biosorbent phase concentration (mg/g)

qcal,j Model-calculated q value for observation

j (mg/g)

qe Equilibrium biosorbent phase concentration

(mg/g)

qexp,j Measured q value for observation j (mg/g)

qmax Observed maximum q value (mg/g)

�qexp Average of measured q values (mg/g)

Sp Dimensionless sensitivity coefficient

t Time (min)

w Number of adjustable parameters
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