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Abstract In this study, applicability of successive-station

prediction models, as a practical alternative to streamflow

prediction in poor rain gauge catchments, has been inves-

tigated using monthly streamflow records of two successive

stations on Çoruh River, Turkey. For this goal, at the first

stage, based on eight different successive-station prediction

scenarios, feed-forward back-propagation (FFBP) neural

network algorithm has been applied as a brute search tool

to find out the best scenario for the river. Then, two other

artificial neural network (ANN) techniques, namely gen-

eralized regression neural network (GRNN) and radial

basis function (RBF) algorithms, were used to generate two

new ANN models for the selected scenario. Ultimately, a

comparative performance study between the different

algorithms has been performed using Nash–Sutcliffe effi-

ciency, squared correlation coefficient, and root-mean-

square error measures. The results indicated a promising

role of successive-station methodology in monthly

streamflow prediction. Performance analysis showed that

only 1-month-lagged record of both stations was satisfac-

tory to achieve accurate models with high-efficiency value.

It is also found that the RBF network resulted in higher

performance than FFBP and GRNN in our study domain.

Keywords Artificial neural networks � Streamflow

prediction � Successive stations � Ungauged catchments

Introduction

Modeling of streamflow process is important especially for

planning, operating, and management of water resources.

Accurate modeling also plays an important role in miti-

gating the impact of droughts and floods. Therefore,

numerous hydrological models have been developed in

order to simulate this complex process. A comprehensive

classification of these models was presented by Nourani

et al. (2007).

Because of low-density-gauging networks in mountain-

ous regions, commonly used rainfall-runoff models are not

applicable to predict streamflow in such regions. Therefore,

it is necessary to develop new methods for the estimation

of daily or monthly flows. Continuous streamflow records

in such cases can provide systematic prediction models

using time series analysis. In recent literature, due to

advances in computing systems, application of artificial

intelligence (AI) techniques for cross-station or single-

station daily or monthly streamflow prediction has been

investigated, and successful results have been reported

(Ochoa-Rivera et al. 2002; Kisi and Cigizoglu 2007; Kisi

2008; Demirel et al. 2009; Toprak et al. 2009; Besaw et al.

2010; Can et al. 2012).

Artificial neural networks (ANN) are sets of AI models

inspired by animals’ central nervous systems (in particular

the brain) that can compute values from inputs by feeding

information through the network. In recent years, ANN are

increasingly used for prediction and pattern recognition

problems in various fields of water and environmental

science and technology such as total ozone forecasting
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(Bandyopadhyay and Chattopadhyay 2007), sea level pre-

diction (Altunkaynak 2007, Imani et al. 2013), rainfall-

runoff modeling (De Vos and Rientjes 2005, Kuok et al.

2010, Nourani et al. 2011), water quality prediction

(Emamgholizadeh et al. 2013). A comprehensive literature

review about the application of ANN in river forecasting

was presented by Abrahart et al. (2012). The review shows

inadequate comparative investigations of ANN-based

streamflow prediction models. To the best of the author’s

knowledge, there is no comparative study about the

application of different ANN algorithms in successive-

station monthly streamflow prediction.

The main objectives of this study are (1) to discuss the

applicability of successive-station prediction models as a

practical alternative to streamflow prediction in poor rain

gauge catchments and (2) for the first time, to compare the

efficiency of different ANN algorithms for successive-

station monthly streamflow prediction. However, the

applicability of successive-station prediction process can

be examined using conventional time series analysis

methods.

For this aim, at the first stage, we put forward eight

different successive-station prediction scenarios, based

upon feed-forward back-propagation neural network algo-

rithm (FFBP). In successive-station prediction scenarios,

streamflow at a target station is assumed to be a function of

previous streamflow records of one upper station and/or

both target and the upper stations. Therefore, instead of

antecedent records of only target station (single-station

models) or different points stations (cross-station models),

we developed different monthly lag-time scenarios

between two successive stations on a perennial river

located in Turkey, and then, we evaluated them as candi-

dates for monthly streamflow prediction model of the river.

In the second stage, two other ANN techniques, gen-

eralized regression neural networks (GRNN) and radial

basis function (RBF) neural networks, were utilized to

remodel the best FFBP-based scenario. Ultimately, a

comparative performance study between the developed

models has been performed using Nash–Sutcliffe effi-

ciency, squared correlation coefficient, and root-mean-

square error measures. Such a comparison between dif-

ferent ANN models has also been investigated by Kisi and

Cigizoglu (2007), but they considered only daily stream-

flow on a single station.

Study area and data

Our study area is the Çoruh River, a perennial river located

in eastern Black Sea region, Turkey (Fig. 1). The river

catchment approximately covers 20,000 km2, which is

about 2.53 % territory of Turkey. The river springs from

Mescit Mountains in Bayburt and reaches the Black Sea in

Batum City of Georgia, after a course of 431 km. Mean

annual flow of the river before leaving Turkey’s border is

about 200 m3/s. The locations of two successive gauging

stations, stations 2322 and 2315, with 40 kilometers dis-

tance, used in this study are shown in Fig. 1 and their

monthly streamflow time series at 29-year period

(1972–2000) is presented in Fig. 2. Table 1 represents the

statistical characteristics of our applied data.

Çoruh is a shared river between Turkey and Georgia.

Monthly streamflow prediction at the lower reach of the

river, trans-boundary reach, will help both countries’ water

recourses managers make suitable decisions in dry or wet

spells or to resolve probable conflicts about sharing of river

water.

Materials and methods

Overview of FFBP, GRNN, and RBF algorithms

Artificial neural networks are flexible modeling methods

in which someone uses input and output data sets to find

out the system attitude. In fact, they are nothing more

than complex version of regression models. FFBP net-

works are probably the most popular ANN in engineering

problems (Tahershamsi et al. 2012; Krishna 2013), which

considered as general nonlinear approximations (Hornik

et al. 1989). The primary goal of this algorithm was to

minimize the estimation error by searching for a set of

connection weights that cause the network to produce

outputs closer to the targets. They are typically composed

of three parts: (a) input layer including a number of input

nodes, (b) one or more hidden layers, and (c) a number of

output layer nodes. The number of hidden layers and

nodes in them are two of the design parameters of FFBP.

In the FFBP algorithm, any input node will be multiplied

by a proper weight initially and then will be added by a

constant value, which is called bias, and finally will be

entered to a predefined activation functions. The explicit

expression for an output value of a FFBP network is

given by Nourani et al. (2013).

Radial basis function is a variant of ANN that uses radial

basis functions, real-valued functions whose value depends

only on the distance from the origin, as activation func-

tions. RBF networks have not been used extensively in

environmental studies except a few researchers such as

Azmathullah et al. (2005), Bateni et al. (2007) and Ta-

hershamsi et al. (2012). A typical RBF network has a feed-

forward structure consists of an input layer, a hidden layer

with a radial basis activation function, and a linear output

layer. The hidden layer node calculates the Euclidean

distance between the center of function and the network

input layer and then passes the result to the radial basis
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function. Thus, the hidden layer performs a fixed nonlinear

transformation, which maps the input space onto a new

space. The output layer implements a weighted sum of

hidden layer outputs. In order to use RBF, we need to

specify the number of layers, a radial activation function,

and a criterion for network training. Detailed information

on the application of RBF networks on streamflow pre-

diction has been provided by Kisi (2008).

Fig. 1 Location of study area (Çoruh River Catchment)

Fig. 2 Observed streamflow at

the 29-year period
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The GRNN is a kind of radial basis networks that only

uses training data with BP algorithm to derive estimation

function. It typically consists of four layers: input layer,

pattern layer, summation layer, and output layer. The

number of input units in the first layer is equal to the total

number of parameters. The first layer is fully connected to

the pattern layer, where each unit represents a training

pattern, and its output is a measure of the distance of the

input from the stored patterns. Each pattern layer is con-

nected to the two neurons (i.e., S-summation neuron and

D-summation neuron) in the summation layer. The

S-summation neuron computes the sum of the weighted

outputs of the pattern layer, whereas the D-summation

neuron calculates the unweighted outputs of the pattern

neurons. The basics of the GRNN algorithm can be

obtained from the literature (Specht 1991).

Normalization and efficiency criteria

As it mentioned previously, our data record is composed of

348 observations of the monthly streamflow at each station.

The first 70 % and the last 30 % of observations were

selected for training and validation of all networks,

respectively. Therefore, the entire data set were divided

into two subsets. The statistical parameters for each set and

the entire data set are presented in Table 2.

Prior to the training of our ANN models, the nor-

malization was applied for the data. Normalization is

essential to ANN which makes the data dimensionless

and confines them within a certain range. The range of

input data within 0.0 and 1.0 has been used herein

through dividing the observation data by the maximum

observed data. After training, the model that yields the

best results in terms of Nash–Sutcliffe coefficient (NS),

root-mean-squared error (RMSE) is selected as the most

efficient model. The strength of the linear relationship

between the prediction and observations is also mea-

sured by the r-square value (R2). NS is a normalized

indicator of the model’s ability to predict about the 1:1

line between observed and predicted data (Eq. 1).

RMSE, Eq. 2, measures the root average of the squares

of the errors. R2, Eq. 3, returns the square of the Pear-

son product moment correlation coefficient that can be

interpreted as the proportion of the variance in predic-

tion to the variance in observation.
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where Xi
obs = observed value of X, Xi

pre = predicted value,

Xmean
obs = mean value of observed data, and n = number of

observed data.

Obviously, a high value for NS and small values for

RMSE indicate high efficiency of the corresponding

ANN model. The ideal value of the RMSE is zero in

which case the value of NS efficiency index is unity

(Sajikumar and Thandaveswara 1999). The ANN model

predictions are linearly correlated with observations if

the model provides higher value for R2 (up to 1). More

information about the differences between the NS and

R2 measures can be found in the ‘‘Reply to comment’’

presented by Nourani (2010).

FFBP modeling

Considering the monthly streamflow time series of the

Çoruh River in station 2315 at downstream and station

2322 at upstream, eight prediction scenarios (see

Table 3, models (1) to (8)) were generated by lag 1 and

Table 2 Statistical parameters of subsets

Parameters Entire data Training set Validation set

Number of data (X) 348 244 104

Xmax (m
3/s) 1,018 930 1,018

Xmin (m
3/s) 33.5 36 48

Xmean (m
3/s) 158.6 158 223

Standard deviation (m3/s) 159.1 156 204

Coefficient of skewness 1.7271 1.71 1.71

Table 1 The monthly statistical parameters of observed streamflow

data

Statistical parameter Station

Upstream (2322) Downstream (2315)

Raw Normalized Raw Normalized

Number of data (X) 348 348 348 348

Xmax (m
3/s) 867.4 0.9321 1,018.2 0.9404

Xmin (m
3/s) 33.5 0.1321 48.9 0.1404

Xmean (m
3/s) 158.6 0.2522 207.1 0.2709

Standard deviation

(m3/s)

159.1 0.1526 184.4 0.1522

Coefficient of

skewness

1.7271 1.7271 1.7001 1.7001

2194 Int. J. Environ. Sci. Technol. (2015) 12:2191–2200

123



lag 2 processes and assumed as monthly streamflow

prediction candidates at downstream (target) station.

These time series were then entered into a three-layer

FFBP–ANN model as a brute search tool to find out the

best scenario for streamflow prediction at the target

station. For this aim, several three-layer FFBP networks

with sigmoid transfer function in hidden layer and linear

transfer function in output layer have been employed. It

has been proved that three-layer FFBP networks are

satisfied for the forecasting and simulating in any

engineering problem (ASCE 2000; Chau et al. 2005;

Nourani et al. 2008; Rezaeianzadeh et al. 2013a). The

satisfactory application of the sigmoid and linear

transfer functions in hidden and output layers, respec-

tively, for streamflow prediction was also extensively

reported (e.g., Chang et al. 2007; Krishna 2013; Re-

zaeianzadeh et al. 2013b). Following the definition of

modeling structures, a program code including Leven-

berg–Marquardt (LM) algorithm was written in the

MATLAB� software for carrying out the training and

validation process. The LM is one of the Newtonian

optimization techniques and more powerful than con-

ventional gradient descent techniques (Kisi and Cigi-

zoglu 2007), which is widely used in FFBPs (e.g.,

Haykin 1999; De Vos and Rientjes 2005; Chau et al.

2006; Cannas et al. 2006; Kisi 2010; Danandeh Mehr

et al. 2013).

In our simulations, all proposed models possess fixed

input nodes that vary from 1 to 5 for models (1) to (8).

A single hidden layer with nodes varies from 1 to 10

and only one node in the output layer. Determination of

optimum number of neurons in hidden layer is an

important aspect of an efficient network. A trial and

error approach is adopted to select the optimum number

of neurons in the hidden layer. The sum of mean square

errors of both training and validation steps in each trial

was used as a criterion for selecting the optimal number

of neurons in hidden layer. No great improvement in

model performance was found when the number of

hidden neurons was increased from a threshold, which is

similar to the experience reported by Abrahart and See

(2000) and Nourani et al. (2011). The NS and RMSE

values have been used to compare the performance of

different scenarios in order to select the best one.

GRNN and RBF modeling

In the second part of the study, two different program codes

were written in the MATLAB� to generate different neural

structures for the chosen scenario (i.e., Model (4)). In

GRNN simulation, the same period of training and vali-

dation with FFBP has been applied. However, in RBF

simulation, only training part of the data was used.

Determination of optimum value of spread parameter in

both GRNN and RBF is one of the important aspects of an

efficient network designing in this phase. We employed a

trial and error approach to select the optimum value of this

parameter. The RMSE and NS value of validation step in

each trial is used as a criterion for selecting the optimal

value of spread parameter. In order to optimize RBF

model, different number of nodes in the hidden layer (RBF

centers) were also examined in each trial. For this goal, the

utilized training program adds neurons to the hidden layer

of a RBF network until it meets the specified mean squared

error or maximum number of neurons. In order to make a

fare comparison to FFBP, the maximum number of hidden

layer neurons within RBF networks was also confined to 10

as well as upper threshold of FFBP networks.

Table 3 The MSE, RMSE and NS of evaluated FFBP models

Model number Prediction scenarioa Nodes in

hidden layerb
MSE (*10-2)

Training Validation RMSEc NSc

1 Dt = f(Dt-1) 3 1.351 1.006 0.114 0.440

2 Dt = f(Ut) 4 1.048 0.972 0.102 0.547

3 Dt = f(Dt-1, Ut) 5 0.2876 0.2046 0.053 0.879

4 Dt = f(Ut-1, Dt-1) 8 0.0590 0.0877 0.025 0.972

5 Dt = f(Ut-1,Ut, Dt-1) 3 0.0500 0.0103 0.025 0.972

6 Dt = f(Ut-2, Ut-1, Dt-2, Dt-1) 8 0.0438 0.0168 0.025 0.973

7 Dt = f(Ut-2, Ut-1, Dt-2, Dt-1) 7 0.0403 0.0399 0.021 0.980

8 Dt = f(Ut-2, Ut-1, Ut, Dt-2, Dt-1) 9 0.0388 0.0419 0.022 0.979

a Dt and Ut represent downstream and upstream monthly streamflow, respectively
b The result has been presented for the best structure
c The results has been presented for whole data series
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Results and discussion

Table 3 presents the results of the best ANN structure for

each scenario trained and validated by FFBP algorithm.

Scatterplots of predicted and observed streamflow at target

station for each scenario have also been illustrated in

Fig. 3. The tabulated results and Fig. 3 indicate that models

(1) and (2) resulted in the lowest achieved performance

Fig. 3 Comparison of dimensionless predicted streamflow for the calibrations and validations by different models: a model 1, b model 2,

c model 3, d model 4, e model 5, f model 6, g model 7, h model 8
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level. The reason behind is obviously related to choice of

only one variable in input layer. The first combination of

upstream and downstream flow models, model (3), dem-

onstrated a dramatic improvement in the performance

levels. The reason lies under the fact that the existing sub-

basins between the successive stations may have consid-

erable physical effects (i.e., increasing drainage area)

on the flow regime in the downstream station. This is

the reason why we instantly keep downstream flow at time

(t-1), Dt-1, in constructing models (4) to (8). These

models represent five effective FFBP structures with high

performance levels, which all appeared to be so close to

each other.

Models (4) and (5) use both flows at time (t-1) in

both downstream and upstream stations, Dt-1 and Ut-1,

respectively; however, Model (5) involves current time

flow in upstream station, Ut, as additional input vari-

able. Addition of one more variable into the input layer

of Model (5) interestingly did not result in noticeable

change in the model performance, whereas it decreases

the number of neurons in the hidden layer. The effect of

time lags up to two month earlier has been shown in the

Fig. 4 Observed and predicted monthly streamflow by of a FFBP, b GRNN, and c RBF techniques

Int. J. Environ. Sci. Technol. (2015) 12:2191–2200 2197
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remaining three different scenarios (i.e., models (6) to

(8)) as having no change or negligible improvement in

the individual model performance level. Hence, 1-month

lag has been seemed to be sufficient for successive-

station monthly streamflow prediction at our study

reach. This result is entirely consistent with the exper-

iments of Kisi (2008) at cross-section monthly stream-

flow prediction. It implies a promising role for

successive-station methodology in monthly streamflow

prediction. Therefore, Model (4) is accepted as the best

scenario of FFBP approach in order to be subject for

remodeling by RBF and GRNN algorithms in the second

step of the research.

The best structured GRNN and RBF streamflow

prediction results, as well as FFBP, for Model (4) in

comparison with corresponding observations for the

validation period are depicted in Fig. 4. The figure

shows that all ANN predictions are parallel to the

observed time series; however, there are underesti-

mations for some peaks. Dividing all observed data by

their maximum value, the applied normalization pro-

cess can be a reason behind this. Another reason may

be availability of a small number of training subsets

for peak flows. In order to further assessment of the

proposed ANN models, scatterplots of the predicted

streamflow versus the actual observations are also

presented in Fig. 4, and the corresponding perfor-

mance levels are compared in Table 4. The highest

NS and R2 value, as well as the lowest RMSE, was

obtained for RBF modeling. It can also be inferred

that both RBP and GRNN algorithms have higher

quality than FFBP in monthly streamflow prediction;

however, RBF method resulted in the highest perfor-

mance outcomes.

In front of proposed ANN-based successive-station

streamflow prediction modeling advantages, the training

and validation process for each model exposed some

disadvantages. It has been observed that after each FFBP

trail, different prediction values are obtained with the

same network structure, resulting in different performance

level. This drawback is mainly due to the random

assignment of initial weights in the beginning of each

trial. In addition, the performance of FFBP, RBF, and

GRNN networks are critically depended on the chosen

number of hidden nodes, RBF centers, and spread con-

stant, respectively. Some of the training trials showed that

random selection of these parameters may provide

unsatisfactory results. Therefore, in order to optimize the

mentioned parameters, implementation of an optimization

technique in parallel with training algorithm is inevitable.

We employed a brute search method among the plausible

ranges for the parameters. The results showed that the

selection of the number of hidden neurons in range of 3

through 9, RBF centers equal to 1.0, and spread constant

equals to 0.05 can result in highest performance for

FFBP, RBF, and GRNN models, respectively. Hence,

selections of such parameter values are suggested for

similar time series. It is also important to note that spread

constant values higher than 0.5 in GRNN produced too

smooth approximation functions that were not able to

capture extreme streamflow.

Another noticeable result of this research is the

higher capability of the FFBP algorithm in the predic-

tion of the low (Dt\ 200 m3/s) flows (see Fig. 3). In

contrast, inability of FFBP algorithm to predict low

monthly streamflow, due to generation of negative val-

ues, has already been reported by Kisi (2008). The

reason behind these contradictory conclusions might be

related to the difference between the flow regime of the

investigated rivers. It can be inferred that the existence

of zero values in training subsets of intermittent rivers

(as existed in Kisi’s experience) can mislead FFBP

algorithms. Therefore, FFBP algorithm might be more

reliable for drought or dry spells predictions in peren-

nial rivers’ catchments.

Conclusion

In this study, eight different streamflow prediction

models based upon monthly data of two successive

stations have been evaluated as a streamflow prediction

scenarios for a sparse rain gaged reach of Çoruh River

in Turkey. Prediction scenarios were modeled by FFBP

algorithm and compared with each other. The FFBP

algorithm showed that only 1-month-lagged record of

successive stations is satisfactory to achieve an accurate

monthly streamflow prediction model with more than

0.97 NS value. Therefore, successive-station prediction

methodology assessed as an appropriate alternative for

monthly streamflow prediction in the poorly gaged reach

of Çoruh River catchments.

Table 4 Performance comparison of different ANN techniques at validation period

FFBP RBF GRNN

R2 RMSE NS R2 RMSE NS R2 RMSE NS

0.897 66.93 0.89 0.959 51.4 0.94 0.942 55.61 0.93
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In the second phase of the study, GRNN and RBF

algorithms for the first time were applied to 1-month-ahead

successive-station streamflow prediction, and the results

were compared with those of FFBP. According to the

performances analysis results, the RBF network is found to

be superior to GRNN and FFBP techniques in successive-

station monthly streamflow prediction which is consistent

with the results of Kisi and Cigizoglu (2007) in single-

station daily streamflow forecasting experiment. Higher

performance of FFBP in low-flow prediction indicated its

ability for drought or dry spells prediction goals in peren-

nial rivers’ catchment.

This study considered only ANN-based modeling

approach and used data from one catchment. Further

studies using different methods of time series modeling as

well as more data from different areas may be required to

strengthen our conclusions.
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