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Abstract In this study, an interval fuzzy-robust two-stage

stochastic-robust programming (IFRTSRP) model is devel-

oped for water resources management under uncertainty. The

developed IFRTSRPmodel incorporates two-stage stochastic

programming (TSP), fuzzy robust programming (FRP),

interval linear programming (ILP), and stochastic robust

optimization (SRO) within a general optimization frame-

work. The IFRTSRP model can not only deal with uncer-

tainties presented as probability distributions, fuzzy

membership functions, discrete interval numbers, and their

combinations, but also provide an effective linkage between

the pre-regulated water resources management policies and

the associated economic implications. The IFRTSRP model

can also enhance the robustness for the optimization process

by delimiting the uncertain decision space through dimen-

sional enlargement of the original fuzzy constraints. More-

over, the IFRTSRPmodel can evaluate the trade-offs between

system economy and stability by incorporating the variability

measures on penalty costs into the objective function. The

IFRTSRP model is applied to a hypothetical case study of

water resources management. The results indicate that rea-

sonable solutions would be generated under different levels of

k and/or x (non-negative weight coefficients); moreover, a

higher net system benefit would correspond to lower system

stability and higher system failure risk. Thus, the modeling

results can be used for generating decision alternatives and

thus help the managers to identify desired water allocation

policies based on the reasonable consideration of system

economy, system stability, and system failure risk.

Keywords Water resources management � Robust �
Modeling � Optimization � Uncertainty

Introduction

Water is one of the most important natural resources,

particularly in arid and semi-arid regions. Speedy popula-

tion growth, rapid socio-economic development, and vari-

ational natural conditions have led to increasing reliance on

water resources (Wang et al. 2005). In most situations, only

surface water resources can hardly satisfy the essential

demands of water users due to the low efficiency of water

exploration and the insufficiency of water availability;

nevertheless, ground water resources can be regarded as a

necessary supplement to satisfy the water demands (Hoppe

et al. 2004; Olsen et al. 2006; Chenini et al. 2008; Lu et al.

2009). Meanwhile, the increased water demands and the

unreliable water supplies have been considered as major

barriers to sustainable water resources management. Thus,

surface and ground water resources should be conjunc-

tively used to address water crisis issues; moreover, various

optimization techniques should be developed to formulate

the cost-effective and environment-friendly water alloca-

tion schemes and policies. However, in many real-world

problems, the achievement of sound strategies is different

since water resources management systems are
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complicated with a variety of uncertainties and their

interactions. Uncertainties can not only be derived from

random nature but also arise from fuzziness and impreci-

sion due to available data deficiencies and biased judg-

ments. For example, water availabilities are influenced by

stochastic events, which may fluctuate from time to time;

moreover, since they are hard to be precisely determined

even with given probabilities, they are also presented as

intervals with fuzzy lower and upper bounds (namely

‘‘fuzzy boundary intervals’’). Some uncertain information,

such as benefit and cost coefficients and water allocation

targets, may vacillate within a certain discrete intervals.

As a result, a large number of research efforts were

undertaken to deal with the above difficulties in water

resources management systems through various modeling

approaches (Trezos andYeh 1987;Chang et al. 1996; Feiring

et al. 1998; Jairaj and Vedula 2000; Karamouz et al. 2004; Li

et al. 2006a; Sethi et al. 2006; Lu et al. 2009; Sadegh et al.

2010; Hu et al. 2012; Amin et al. 2013; Han et al. 2013).

Among them, two-stage stochastic programming (TSP) is

effective in dealing with problems where an analysis of

policy scenarios is desired and when the right-hand side

coefficients are random with known probability distribu-

tions, and can facilitate the generation of effective manage-

ment strategies (Maqsood and Huang 2003; Kara and Onut

2010; Noyan 2012). In TSP, an initial decisionmust be made

before the realization of random variables (the first stage),

and then a corrective action can be taken after random events

have taken place (the second stage); this implies that the

second-stage decision can be used to minimize ‘‘penalties’’

that may appear due to any infeasibility (Li and Huang 2009;

Liu et al. 2013). TSP has been widely applied for water

resources management (Huang and Loucks 2000; Maqsood

et al. 2005; Guo and Huang 2009; Shao et al. 2011). How-

ever, in water resources management systems, the quality of

available information is often not satisfactory enough for

establishing probability distributions, and TSP is incapable

of dealing with uncertainties as mixtures of vagueness and

intervals; moreover, the increased data requirements for

specifying the probability distributions of parameters may

affect the practical applicability of TSP method. Instead,

fuzzy robust programming (FRP), which is based on fuzzy

set theory, can effectively reflect fuzzy uncertainties in both

left- and right-hand sides coefficients (of the model’s con-

straints) as represented by fuzzy membership functions (Liu

et al. 2003; Singh and Dhillon 2008). By delimiting an

uncertain decision space through dimensional enlargement

of the original fuzzy constraints, FRP can enhance the

robustness of the optimization process (Nie et al. 2007; Cai

et al. 2009). Interval linear programming (ILP) can effec-

tively tackle uncertainties expressed as discrete intervals.

ILP allows uncertainties to be directly communicated into

the optimization process and resulting solutions; moreover,

it does not lead tomore complicated intermediatemodels and

does not require distribution information for model param-

eters (Xu et al. 2009a). Applications of FRP and ILP have

been reported in the field of water resources management

(Huang 1996; Tan and Cruz 2004; Li et al. 2009; Guo et al.

2010; Han et al. 2011). Therefore, in water resources man-

agement systems, to better account formultiple uncertainties

and economic penalties, one potential approach is to incor-

porate the methods of TSP, FRP and ILP within a general

optimization framework, which leads to an interval fuzzy-

robust two-stage stochastic programming (IFRTSP)method.

In water resources management systems, in addition to the

pursuit in the maximization of net benefit or the minimization

of cost, the system stability and water allocation patterns

should be considered; however, in themodeling processes, the

IFRTSPmethod can hardly reflect the risk ofmodel feasibility

and reliability. Instead, stochastic robust optimization (SRO),

one of the stochastic mathematical programming methods,

can bring risk aversion into optimization models and find

robust solutions (Mulvey and Ruszczynski 1995; Dupačová

1998). InSRO, the uncertain parameters are tackled as random

variables with discrete distributions. SRO integrates a goal

programming formulation with a scenario-based description

of problem data, and can generate a series of solutions that are

progressively less sensitive to realizations of problem data

from a set of scenarios (Mulvey et al. 1995; Leung et al. 2007;

Xu et al. 2009a). SRO can also help decision makers to

quantitatively evaluate the trade-offs between system econ-

omy and stability. SRO has been applied to the field of water

resources management (Watkins Jr and Mckinney 1997; Xu

et al. 2009b; Gaivoronski et al. 2012; Chen et al. 2013).

Therefore, in water resources management systems, to better

utilize the strengths of different methods and formulate the

effectivemanagement strategies, SROmethod is incorporated

within a general IFRTSP framework, which leads to an

interval fuzzy-robust two-stage stochastic-robust program-

ming (IFRTSRP) method. Previously, few studies focused on

the IFRTSRPmethod for water resources management under

multiple uncertainties.

Therefore, this study aims to develop an optimization

model based on the IFRTSRP method for water resources

management under uncertainty. As an integration of TSP,

FRP, ILP, and SRO, the developed IFRTSRP model can

not only deal with multiple uncertainties expressed as

probability distributions, fuzzy membership functions,

discrete intervals, and their combinations, but also provide

an effective linkage between the pre-regulated water

resources management policies and the associated eco-

nomic implications. The IFRTSRP model can enhance the

robustness for the optimization process by delimiting the

uncertain decision space through dimensional enlargement

of the original fuzzy constraints. Moreover, the IFRTSRP

model is capable of evaluating the trade-offs between
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system economy and stability. Finally, in order to dem-

onstrate potential applicability of the IFRTSRP model, it is

applied to a hypothetical case study of water resources

management.

Materials and methods

Modeling formulation

Consider a problem wherein water resources managers are

responsible for allocating water from multiple unregulated

surface and ground water sources to different users. The

managers need to promise allowable targets of water sup-

plies for each user, which can help the users to make their

development plans. If the promised water can be delivered, a

higher net benefit can be obtained; however, if the promised

water can not be delivered, the net benefitwill be reduced due

to the penalty imposed. Thewater availabilities are randomly

varied. When only a small chance of receiving sufficient

water is predicted, the users will curb their development

plans to avoid high penalties; however, the development

opportunities will also be missed when the practical avail-

able water amounts are sufficient. Conversely, when the

available water amounts are overestimated, the users will

make major development plans; however, the penalty costs

will also be increased when the practical available water

amounts are insufficient. Thus, the related decisions must be

made under varying probability levels, and a TSPmodelwith

recourse can solve the problem of water allocation.

However, water resources management systems are also

filled with other uncertainties. For example, the water avail-

abilities are hard to be precisely determined under each prob-

ability, and thus they are also expressed as fuzzy boundary

intervals; the water allocation targets and the benefit and cost

coefficients may not be available as deterministic values, and

thus theyare expressed as discrete intervals.Therefore, in order

to reflect multiple uncertainties and achieve effective water

allocation, based on the integration of TSP, FRP and ILP, an

IFRTSP model can be formulated as follows:

max f� ¼
XI

i¼1

XM

m¼1

NB�
i � TC�

im

� �
W�

im

þ
XI

i¼1
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in
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in
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imj
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imj

� �
1þ ~d�im
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� ~q�mj; 8m; j ð1bÞ

XI
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in � D�

inh
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1þ ~d�in
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W�
immax �W�

im �D�
imj � 0; 8i; m; j ð1dÞ

W�
inmax �W�

in �D�
inh � 0; 8i; n; h ð1eÞ

where f�, NB�
i , CW

�
i , TC

�
im, TC

�
in, TR

�
in, D

�
imj, D

�
inh, W

�
im,

W�
in, W

�
immax and W�

inmax denote the sets of discrete interval

numbers; ~q�mj; ~q
�
nh;

~d�im and ~d�in denote the sets of fuzzy

boundary interval numbers; i is the water user; m and n are

the surface and ground water sources, respectively; j and

h are the levels of water availabilities from surface and

ground water sources, respectively; f� is the net system

benefit; NB�
i are the benefits to user i per unit of water

allocated; CW�
i are the penalty costs to user i per unit of

water not delivered; TC�
im and TC�

in are the delivering costs

for allocating per unit of water from surface water source

m and ground water source n to user i, respectively; TR�
in

are the costs for pumping per unit of water from ground

water source n to user i; Pmj are the probabilities of

occurrences of water availability level j from surface

water source m (
PJ

j¼1 Pmj ¼ 1); Pnh are the probabilities

of occurrences of water availability level h from ground

water source n (
PH

h¼1 Pnh ¼ 1). ~q�mj are the water avail-

abilities under level j from surface water source m; ~q�nh
are the water availabilities under level h from ground

water source n; W�
im and W�

in are the water allocation

targets that are promised to user i from surface water

source m and ground water source n, respectively; W�
immax

and W�
inmax are the maximum allowable allocation

amounts for user i from surface water source m and

ground water source n, respectively; D�
imj are the amounts

by which the respective water allocation targets are not

met when the water availabilities are ~q�mj with probabil-

ities Pmj from surface water source m; D�
inh are the

amounts by which the respective water allocation targets

are not met when the water availabilities are ~q�nh with

probabilities Pnh from ground water source n. ~d�im and ~d�in
are the loss rates of water from surface water source

m and ground water source n to user i during transpor-

tation, respectively.

Furthermore, in water resources management systems,

water allocation patterns should ensure both feasibility and

reliability, even though such allocation patterns may lead

to low net system benefits. Feasibility means the practi-

cability of water allocation patterns and is related to water
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deficits; reliability represents the extent of a balanced

consideration for the objective function values under var-

ious probability levels (Xu et al. 2009b). The higher the

feasibility, the lower the water deficits; the higher the

reliability, the lower the variability among the obtained

expected values of objective functions.

In the IFRTSP model, since the objective function is the

maximization of economic benefit, the economy-optimal

solution can be obtained through determining high alloca-

tion targets and allocating a number of water to these users

with high benefits; however, such water allocation can lead

to high water deficits, especially in low water availability

levels. Moreover, to minimize the expected values of

penalty costs can hardly guarantee the minimization of

penalty costs under various probability levels. In such

conditions, the system stability (including system feasi-

bility and system reliability) will be relatively low. SRO

method can solve the problem by bringing risk concern into

optimization models. Thus, SRO is incorporated within the

IFRTSP framework, which leads to the IFRTSRP model

for water resources management:

max f� ¼
XI

i¼1

XM

m¼1

NB�
i � TC�

im

� �
W�

im

þ
XI

i¼1

XN

n¼1

NB�
i � TC�

in � TR�
in

� �
W�

in

�
XI

i¼1

XM

m¼1

XJ

j¼1

PmjCW
�
i D

�
imj �

XI

i¼1

XN

n¼1

XH

h¼1

PnhCW
�
i D

�
inh

� k
XM

m¼1

XJ

j¼1

Pmj

XI

i¼1

CW�
i D

�
imj �

XI

i¼1

XJ

j¼1

PmjCW
�
i D

�
imj

�����

�����

� x
XN

n¼1

XH

h¼1

Pnh

XI

i¼1

CW�
i D

�
inh �

XI

i¼1

XH

h¼1

PnhCW
�
i D

�
inh

�����

�����

ð2aÞ

subject to:
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where k and x represent the non-negative weight coefficients.

The terms of
��PI
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variability measures on the penalty costs. Depending on the

values of k and x, the optimization may favor solutions with

higher expected costs of
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i D
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linearization of
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where h�mj and h�nh are the slack variables; constraints (3b)

and (3c) are the specific control constraints. After the

introduction of the variability measures in the objective

function, model (3) can not only effectively reflect multiple

uncertainties, but also guarantee solutions to be more stable

and reliable.

To solve the IFRTSRP problem, assumptions are made

in this solution process: For each parameter presented as

fuzzy boundary interval, the fuzzy sets of the lower and

upper bounds have no intersections and dependences (Nie

et al. 2007). Based on the assumptions, when the water

allocation targets (W�
im and W�

in ) are known, the IFRTSRP

problem can be solved within an ILP framework by uti-

lizing FRP optimization techniques. Firstly, based on an

interactive algorithm (Huang et al. 1992; Huang 1996),

model (3) can be transformed into two sets of submodels,

which correspond to the upper and lower bounds of the

desired objective function value. Secondly, according to

the concept of level set (fuzzy a-cut) and the representation

theorem (Negoita et al. 1976), each fuzzy constraint in the

submodels can be replaced by 2S precise inequalities, in

which S denotes the number of a-cut levels (Soyster 1973;
Leung 1988; Luhandjula and Gupta 1996; Liu et al. 2003).

Finally, following these replacements, the decision spaces

in the submodels can be delimited by the deterministic

constraints, and then these two sets of submodels can be

solved via simple method. The resulting interval solutions

for the objective function and decision variables can easily

interpret for generating decision alternatives.

In model (3), since the water allocation targets (W�
im and

W�
in ) are expressed as discrete interval numbers, decision

variables Zim and Zin are introduced to determine the

optimal allocation targets for supporting the related policy

analyses (Huang and Loucks 2000). In detail, let

W�
im ¼ W�

im þ ZimDWim, where DWim ¼ Wþ
im �W�

im and

Zim 2 ½0; 1�; W�
in ¼ W�

in þ ZinDWin, where DWin ¼ Wþ
in �

W�
in and Zin 2 ½0; 1�. Thus, when W�

im and W�
in approach

their respective upper bounds (i.e., when Zim = 1 and

Zin = 1), a higher net system benefit would be achieved as

long as the water demands are well satisfied; however, a

higher penalty may have to be paid when the promised

water is not delivered. Conversely, when W�
im and W�

in

reach their respective lower bounds (i.e., when Zim = 0 and

Zin = 0), the system may have a lower net benefit with a

lower risk of violating the promised water targets and a

lower penalty. Therefore, it is difficult to determine whe-

ther Wþ
im or W�

im as well as Wþ
in or W�

in would correspond to

the desired upper bound of net system benefit. Thus,

according to the related studies (Negoita et al. 1976; Lu-

handjula and Gupta 1996; Huang and Loucks 2000; Liu

et al. 2003; Nie et al. 2007), a two-step method associated

with various a-cut levels and the representation theorem

can be used to solve model (3). In detail, the first submodel

can be formulated as follows:
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where the marks ‘– s’ and ‘– s’ denote the superior and

inferior limits among the set s; Zim, Zin, D
�
imj, and D�

inh are

decision variables. Solution for f? provides the extreme

upper bound of objective function under uncertain inputs.

Let fþopt, Zim opt; Zin opt; D
�
imj opt and D�

inh opt be solutions of
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submodel (4). Then, based on the solutions, the second

submodel can be formulated as follows:

max f� ¼
XI

i¼1

XM

m¼1

NB�
i � TCþ

im

� �
W�

im þ ZimoptDWim

� �

þ
XI

i¼1

XN

n¼1

NB�
i � TCþ

in � TRþ
in

� �
W�

in þ Zin optDWin

� �

�
XI

i¼1

XM

m¼1

XJ

j¼1

PmjCW
þ
i D

þ
imj �

XI

i¼1

XN

n¼1

XH

h¼1

PnhCW
þ
i D

þ
inh

� k
XM

m¼1

XJ

j¼1

Pmj

XI

i¼1

CWþ
i D

þ
imj �

XI

i¼1

XJ

j¼1

PmjCW
þ
i D

þ
imj þ 2hþmj

 !

� x
XN

n¼1

XH

h¼1

Pnh

XI

i¼1

CWþ
i D

þ
inh �

XI

i¼1

XH

h¼1

PnhCW
þ
i D

þ
inh þ 2hþnh

 !

ð5aÞ

subject to:

XI

i¼1

CWþ
i D

þ
imj�

XI

i¼1

XJ

j¼1

PmjCW
þ
i D

þ
imjþhþmj�0; 8m; j ð5bÞ

XI

i¼1

CWþ
i D

þ
inh�

XI

i¼1

XH

h¼1

PnhCW
þ
i D

þ
inhþhþnh�0; 8n;h ð5cÞ

XI

i¼1

W�
im þ Zim optDWim � Dþ

imj

� �
1þ dþim

s
� �

� q�mj
s;

8m; j; s ¼ 1; 2; . . .; S

ð5dÞ

XI

i¼1

W�
im þ Zim optDWim � Dþ

imj

� �
1þ dþim

s
� �

� q�mj
s;

8m; j; s ¼ 1; 2; . . .; S

ð5eÞ

XI

i¼1

W�
in þ Zin optDWin � Dþ

inh

� �
1þ dþin

s
� �

� q�nh
s;

8n; h; s ¼ 1; 2; . . .; S

ð5fÞ

XI

i¼1

W�
in þ Zin optDWin � Dþ

inh

� �
1þ dþin

s
� �

� q�nh
s;

8n; h; s ¼ 1; 2; . . .; S

ð5gÞ

W�
immax �W�

im þ Zim optDWim �Dþ
imj � 0; 8i; m; j ð5hÞ

W�
inmax �W�

in þ Zin optDWin �Dþ
inh � 0; 8i; n; h ð5iÞ

Dþ
imj �D�

imj opt; 8i; m; j ð5jÞ

Dþ
inh �D�

inh opt; 8i; n; h ð5kÞ

hþmj � 0; 8m; j ð5lÞ

hþnh � 0; 8n; h ð5mÞ

where Dþ
imj and Dþ

inh are decision variables. Let f�opt, D
þ
imj opt

and Dþ
inh opt be solutions of submodel (5). Model (3) is

converted to two deterministic linear programming

submodels. Thus, combining solutions of submodels (4)

and (5), solutions for model (3) can be obtained as follows:

f�opt ¼ f�opt; f
þ
opt

h i
ð6aÞ

W�
im opt ¼ W�

im þ Zim optDWim; 8i; m ð6bÞ

W�
in opt ¼ W�

in þ Zin optDWin; 8i; n ð6cÞ

D�
imj opt ¼ ½D�

imj opt; D
þ
imj opt�; 8i; m; j ð6dÞ

D�
inh opt ¼ ½D�

inh opt; D
þ
inh opt�; 8i; n; h ð6eÞ

where W�
im opt and W�

in opt are the optimized water allocation

targets; D�
imj opt and D�

inh opt are the optimized water deficits.

Thus, the optimal water allocation schemes are:

A�
imj opt ¼ W�

im opt � D�
imj opt; 8i; m; j ð7aÞ

A�
inh opt ¼ W�

in opt � D�
inh opt; 8i; n; h ð7bÞ

Figure 1 shows the schematic of the IFRTSRP model. It is

based on four optimization techniques, namely TSP, FRP,

ILP and SRO. Each technique has a unique contribution to

enhancing the model’s capability in dealing with system

Water resources management under uncertainties
Policy

(Target)

Probability 
distributions

Fuzzy membership 
functions

Fuzzy boundary 
intervals

Discrete 
intervals

Two-stage stochastic 
programming (TSP)

Fuzzy robust 
programming (FRP)

Interval linear 
programming (ILP)

Interval fuzzy-robust two-stage stochastic 
programming (IFRTSP) model

Interval fuzzy-robust two-stage stochastic-robust 
programming (IFRTSRP) model

Stochastic robust 
optimization (SRO)

IFRTSRP
Upper-bound submodel

IFRTSRP
Lower-bound submodel

Optimal solutions for IFRTSRP model

Generation of decision alternatives

Fig. 1 Schematic of the IFRTSRP model
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uncertainties and system risks. For example, the probability

distributions and policy implications can be handled by

TSP; the uncertainties expressed as fuzzy membership

functions can be handled by FRP; the uncertainties

expressed as discrete intervals can be handled by ILP; the

uncertainties expressed as fuzzy boundary intervals can be

handled by FRP within an ILP framework; the system risks

can be addressed by SRO. Thus, the IFRTSRP model can

not only tackle multiple uncertainties, but also provide an

effective linkage between the pre-regulated water resources

management policies and the associated economic impli-

cations. The IFRTSRP model can enhance the robustness

for the optimization process by delimiting the uncertain

decision space through dimensional enlargement of the

original fuzzy constraints. The IFRTSRP model can also

evaluate the trade-offs between system economy and sta-

bility. The IFRTSRP model will offer feasible and reliable

solutions, and the interval solutions can provide two

extreme scenarios, which are helpful for the water

resources managers. Compared with the IFRTSP model,

the IFRTSRP model can simultaneously take system

economy and stability into consideration, and achieve a

more stable water allocation pattern. Moreover, the solu-

tions from the IFRTSRP model can provide opportunities

for the managers to make water resources management

policies and plans based on the reasonable consideration of

system benefit, system stability and system failure risk.

Case study

The developed IFRTSRP model is applied to a hypothetical

water resources management problem to demonstrate its

Table 1 Benefits and related costs

Activity User

User 1

(i = 1)

User 2

(i = 2)

User 3

(i = 3)

Benefit when water is delivered

($/m3)

[93.6,

99.7]

[74.4,

81.7]

[58.3,

65.8]

Delivering cost from surface water

source to users ($/m3)

[31.4,

34.9]

[37.5,

41.7]

[40.3,

43.7]

Delivering cost from ground water

source to users ($/m3)

[14.5,

16.3]

[12.9,

15.5]

[11.2,

13.8]

Pumping cost from ground water

source to users ($/m3)

[22.0,

25.0]

[22.0,

25.0]

[22.0,

25.0]

Penalty cost when water is not

delivered ($/m3)

[82.9,

89.2]

[56.1,

61.5]

[35.0,

39.5]

Table 2 Water allocation targets for each user

Water source User

User 1

(i = 1)

User 2

(i = 2)

User 3

(i = 3)

Water allocation target (106 m3) from different water sources to users

Surface water

source

[18.0, 21.5] [14.0, 17.0] [12.5, 16.0]

Ground water

source

[10.5, 13.5] [11.0, 13.5] [12.5, 16.0]

Maximum allowable allocation (106 m3) from different water sources

to users

Surface water

source

[22.0, 26.0] [20.0, 23.0] [20.0, 23.0]

Ground water

source

[15.0, 17.0] [14.0, 17.0] [18.0, 20.0]

Table 3 Water availabilities under different a-cut levels and associated probabilities from different water sources

Level of water availability Probability Water availability (106 m3)

a = 0 a = 0.2 a = 0.5 a = 0.8 a = 1

Surface water source

Low (j = 1) 0.2 [[24.0, 27.0],

[28.0, 32.0]]

[[24.2, 26.6],

[28.2, 31.4]]

[[24.5, 26.0],

[28.5, 30.5]]

[[24.8, 25.4],

[28.8, 29.6]]

[25.0, 29.0]

Medium (j = 2) 0.6 [[35.0, 39.0],

[40.0, 44.0]]

[[35.2, 38.4],

[40.2, 43.4]]

[[35.5, 37.5],

[40.5, 42.5]]

[[35.8, 36.6],

[40.8, 41.6]]

[36.0, 41.0]

High (j = 3) 0.2 [[48.0, 52.0],

[53.0, 58.0]]

[[48.2, 51.4],

[53.2, 57.2]]

[[48.5, 50.5],

[53.5, 56.0]]

[[48.8, 49.6],

[53.8, 54.8]]

[49.0, 54.0]

Ground water source

Low (h = 1) 0.1 [[16.00, 18.00],

[19.00, 22.00]]

[[16.10, 17.70],

[19.10, 21.50]]

[[16.25, 17.25],

[19.25, 20.75]]

[[16.40, 16.80],

[19.40, 20.00]]

[16.50, 19.50]

Medium (h = 2) 0.8 [[25.00, 27.00],

[28.00, 32.00]]

[[25.10, 26.70],

[28.20, 31.40]]

[[25.25, 26.25],

[28.50, 30.50]]

[[25.40, 25.80],

[28.80, 29.60]]

[25.50, 29.00]

High (h = 3) 0.1 [[33.50, 36.00],

[37.50, 41.50]]

[[33.60, 35.60],

[37.70, 40.90]]

[[33.75, 35.00],

[38.00, 40.00]]

[[33.90, 34.40],

[38.30, 39.10]]

[34.00, 38.50]
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applicability. The water resources managers are responsi-

ble for allocating water from two water sources (i.e., one

surface water source and one ground water source) to three

users. Each user wants to know how much water they can

expect. If water supplies are insufficient, they will curb

their development plans; conversely, if the promised water

is delivered, they will make major development plans to

achieve higher net system benefit. In the water resources

management system, in addition to the pursuit in maxi-

mization of net system benefit, the system feasibility and

reliability issues are taken into consideration. Therefore,

the problems under consideration include: (1) analyzing

how to effectively allocate water to the three users to

achieve a maximum net system benefit with a stable water

allocation policy under multiple uncertainties; and (2)

analyzing how to achieve the feasibility and reliability of

water allocation patterns, and evaluating the trade-offs

between system economy and stability. To solve these

problems, the developed IFRTSRP model is considered to

be suitable.

Table 1 shows the related economic data. Table 2 shows

the water allocation targets for each user. All of the

parameters are represented as discrete interval numbers

(e.g., a±) to address the uncertainties:

a� ¼ ½a�; aþ� ¼ ft 2 aja� � t� aþg, where a- and a? are

the deterministic lower and upper bounds of a±. Table 3

lists the varied water availabilities as well as the associated

probabilities of occurrences. Table 4 lists the water loss

rates between different water sources and users. Water

availabilities and water loss rates are represented as fuzzy

boundary intervals, and left–right (L–R) fuzzy membership

functions can be used to express fuzzy boundaries (Dubois

and Prade 1978). In this study, the triangular fuzzy mem-

bership functions, which belong to L–R fuzzy membership

functions, are used to express fuzzy boundaries (Fig. 2),

and the fuzzy boundary interval parameters (e.g., ~b�) can

be expressed: ~b� ¼ ½~b�; ~bþ� ¼ ½½b�s; b�
s�; ½bþs

; bþ
s��.

Results and discussion

Results analysis

Table 5 presents the solutions of water allocation targets

for users from different water sources under different k and

x levels. For example, when both k and x levels are 0.5,

the optimized water allocation targets from surface water

source for user 1, user 2, and user 3 would be 21.5 9 106

(Z1m = 1.0), 14.0 9 106 (Z2m = 0), and 12.5 9 106

(Z3m = 0) m3, respectively; the optimized water allocation

targets from ground water source for user 1, user 2, and

user 3 would be 13.5 9 106 (Z1n = 1.0), 11.0 9 106

(Z2n = 0), and 12.5 9 106 (Z3n = 0) m3, respectively. The

Table 4 Water loss rates under different a-cut levels between different water sources and users

User a-Cut level

a = 0 a = 0.2 a = 0.5 a = 0.8 a = 1

Loss rate for water transportation between surface water source and users

User 1 (i = 1) [[0.0600, 0.0900],

[0.1000, 0.1400]]

[[0.0650, 0.0890],

[0.1060, 0.1380]]

[[0.0725, 0.0875],

[0.1150, 0.1350]]

[[0.0800, 0.0860],

[0.1240, 0.1320]]

[0.0850, 0.1300]

User 2 (i = 2) [[0.1300, 0.1600],

[0.1700, 0.2200]]

[[0.1350, 0.1590],

[0.1780, 0.2180]]

[[0.1425, 0.1575],

[0.1900, 0.2150]]

[[0.1500, 0.1560],

[0.2020, 0.2120]]

[0.1550, 0.2100]

User 3 (i = 3) [[0.2000, 0.2500],

[0.2600, 0.3000]]

[[0.2080, 0.2480],

[0.2670, 0.2990]]

[[0.2200, 0.2450],

[0.2775, 0.2975]]

[[0.2320, 0.2420],

[0.2880, 0.2960]]

[0.2400, 0.2950]

Loss rate for water transportation between ground water source and users

User 1 (i = 1) [[0.1200, 0.1600],

[0.1700, 0.2000]]

[[0.1270, 0.1590],

[0.1750, 0.1990]]

[[0.1375, 0.1575],

[0.1825, 0.1975]]

[[0.1480, 0.1560],

[0.1900, 0.1960]]

[0.1550, 0.1950]

User 2 (i = 2) [[0.0600, 0.0900],

[0.1000, 0.1300]]

[[0.0650, 0.0890],

[0.1050, 0.1290]]

[[0.0725, 0.0875],

[0.1125, 0.1275]]

[[0.0800, 0.0860],

[0.1200, 0.1260]]

[0.0850, 0.1250]

User 3 (i = 3) [[0.0200, 0.0450],

[0.0500, 0.0800]]

[[0.0240, 0.0440],

[0.0550, 0.0790]]

[[0.0300, 0.0425],

[0.0625, 0.0775]]

[[0.0360, 0.0410],

[0.0700, 0.0760]]

[0.0400, 0.0750]

Membership
Grade

s

b− s

b−
s

b+ s

b+ x
0

sα

1
b

− b+

Fig. 2 Triangular fuzzy membership functions for fuzzy boundaries

of ~b�
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results demonstrate that when k = 0.5 and x = 0.5, the

managers are optimistic of water supply to user 1; con-

versely, the managers have a conservative attitude toward

water allocation to user 2 and user 3. Moreover, variations

in water allocation targets can reflect different policies for

water resources management under uncertainty. When the

water allocation targets reach their upper bounds, the

corresponding policy may result in a higher net system

benefit but, at the same time, a higher risk of penalty when

the water availability levels are low; conversely, when the

water allocation targets approach their lower bounds, the

corresponding policy may result in less water deficits as

well as lower penalty costs but, at the same time, more

waste of water resources when the water availability levels

are medium or high. Thus, different policies in predefining

the promised water allocation accounts are associated

with different levels of system benefit and system failure

risk.

Solutions in Table 5 also indicate that the optimized

water allocation targets would vary with the changes of k
and x levels. For example, when both k and x levels vary

from 0.5 to 4, the total optimized water allocation targets

for all users from surface water source would change from

48.0 9 106 to 47.1 9 106 m3, and the total optimized

water allocation targets for all users from ground water

source would change from 37.0 9 106 to 35.2 9 106 m3.

Generally, with the increase of k and x levels, the total

optimized water allocation targets for all users would

decrease, which can reduce the total water deficits. Thus,

with the increase of k and x levels, the system failure risk

would be lessened and the system feasibility would be

Table 5 Solutions of water allocation targets from different water

sources under different k and x levels

User Optimized water allocation target (106 m3)

k = 0.5

x = 0.5

k = 1.5

x = 1.5

k = 4

x = 4

Surface water source

User 1 (i = 1) 21.5 21.3 18.0

User 2 (i = 2) 14.0 14.0 14.0

User 3 (i = 3) 12.5 12.5 15.1

Ground water source

User 1 (i = 1) 13.5 12.2 11.7

User 2 (i = 2) 11.0 11.0 11.0

User 3 (i = 3) 12.5 12.5 12.5

Table 6 Solutions of water deficits and water allocation amounts from different water sources under different k and x levels

User Level of water

availability

Probability k = 0.5

x = 0.5

k = 1.5

x = 1.5

k = 4

x = 4

Deficit

(106 m3)

Allocation

(106 m3)

Deficit

(106 m3)

Allocation

(106 m3)

Deficit

(106 m3)

Allocation

(106 m3)

Surface water source

User 1

(i = 1)

Low 0.2 0 21.5 0 21.3 0 18.0

Medium 0.6 0 21.5 0 21.3 0 18.0

High 0.2 0 21.5 0 21.3 0 18.0

User 2

(i = 2)

Low 0.2 [8.6, 13.1] [0.9, 5.4] [8.4, 12.9] [1.1, 5.6] [5.3, 9.9] [4.1, 8.7]

Medium 0.6 [0, 3.9] [10.1, 14.0] [0, 3.7] [10.3, 14.0] [0, 0.6] [13.4, 14.0]

High 0.2 0 14.0 0 14.0 0 14.0

User 3

(i = 3)

Low 0.2 12.5 0 12.5 0 15.1 0

Medium 0.6 [10.8, 12.5] [0, 1.7] [10.6, 12.5] [0, 1.9] [10.4, 15.1] [0, 4.7]

High 0.2 [0.2, 6.1] [6.4, 12.3] [0, 5.9] [6.6, 12.5] [0, 5.6] [9.5, 15.1]

Ground water source

User 1

(i = 1)

Low 0.1 0 13.5 0 12.2 0 11.7

Medium 0.8 0 13.5 0 12.2 0 11.7

High 0.1 0 13.5 0 12.2 0 11.7

User 2

(i = 2)

Low 0.1 [7.0, 10.4] [0.6, 4.0] [5.6, 9.1] [1.9, 5.4] [5.1, 8.5] [2.5, 5.9]

Medium 0.8 [0, 2.4] [8.6, 11.0] [0, 1.1] [9.9, 11.0] [0, 0.5] [10.5, 11.0]

High 0.1 0 11.0 0 11.0 0 11.0

User 3

(i = 3)

Low 0.1 12.5 0 12.5 0 12.5 0

Medium 0.8 [10.5, 12.5] [0, 2.0] [9.1, 12.5] [0, 3.4] [8.6, 12.5] [0, 3.9]

High 0.1 [1.4, 7.0] [5.5, 11.1] [0, 5.6] [6.9, 12.5] [0, 5.1] [7.4, 12.5]
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enhanced; conversely, lower k and x levels would result in

a higher system failure risk and lower system feasibility.

Table 6 presents the solutions of water deficits and

water allocation amounts for each user from different water

sources under different k and x levels. The values of water

deficits under given water allocation targets can reflect the

variations of system conditions caused by uncertain inputs.

Under advantageous conditions (e.g., when the other users

do not consume the full amounts of the targeted demands

and/or the water availabilities approach their fuzzy upper

bounds), the water shortage levels may be low; however,

under demanding conditions, the water deficits may be

raised. For user 2, when both k and x levels are 0.5, the

optimized water deficits from surface water source would

be [8.6, 13.1] 9 106 m3 under low water availability level,

[0, 3.9] 9 106 m3 under medium water availability level,

and 0 m3 under high water availability level; the optimized

water deficits from ground water source would be [7.0,

10.4] 9 106 m3 under low water availability level, [0,

2.4] 9 106 m3 under medium water availability level, and

0 m3 under high water availability level. The results indi-

cate that, for user 2, when both k and x levels are 0.5,

under low water availability level, some water deficits

would exist; under medium water availability level, the

situation is more ambiguous: there may be no water deficits

under advantageous conditions, and the water deficits may

become higher under demanding conditions; under high

water availability level, there would be no water deficits.

The solutions for the other users and fixed k and x levels

can be similarly interpreted. Moreover, compared with user

1 and user 2, user 3 would generate higher water deficits.

For example, when water availability levels are medium,

and both k and x levels are 0.5, the optimized water def-

icits from surface water source for user 1, user 2, and user 3

would be 0, [0, 3.9] 9 106, and [10.8, 12.5] 9 106 m3,

respectively; the optimized water deficits from ground

water source for user 1, user 2, and user 3 would be 0, [0,

2.4] 9 106, and [10.5, 12.5] 9 106 m3, respectively. This

is because user 3 will obtain the lowest net benefits (i.e.,

[14.6, 25.5] $/m3 from surface water source and [19.5,

32.6] $/m3 from ground water source) when the water

demands are satisfied and encounter the lowest penalty

costs if the promised water is not delivered. Thus, faced to

the insufficient water supplies, the available water from

surface and ground water sources is allocated first to user 1,

second to user 2, and then to user 3.

Solutions in Table 6 also indicate that the optimized

water deficits would vary with the changes of k and x
levels. For example, when the water availability levels are

low, and both k and x levels are 0.5, 1.5, and 4, the total

optimized water deficits for all users from surface water

source would be [21.1, 25.6] 9 106, [20.9, 25.4] 9 106,

and [20.4, 25.0] 9 106 m3, respectively; the total opti-

mized water deficits for all users from ground water source

would be [19.5, 22.9] 9 106, [18.1, 21.6] 9 106, and [17.6,

21.0] 9 106 m3, respectively. The variability measures are

incorporated in the objective function, and their impacts on

modeling outputs would be adjusted by the changes of k
and x levels. Generally, with the increase of k and x
levels, the total optimized water deficits for all users would

decrease, which can reduce the system failure risk and

enhance the system feasibility.

Solutions in Tables 5 and 6 indicate that when the water

availability levels are low (the worst case condition), and

both k andx levels are 0.5, the total water allocation amounts

for all users from surface and ground water sources would be

[22.4, 26.9] 9 106 and [14.1, 17.5] 9 106 m3, respectively;

however, the total water demands from surface and ground

water sources are 48.0 9 106 and 37.0 9 106 m3, respec-

tively, which demonstrate that there are serious shortages in

water supplies from surface and ground water sources.

Although the probabilities of the worst case condition are

low, the penalty costs from the occurrence of such an

extreme event are high. In comparison, when the water

availability levels are medium (the medium case condition),

both and k and x levels are 0.5, the total water allocation

amounts for all users from surface and ground water sources

would be [31.6, 37.2] 9 106 and [22.1, 26.5] 9 106 m3,

respectively; however, the total water demands from surface

and ground water sources are 48.0 9 106 and 37.0 9 106

m3, respectively, which demonstrate that the water shortages

are less serious than those under the worst case condition.

When the water availability levels are high (the best case

condition), and both k and x levels are 0.5, the total water

allocation amounts for all users from surface and ground

water sources would be [41.9, 47.8] 9 106 and [30.0,

35.6] 9 106 m3, respectively; however, the total water

demands from surface and ground water sources are

48.0 9 106 and 37.0 9 106 m3, respectively, which dem-

onstrate that the water deficits are further reduced and the

water demands may basically be satisfied.

Table 7 shows the solutions of variability of penalty

costs and net system benefits under different k and/or x
levels. The results indicate that the variability of penalty

costs would gradually decrease with the increase of k and

x levels. For example, the variability (t), where v ¼
PM

m¼1

PJ
j¼1 Pmj (

PI
i¼1CW

�
i D

�
imj �

PI
i¼1

PJ
j¼1PmjCW

�
i D

�
imj

þ2h�mj) þ
PN

n¼1

PH
h¼1Pnh (

PI
i¼1CW

�
i D

�
inh �

PI
i¼1

PH
h¼1

PnhCW
�
i D

�
inhþ2h�nh) would be [668.9, 969.5] 9 106 $

under k = 0.5 and x = 0.5, [638.4, 936.1] 9 106 $ under

k = 1.5 and x = 1.5, [621.8, 915.5] 9 106 $ under k = 2

and x = 4, and [591.2, 883.9] 9 106 $ under k = 4 and

x = 4. Moreover, the intervals of the variability values
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would become narrow with the increase of k and x levels.

For example, the intervals would be 300.6 9 106 $ under

k = 0.5 and x = 0.5, 297.7 9 106 $ under k = 1.5 and

x = 1.5, 293.7 9 106 $ under k = 2 and x = 4, and

292.7 9 106 $ under k = 4 and x = 4. The varying trends

of the variability of penalty costs imply that the system

reliability would be enhanced with the increase of k and x
levels.

As shown in Table 7, all of the net system benefits are

intervals. In practice, given different water availability

conditions and underlying probability distributions, the

resulting plans of optimized net system benefit would

vary between its relevant solution interval. The plan

with a higher net system benefit would correspond to a

lower water shortage level under advantageous condi-

tions, which can lead to a higher risk of the system

failure; the plan with a lower net system benefit would

better resist water shortage under demand conditions,

which can lead to a lower risk of the system failure. The

results also indicate that the optimized net system ben-

efit could decrease as k and x levels increase. For

example, the optimized net system benefits would be

[1,821.5, 3,386.0] 9 106 $ under k = 0.5 and x = 0.5,

[1,833.9, 3,349.9] 9 106 $ under k = 1.5 and x = 1.5,

[1,837.4, 3,323.5] 9 106 $ under k = 2 and x = 4, and

[1,755.9, 3,201.8] 9 106 $ under k = 4 and x = 4.

Moreover, the intervals of the net system benefit values

would narrow down as k and x levels increase. For

example, the intervals would be 1,564.5 9 106 $ under

k = 0.5 and x = 0.5, 1,516.0 9 106 $ under k = 1.5

and x = 1.5, 1,486.1 9 106 $ under k = 2 and x = 4,

and 1,445.9 9 106 $ under k = 4 and x = 4. The

varying trends of the net system benefit imply that a

lower net system benefit could guarantee higher system

stability; conversely, a higher net system benefit would

correspond to lower system stability and higher system

failure risk. Thus, the managers should make a choice

between more stable solutions with a lower net system

benefit and more variable solutions with a higher net

system benefit, and a trade-off between system economy

and stability can be used to help them to make cost-

effective decisions.

Discussion

In water resources management systems, for surface water

sources and ground water sources, the water supplies are

independent and the water allocation targets need to be

respectively determined. Thus, in model (3), the objective

function can be decomposed into: (1) max f�1 ¼
PI

i¼1

PM
m¼1 NB�

i � TC�
im

� �
W�

im �
PI

i¼1

PM
m¼1
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j¼1 Pmj

CW�
i D

�
imj� k

PM
m¼1
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PI
i¼1 CW

�
i D

�
imj �

PI
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�

PJ
j¼1 PmjCW

�
i D

�
imj þ 2h�mjÞ (the benefit of water supplies

from surface water sources), and (2) max f�2 ¼
PI

i¼1

PN
n¼1 NB�

i � TC�
in � TR�

in

� �
W�

in�
PI

i¼1

PN
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h¼1 PnhCW
�
i D

�
inhþ2h�nh) (the benefit ofwater supplies from

ground water sources); moreover, constraints (3b), (3d), (3f)

and (3h) are the relevant constraints of water supplies from

surface water sources, and constraints (3c), (3e), (3g) and (3i)

are the relevant constraints of water supplies from ground

water sources; furthermore, k and x levels have no intersec-

tions, and their values affect the determination of water allo-

cation targets from surface and ground water sources,

respectively. Therefore, for all users, when x level is any

values, the total optimized water allocation targets and the

total optimized water deficits from surface water sources

would decrease with the increase of k level (Tables 5 and 6).
Similarly, for all users, when k level is any values, the total

optimized water allocation targets and the total optimized

water deficits from groundwater sources would decreasewith

the increase of x level (Tables 5 and 6). Moreover, with the

increase of k or x levels, the variability of penalty costs and

the optimized net system benefit would gradually decrease,

and the intervals of these values would become narrow

(Table 7). For example, when fixed k level is 0.5, the vari-

ability of penalty costswould be [668.9, 969.5] 9 106 $ under

x = 0.5, [645.0, 943.3] 9 106 $ under x = 1.5, and [636.9,

932.9] 9 106 $ under x = 4, and their intervals would be

300.6 9 106 $ (x = 0.5), 298.3 9 106 $ (x = 1.5), and

296.0 9 106 $ (x = 4). When fixed x level is 0.5, the opti-

mized net systembenefit would be [1,821.5, 3,386.0] 9 106 $

under k = 0.5, [1,820.1, 3,378.1] 9 106 $ under k = 1.5, and

Table 7 Solutions of variability of penalty costs and net system benefits under different k and/or x levels

Activity k and x levels

k = 0.5

x = 0.5

k = 1.5

x = 1.5

k = 2

x = 4

k = 4

x = 4

k = 0.5

x = 1.5

k = 0.5

x = 4

k = 1.5

x = 0.5

k = 4

x = 0.5

Variability (106 $) [668.9,

969.5]

[638.4,

936.1]

[621.8,

915.5]

[591.2,

883.9]

[645.0,

943.3]

[636.9,

932.9]

[662.3,

962.3]

[623.1,

920.5]

Net system benefit

(106 $)

[1,821.5,

3,386.0]

[1,833.9,

3,349.9]

[1,837.4,

3,323.5]

[1,755.9,

3,201.8]

[1,835.3,

3,357.8]

[1,840.7,

3,344.7]

[1,820.1,

3,378.1]

[1,736.7,

3,243.1]
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[1,736.7, 3,243.1] 9 106 $ under k = 4, and their intervals

would be 1,564.5 9 106 $ (k = 0.5), 1,558.0 9 106 $

(k = 1.5), and 1,506.4 9 106 $ (k = 4). Thus, in practice, the

managers can identify desired water allocation policies (i.e.,

surface water and/or ground water allocation policies) based

on the choice of k or x levels.

The water resources management problem is also solved

by the IFRTSP model, and the solutions are shown in

Table 8. The results indicate that, compared with the solu-

tions obtained by the IFRTSRP model, higher total water

allocation targets for all users (i.e., 49.8 9 106 m3 from

surface water source and 38.9 9 106 m3 from ground water

source) would be generated, which could lead to higher total

water deficits. For example, when the water availability

levels are low, the total water deficits for all users from

surface and ground water sources would be [22.9,

27.4] 9 106 and [21.3, 24.8] 9 106 m3, respectively; when

the water availability levels are medium, the total water

deficits for all users from surface and ground water sources

would be [12.5, 18.2] 9 106 and [12.5, 16.8] 9 106 m3,

respectively. Moreover, a higher net system benefit (i.e.,

[1,730.5, 3,414.1] 9 106 $) would be obtained by the IF-

RTSP model compared with the IFRTSRPmodel. However,

the IFRTSP model has some limitations. Firstly, the higher

total water deficits would reduce the system feasibility and

increase the system failure risk. Secondly, although the

expected values of penalty costs are minimum, higher pen-

alty costs would have to be paid under low water availability

levels, which would reduce the system reliability. Finally,

the solution intervals would be wider, which indicates that

the system reliability would be worse.

In water resources management systems, the developed

IFRTSRP model has also potential research extensions.

Firstly, for a multi-period management problem, the IF-

RTSRP model is also suitable to solve it; however, the IF-

RTSRP model can hardly adequately reflect the dynamic

variations of system conditions, especially for sequential

structure of a large-scale problem (Li et al. 2006b). In fact,

the water surpluses in the former period could be accumu-

lated in the later period; nevertheless, the IFRTSRP model

can not reflect such a variation,which leads to the application

of multi-stage stochastic programming models. Secondly,

the arbitrary variability measures are applied to reflect the

variability of penalty costs, which could lead to non-optimal

solutions and misleading decisions to the recourse problems

(Takriti and Ahmed 2004); thus, the other methods in

reflecting the variability should be investigated and applied.

The developed IFRTSRP model integrates different

methods and is applied for water resources management

under uncertainty. The model and the methods can provide

Table 8 Solutions of the IFRTSP model

User Level of water

availability

Probability Optimized solution (106 m3)

Target Deficit Allocation

Surface water source

User 1 (i = 1) Low 0.2 21.5 0 21.5

Medium 0.6 21.5 0 21.5

High 0.2 21.5 0 21.5

User 2 (i = 2) Low 0.2 15.8 [10.4, 14.9] [0.9, 5.4]

Medium 0.6 15.8 [0, 5.7] [10.1, 15.8]

High 0.2 15.8 0 15.8

User 3 (i = 3) Low 0.2 12.5 12.5 0

Medium 0.6 12.5 12.5 0

High 0.2 12.5 [1.9, 7.8] [4.7, 10.6]

Ground water source

User 1 (i = 1) Low 0.1 13.5 0 13.5

Medium 0.8 13.5 0 13.5

High 0.1 13.5 0 13.5

User 2 (i = 2) Low 0.1 12.9 [8.8, 12.3] [0.6, 4.1]

Medium 0.8 12.9 [0, 4.3] [8.6, 12.9]

High 0.1 12.9 0 12.9

User 3 (i = 3) Low 0.1 12.5 12.5 0

Medium 0.8 12.5 12.5 0

High 0.1 12.5 [3.4, 9.0] [3.5, 9.1]

Net system benefit (106 $) [1,730.5, 3,414.1]
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a simple and effective management tool for water resources

managers. Although the IFRTSRP model is only for water

resources management problems, it is also of value for

other environment management problems. Moreover, the

IFRTSRP model can also combine with other inexact

optimization methods to deal with various types of uncer-

tainties, which can maximize net system benefits, achieve

system stability, and reinforce problems decision support.

Besides, the multi-criteria decision analysis technique can

be used for further supporting the adjustments of modeling

results. Furthermore, the intelligent decision support sys-

tem can be developed based on an integration of optimi-

zation modeling, scenario development, user interaction,

policy analysis, and visual display.

Conclusion

In this study, an IFRTSRP model has been developed for

water resources management under uncertainty. The

developed IFRTSRP model incorporates two-stage sto-

chastic programming (TSP), fuzzy robust programming

(FRP), interval linear programming (ILP), and stochastic

robust optimization (SRO) within a general optimization

framework, and can effectively deal with multiple uncer-

tainties presented as probability distributions, fuzzy mem-

bership functions, discrete interval numbers, and their

combinations. The IFRTSRP model can provide an effec-

tive linkage between the pre-regulated water resources

management policies and the associated economic impli-

cations. By delimiting the uncertain decision space through

dimensional enlargement of the original fuzzy constraints,

the IFRTSRP model can enhance the robustness for the

optimization process. Moreover, the variability measures

are applied to reflect the variability of penalty costs, and

the IFRTSRP model can evaluate the trade-offs between

system economy and stability. The obtained solutions are

the combinations of deterministic, interval and distribu-

tional information, and the interval solutions can help the

managers to obtain multiple decision alternatives.

The developed IFRTSRP model has been applied to a

hypothetical case study of water resources management.

The obtained solutions have been analyzed for generating

decision alternatives under different k and/or x levels and

various system conditions. The results indicate that a

higher net system benefit would correspond to lower sys-

tem stability; conversely, a lower net system benefit would

guarantee higher system stability. The modeling results can

help the managers to generate desired water allocation

policies based on the reasonable consideration of net sys-

tem benefit and system stability. Although application of

IFRTSRP model for water resources management is a new

attempt and the model could be further enhanced or

extended, the modeling results imply that the model is

applicable and effective in water allocation through the

trade-offs among system economy, system stability, and

system failure risk.
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