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I. Bácsi • Z. Novák • M. Jánószky • V. B-Béres •
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Abstract Effects of zinc on growth, cell morphology,

oxidative stress responses and zinc removal activity of two

common phytoplankton species, Monoraphidium pusillum

(Printz) Komárková-Legnerová and Monoraphidium grif-

fithii (Berkeley) Komárková-Legnerová were investigated

at a concentration range of 0.2–160 mg l-1 zinc. Cell

densities and chlorophyll content decreased compared with

controls in cultures of both species, effective concentra-

tions causing 50 % growth inhibition within 72 h on the

basis of cell numbers were 33.69 and 25.63 mg l-1 zinc for

M. pusillum and M. griffithii, respectively. Changes in cell

morphology and elevated lipid peroxidation levels

appeared in zinc-treated cultures of both species, but only

at higher ([10 mg l-1) zinc concentrations. The most

effective zinc removal appeared at 20 and 10 mg l-1 zinc

concentration for M. pusillum and M. griffithii, respec-

tively. Removed zinc is mainly bound on the cell surface in

the case of both species. This study provides new data for

the zinc tolerance and zinc removal ability of the green

algae M. pusillum and M. griffithii and shows that green

algal species common in surface waters could have zinc

tolerance and zinc-binding abilities, which makes them

feasible in treatment of waters contaminated with

10–20 mg l-1 zinc.

Keywords Common green algal species � Zinc � Growth

inhibitions � Morphological changes � Lipid peroxidation �
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Introduction

It is well known that the presence of heavy metals in

aquatic environments causes serious damage to aquatic life.

These metals can reduce the effectiveness of purification

processes during biological treatment of wastewater by

damaging microorganisms (e.g., bacteria, protozoa). Lots

of metal salts are soluble in water and consequently cannot

be separated by physical separation (Hussein et al. 2004).

Physico-chemical methods, such as evaporative recovery,

chemical oxidation or reduction, chemical precipitation

and filtration, electrochemical treatment, ion exchange, or

membrane technologies have been widely used to remove

heavy metal ions from wastewater. The main problem of

these processes is that they may be ineffective and/or rather

expensive, when the concentration of dissolved metal ions

is lower than 100 mg l-1 (Volesky 1990a, b). Biological

methods for the removal of metal ions may provide an

attractive and cost-effective alternative to physico-chemi-

cal methods (Kapoor and Viraraghavan 1995), since many

microorganisms are able to remove metal ions from aquatic

solutions by metabolically active (bioaccumulation) and/or

passive (biosorption) processes (Chojnacka 2010).

Algae are in the focus of scientific interest because of

their mass productions (blooms) and possible toxic prop-

erties (Perovic et al. 2000; Vasas et al. 2012; Zhang et al.

2012). Algae play more and more important roles in a wide

range of economical and environmental issues in the last

few years, obviously they are also involved in wastewater

treatment and sequestering of toxic, essential or precious
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metals (Munoz and Guieysse 2006; de Bashan and Bashan

2010; Das 2010). Algal cell wall has a key role in metal

removal, especially in biosorption processes, which are

also important in metal binding of living biomass. Cell wall

of green algae (Chlorophyta) is composed mainly from

cellulose, and a high percentage of the cell wall is struc-

tured from glycoproteins, proteins bound to polysaccha-

rides (Romera et al. 2006). Over the metal-binding

capability of cell wall, microalgae and some fungi are able

to produce peptides capable to bind heavy metals. These

molecules, as organometallic complexes, are further par-

titioned inside vacuoles. They facilitate the control of the

cytoplasmic concentration of heavy metal ions, thus pre-

venting or neutralizing the potential toxic effects (Cobbett

and Goldsbrough 2002). It is difficult to decide whether

algal biomass is better or not than others (bacterial or

fungal). The results of various studies are not easy to

compare directly due to the different data presentation of

various authors’ (Wang and Chen 2009). Nevertheless,

study of photosynthetic organisms is justifiable, because

there are generally accepted procedures in wastewater

treatment technology, in which the presence of these

organisms can be considered, or easy to implement (Pe-

rales-Vela et al. 2006).

Over the well-studied aspects of toxic heavy metals

(Cr; Cd; Pb), effects of trace elements (Fe; Cu; Zn) on the

growth of phytoplankton species still have been in the

focus of interest for a long time. Zinc is an essential trace

element, necessary for living organisms (Sugarman 1983;

Broadley et al. 2007; Prasad 2008). Zinc is found in a

great number of specific enzymes (US NRC 2000), serves

as structural ion in transcription factors and is stored and

transferred in metallothioneins (Cotton et al. 1999). Zinc

is known as the second most abundant transition metal

after iron in organisms, and it is the only metal that

appears in all enzyme classes (Broadley et al. 2007).

Although zinc is essential, excess of this element can be

toxic. Excessive absorption of zinc suppresses copper and

iron absorption (Fosmire 1990). Free zinc ion in solution

can be highly toxic (Eisler 1993), and many data in the

literature show that just micromolar amounts of the free

ion cause the death of some organisms (Muyssen et al.

2006). Zinc resistance of microalgae varies within a very

wide range (from several mg l-1 to several hundreds of

mg l-1 (Travieso et al. 1999; Nishikawa and Tominaga

2001; Li et al. 2006; Monteiro et al. 2009, 2011a, b). In

general, it can be said that many microalgae can bind

significant amounts of zinc (Brinza et al. 2007). The

above-mentioned cell wall properties and phytochelatin

production abilities are behind this phenomenon. Simi-

larly to other metals, elevated zinc levels may cause

morphological changes or oxidative stress in microor-

ganisms, including algae (Gold et al. 2003; Morin and

Coste 2006; Tripathi and Gaur 2006; Li et al. 2006).

Effective concentrations depend on the tolerance/sensi-

tivity of algal species. Laboratory studies showed that

zinc pretreatment could enhance the tolerance of algae

toward toxic metals others than zinc (e.g. Cd, Hg, Cu, Pb;

Lehmann et al. 1998; Tsuji et al. 2002), so zinc-tolerant

species could be good subjects of biosorbent, metallo-

thionein or phytochelatin research (Andrade et al. 2004;

Perales-Vela et al. 2006). To take these facts into con-

sideration, it is reasonable to study the metal tolerance

and removal ability of inland algal species, which could

have relevant potential in water treatment.

Monoraphidium species are applied for several bio-

technological events (Fujii et al. 2009; Gattullo et al. 2012;

Yang et al. 2012; Yu et al. 2012). There are a few data

about metal tolerance and metal removal ability of

Monoraphidium species (Hornstrom et al. 1995; Palmieria

et al. 2000; Takami et al. 2012; de Queiroz et al. 2012), but

according to our knowledge, there are no data about their

zinc tolerance.

Although the average zinc concentration ranges from 5

to 100 lg l-1 in Hungarian surface waters, zinc is one of

the most abundant metal contaminant in wastewaters in

Hungary. Zinc concentration can be increased in conse-

quence of mining or industry (electroplating plants,

pharmaceutical companies, paint factories), moreover

household and traffic activities (Horváth and Gruiz 1996;

Ódor et al. 1998; Bird et al. 2003). The aim of this study

was to investigate the effects of zinc on growth, cell

morphology, oxidative stress responses, and zinc removal

activity of phytoplankton species, which are common in

Hungarian surface waters. Green algae Monoraphidium

pusillum and Monoraphidium griffithii were treated with

zinc in a wide concentration range (0.2–160 mg l-1) to

get detailed data of the sensitivity and zinc removal

ability, hereby the possible future role of these wide-

spread algae of surface waters in bioremediation. Exper-

iments were carried out in 2012–2013, on the Department

of Hydrobiology, University of Debrecen, Debrecen,

Hungary.

Materials and methods

Strains, culturing conditions, and experimental design

Monoraphidium pusillum (Printz) Komárková-Legnerová

(ACCDH-UD0911) and M. griffithii (Berkeley) Komár-

ková-Legnerová (ACCDH-UD1008) are cultured in the

Algal Culture Collection of Department of Hydrobiology,

University of Debrecen (ACCDH-UD). Cultures are

maintained in Jaworski’s medium (pH: 7–7.5), in 250-ml

Erlenmeyer flasks (200 ml culture per flask), bubbled with
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sterile air, at 24 �C, under continuous irradiation. Treat-

ments were achieved within the same conditions, in

500-ml Erlenmeyer flasks (400 ml culture per flask).

Control cultures contained no added zinc, and ZnSO4

(Reanal, Hungary) was added to the treated cultures to

reach 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 5.0, 10, 20, 40, 80, 120

and 160 mg l-1 zinc concentrations. Negative controls

(medium ? zinc, without algae) were applied for all zinc

concentrations to check the maintenance of the metal

concentration added to the culture medium during the

timeframe of the experiments (7 days). All experiments

were done in triplicates.

Growth of the control and treated cultures was followed

by counting the cell number and measuring the chlorophyll

a content and dry mass of the cells. Cell numbers were

counted according to the European Standard EN 15204

(2006) using an Olympus BX50 fluorescent microscope at

4009 magnification. Changes in cell morphology were

followed by the same microscope at 1,0009 magnification,

on days 0, 3 and 7 of the experiments.

For chlorophyll content and dry mass measurements,

6 ml samples were collected daily, centrifuged (5 min,

10,000 rpm, Micro-centrifuge Type-320a), and after

removal of supernatants, pellets were lyophilized (Christ

Alpha 1–2 LD plus) and weighed (Ohaus AdventurerTM

Pro). Chlorophyll a contents were measured from the

weighed samples applying the methanolic extraction

method of Felföldy (1987). Spectroquant Pharo 300

spectrophotometer was used for the spectrophotometric

measurements.

Measurement of changes in lipid peroxidation

Lipid peroxidation levels were measured in significantly

affected, but still considered as living cultures and were

expressed as the amount of thiobarbituric acid reactive

substances (TBARS), following the method of Verma

and Dubey (2003). Samples of 6 ml were collected at

days 0 and after 72 h, samples were centrifuged (5 min,

10,000 rpm, Micro-centrifuge Type-320a) and after

removal of supernatants, pellets were used for the reac-

tions. Briefly: pellets were resuspended in 1 ml of 0.25 %

(w/v) 2-thiobarbituric acid (TBA) in 10 % (w/v) trichlo-

roacetic acid (TCA). Mixtures were incubated at 95 �C for

30 min, and then, they were quickly cooled in ice bath and

centrifuged (5 min, 10,000 rpm, Micro-centrifuge Type-

320a). The absorbance of supernatants was measured at

532 and 600 nm (for correction of unspecific turbidity).

TBA solution in TCA served as blank. Amounts of TBARS

were calculated to unit of cell number using the extinction

coefficient of 1.56 9 105 M-1 cm-1. Results are given in

percentage, and 100 % is the value that was measured in

control culture at the beginning of the treatments.

Measurement of the total amount of removed zinc

Zinc contents of the cell-free supernatants were measured

according to the Hungarian Standard MSZ 1484-3:2006 5.

by Atom Absorption Spectrometry (AAS, UNICAM 969

with GF90 plus oven transformer and FS90 plus oven

sample tray unit), in the laboratory of Environmental

Protection, Nature Conservation and Water Authority,

Trans-Tiszanian Region. Samples of 6 ml from signifi-

cantly affected, but still considered as living cultures, were

collected at days 0, 3, and 7 of the experiments and cen-

trifuged (5 min, 10,000 rpm, Micro-centrifuge Type-320a)

and zinc contents of supernatants were measured. Ten-fold

diluted samples of 20 ll were measured, and all mea-

surements were done in triplicate. For calibration, MERCK

ICP IV multielement standard was used. Zinc precipitation

in negative controls (medium ? zinc, without algae) were

measured and calculated by the same way. Amounts of

zinc removed by the cells were calculated based on

decreasing zinc contents of the supernatants, corrected with

the amount of precipitated zinc. Results were given to unit

of dry mass.

Measurement of intracellular level of zinc

Intracellular zinc content was measured according to the

method described by Tripathi and Gaur (2006). To define

intracellular zinc content, 6 ml samples from significantly

affected, but still considered as living cultures, were col-

lected at days 0, 3, and 7 of the experiments. The algal

suspensions were centrifuged (5 min, 10 000 rpm, Micro-

centrifuge Type-320a), and after removal of supernatants,

pellets were washed in 5 ml of 2 mM EDTA for 10 min to

remove all of the surface-bound zinc without any effect on

the internal zinc content. After centrifugation, pellets were

transferred to 5 ml of digestion mixture containing HNO3

(70 %), H2O2 (30 %), and deionised water at a 1:1:3 ratio

(Bates et al. 1982). Digestion was performed on a hot plate

at 80 �C until the solutions became colorless. The residues

were dissolved in 2 % (v/v) nitric acid and were adjusted to

a final volume of 5 ml. The samples were analyzed for zinc

content by AAS.

Statistical analyses

One-way ANCOVA was used to determine the signifi-

cances among the tendency differences of growth curves of

control and treated cultures (Zar 1996; Hammer et al.

2001). For statistics of morphology changes, oxidative

stress and zinc removal data were subjected to analysis of

variance (two-way ANOVA). Tukey’s test as multiple

comparison procedure was used to show the significant

differences between means at the 5 % level.
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Results and discussion

Growth of the cultures

Both in M. pusillum and M. griffithii cultures, 0.25, 0.5, and

1.0 mg l-1 zinc caused slight, but not significant increase

in cell number compared with control cultures (Fig. 1a, b).

Zinc concentrations from 1.5 to 10 mg l-1 did not cause

significant alterations in cell numbers (Fig. 1c, d). Treated

cultures differed significantly from control cultures only

from 20 and 10 mg l-1 zinc in the case of M. pusillum and

M. griffithii, respectively (P\ 0.001; Fig. 1e, f), so the

sensitivity of the two species was different on the basis of

cell number. There were no significant differences among

the effects of zinc in concentrations higher than 40 mg l-1

(80, 120 and 160 mg l-1, Fig. 1g, h). Growth of the cul-

tures was strongly inhibited, but it has to be noted that M.

pusillum showed a slight increase in cell numbers even at

the presence of 160 mg l-1 zinc.

As it was observed in the case of cell number changes,

M. pusillum was less sensitive to zinc than M. griffithii also

on the basis of chlorophyll a content. Lower zinc con-

centrations (0.25–5 mg l-1) did not cause significant

alterations in chlorophyll a content of M. pusillum cultures,

but significantly lower chlorophyll a level was measured in

M. griffithii cultures treated with 1.0 mg l-1 and higher

zinc concentrations (Fig. 2a–d). While there was detectable

increases in cell numbers at high zinc concentrations,

chlorophyll content remained at low level or decreased at

higher zinc concentrations (from 20 and 10 mg l-1 in the

case of M. pusillum and M. griffithii, respectively, Fig. 2e–

h). Table 1 summarizes the actual zinc concentrations and

the calculated amount of precipitated zinc in negative

controls (medium ? zinc, without algae) for significantly

affected, but still considered as living cultures. Growth

curves and EC50 values showed that inhibition of chloro-

phyll synthesis occurred at lower zinc concentration than

the inhibition of cell division (Figs. 1, 2; Table 2).

As far as we know, these are the first data about zinc

tolerance of these Monoraphidium species, which can be

characterized as zinc-tolerant ones. Comparison of literary

data with each other and with our results may not be

entirely accurate because of different measured growth

parameters and exposition times, yet it seems that the zinc

tolerance of the studied Monoraphidium species is in the

‘‘medium range’’ in comparison with the zinc tolerance

of some other green algae. Growth rates of extremely

zinc-tolerant species, such as a Chlorella vulgaris and a

Scenedesmus acutus strain, did not differ from controls in

the presence of 100–300 and 125 mg l-1 zinc, respectively

(Travieso et al. 1999). EC50 was 300 mg l-1 zinc in the

case of a Chlamydomonas acidophila strain (Nishikawa

and Tominaga 2001). On the other hand, there are species

much more sensitive to zinc than the ones in our study.

Tripathi and Gaur (2006) observed that 1.64 mg l-1 zinc

inhibited the growth of a Scenedesmus strain within 48 h.

Zinc concentration of 6.5 mg l-1 caused growth inhibition

and oxidative stress in a Pavlova viridis strain (Li et al.

2006).

Changes in cell morphology

Morphological changes were followed in significantly

affected, but considered as living cultures (from 10 to

40 mg l-1 treatments). Zinc treatments caused changes in

cell morphology of both studied species, but the changes

were different. The chloroplasts and later the whole cells of

M. pusillum became fragmented, and the cells precipitated

and sunk to the bottom of the flasks. Linear correlation was

observed between these phenomena and the increasing

concentration of zinc. In the case of M. pusillum, the

number of deformed cells in control and in treated cultures

differed significantly from each other in every case

(P\ 0.001, Fig. 3a). Cell morphology changes of M.

griffithii were barely detectable: M. griffithii cells became

slightly more swollen than in control cultures, flocculation

also occurred. Significant differences (P\ 0.001) were

among numbers of deformed cells in control and treated

cultures of M. griffithii, but numbers of deformed cells did

not differed significantly from each other, only in 30 and

40 mg l-1 treatments (Fig. 3b).

Morphology changes of algal taxa as a response to zinc

contamination strongly depend on ecotype of the taxa

(Pawlik-Skowronska 2003), on the concentration of zinc

and on the time of exposure (Gold et al. 2003; Morin and

Coste 2006). In sensitive species (e.g., filamentous green

algae as Stigeoclonium tenue or certain diatoms), these

morphological changes appear at low zinc concentrations

(Pawlik-Skowronska 2003; Gold et al. 2003; Morin and

Coste 2006). It is known that metals able to inhibit normal

cell division due to binding to sulfhydryl groups, which are

important in regulating cell division (Visviki and Rachlin

1991). In the case of the studied Monoraphidium species,

cell morphology changes appeared only from relatively

high zinc concentration (10 mg l-1). There was detectable

increase in cell number in M. pusillum cultures treated with

40 mg l-1 zinc, this could be the reason of highest abun-

dance of abnormal cells. Increasing mitotic abnormalities

caused by zinc could be one of the reasons of this phe-

nomenon. Morphological changes seemed not to be highly

bFig. 1 Changes of cell numbers in control cultures and in cultures

with different initial zinc concentrations of M. pusillum and M.

griffithii green algae. Mean values (n = 3) and standard deviations

are plotted, and different lowercase letters indicate significant

differences (P\ 0.05)
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specific or characteristic to zinc treatment in the studied

green algae, contaminants affecting cell division other than

zinc, may cause similar morphological changes.

Changes of lipid peroxidation levels

Oxidative stress responses were followed in significantly

affected, but considered as living cultures (from 10 to

40 mg l-1 treatments). The amount of TBARS increased in

proportion to the increasing zinc concentration in M. pus-

illum cultures. There were no significant differences

between control and 10 mg l-1 treatment. The other

treatments differed significantly from control, but not from

each other (Fig. 4a). TBARS levels did not differed sig-

nificantly in control and in 10 mg l-1 zinc-treated M.

griffithii cultures, but significant differences were observed

between control and among the other treatments

(P\ 0.001). The highest TBARS concentration was mea-

sured at 30 mg l-1 zinc treatment (Fig. 4b). 30 and

40 mg l-1 initially added zinc caused significantly higher

increase in TBARS levels in M. griffithii cultures than in

M. pusillum cultures (P\ 0.001). M. griffithii seemed to be

more sensitive from enzymological point of view:

30–40 mg l-1 initially added zinc caused 200 % increase

in the amount of TBARS within 72 h comparing to control.

This value is 1.2–1.5-fold higher than that of M. pusillum.

Algae show great diversity in oxidative stress responses

to zinc, as it is indicated by our results and literary data.

There were detectable increasing amount of TBARS in a

Scenedesmus sp. already from 5 lM zinc (*0.3 mg l-1,

Tripathi and Gaur 2004). Zinc was observed to cause an

increase in glutathione pools, in particular of glutathione

disulfide (GSSG), causing a decrease of its redox ratio, i.e.,

to cause oxidative stress in Enteromorpha species already

from 0.1 to 0.2 mg l-1 (Malea et al. 2006). On the other

hand, lipid peroxidation levels in Chlorella pyreonidosa

increased only from 30 lM zinc (*2 mg l-1; Vavilin et al.

1998), or from 6.5 mg l-1 in P. viridis (Li et al. 2006).

Green algae used in our study can be regarded as not

sensitive to zinc from oxidative stress aspects, and amount

of TBARS revealing enhanced lipid peroxidation increased

only from relatively high (C20 mg l-1) zinc concentration.

Removal of zinc

Zinc removal was followed in significantly affected, but

considered as living cultures (from 10 to 40 mg l-1 treat-

ments). Both species were able to remove notable amount

of zinc by the end of the experiments (Fig. 5; Table 3). In

the case of M. pusillum, zinc removal ability differed sig-

nificantly in the different treatments and at different

exposition times (P\ 0.001). The highest removal activity

appeared in the 20 mg l-1 zinc-treated cultures on the

7th day, 29.3 mg g-1 zinc was removed (Fig. 5a), which

meant 52.8 % of the initial zinc content (Table 3). A sig-

nificant amount of zinc bound quickly at the beginning of

the experiments in 20, 30 and 40 mg l-1 zinc-treated cul-

tures. There was no significant correlation between the zinc

concentration, exposition time, and the amount of removed

zinc (Fig. 5a). Removal ability of M. griffithii cells was

different: although significant alterations occurred in zinc-

binding activity of M. griffithii in different treated cultures

(P\ 0.001), the most amount of zinc per unit of dry mass

was bound in the 10 mg l-1 treated cultures, on the 3rd day

(29.7 mg g-1, Fig. 5b). Highest removal capacity as per-

centage of initial zinc content occurred in the same cultures

on the 7th day (84.8 %, Table 3). As it was observed in M.

pusillum cultures, a significant amount of zinc bound

quickly at the beginning of the experiments in 20, 30 and

40 mg l-1 zinc-treated M. griffithii cultures. The results

show that only a small part of total amount of removed zinc

bFig. 2 Changes of chlorophyll a contents in control cultures and in

cultures with different initial zinc concentrations of M. pusillum and

M. griffithii green algae. Mean values (n = 3) and standard deviations

are plotted, and different lowercase letters indicate significant

differences (P\ 0.05)

Table 1 Actual zinc concentrations and the calculated amount of precipitated zinc in negative controls (medium ? zinc, without algae) after 3

and 7 days of exposition

Concentration of added Zn (mg l-1) 2.5 5 10 15 20 30 40

Actual concentration of Zn (mg l-1) on the 3rd day 1.77 4.48 8.99 13.63 18.85 28.58 38.08

Precipitated Zn (mg l-1) on the 3rd day 0.73 0.52 1.01 1.37 1.15 1.43 1.92

Actual concentration of Zn (mg l-1) on the 7th day 1.74 3.99 7.86 13.51 17.91 28.18 37.4

Precipitated Zn (mg l-1) on the 7th day 0.76 1.01 2.14 1.49 2.09 1.82 2.06

Table 2 EC50 values calculated to cell number and to chlorophyll

a content after 3 and 7 days of exposition

EC50

mg l-1 Zn

Based on

cell

number,

3 days

(72 h)

Based on

cell

number,

7 days

(168 h)

Based on

Chl

a content,

3 days

(72 h)

Based on

Chl

a content,

7 days

(168 h)

M. pusillum 33.69 27.7 18.79 16.99

M. griffithii 25.63 18.36 9.53 10.07
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is intracellular in the case of both species (Fig. 5c, d).

There were no significant effects of zinc concentration and

exposition time on intracellular zinc content (Fig. 5c, d).

The results show that removal capacity of M. pusillum

was the highest at 20 mg l-1 zinc concentration on the

7th day, while in the case of M. griffithii maximal zinc

removal appeared on the 3rd day in 10 mg l-1 treated

culture. This phenomenon is just the opposite of the

observations of Tripathi and Gaur (2004) or Monteiro et al.

(2011a, b), they described that the highest zinc mass

removal occurred in Scenedesmus cultures exposed to the

highest metal concentration. On the other hand, Omar

(2002) also observed a decrease in the amount of bound

zinc at higher concentrations. It seems that there was a

strong primary binding of zinc (at 20–30 mg l-1), followed

by slower secondary binding. This could explain why the

amount of removed zinc increased significantly to the 3rd

and 7th days in 20–30 mg l-1 zinc-treated Monoraphidium

cultures. The significant decrease in zinc biosorption in

40 mg l-1 treated cultures may indicate that there is some
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mechanism involved in zinc removal, which modify the

binding sites of the cell wall of vital cells, similarly to

heating or drying processes (Monteiro et al. 2011b). A

partial disruption of structural components in the cell walls

owing to high zinc concentration is presumable, which

leads to protein denaturation and is thus responsible for the

decrease in number of the functional sites available to

interact with zinc ions (Monteiro et al. 2011b). Proof of this

hypothesis requires further experiments.

The results show that a larger proportion of removed

zinc is bound by adsorption onto the cell surface in the case

of both studied strains. Only small increases in intracellular

zinc were observed with increasing amounts of zinc in the

culturing media, which is in accordance with the data of

other studies (Hassler et al. 2005; Monteiro et al. 2011a, b).

In contrast, in some cases accumulated quantity of metals

could be higher than adsorbed, as for certain C. vulgaris

strains or other bioaccumulators (Nacorda et al. 2007).

As in the case of growth, comparison of the literature

data with each other and with our results may not be entirely

accurate because of different measured growth parameters,

exposition times, and different extrapolation of measured

data. It seems that zinc-binding ability of the studied species

is in the ‘‘medium range’’ in comparison with that of some

other green algae, similarly to their zinc tolerance. There are

more capable isolates: Schmitt et al. (2001) claimed maxi-

mum specific adsorption capacities of 72.06 mg g-1

for Scenedesmus subspicatus (exposed to 0.5 mg l-1 zinc

for 4 days), Ahuja et al. (2001) also reported higher

zinc removal ability for the cyanobacterium Oscillatoria
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angustissima (35.7 and 83.4 mg g-1; exposed to 20 and

30 mg l-1 zinc, respectively for after 10 days). High zinc

adsorption was reported for an other O. angustissima strain

and for Microcystis sp. (641.25 and 999.5 mg g-1, respec-

tively; Ahuja et al. 1999; Pradhan et al. 1998). Otherwise,

the application of these cyanobacteria as biosorbents is

questionable, because of their possible toxic properties

(Vasas et al. 2010, 2013). Some species of the family

Scenedesmaceae can be considered as outstanding zinc

binders, 360 and 103 mg g-1 bound zinc were reported for

a Desmodesmus pleimorphus isolate and a laboratory strain,

respectively, (Monteiro et al. 2009) and 836,5 mg g-1 was

reported for a Scenedesmus oblicuus strain (Monteiro et al.

2011b). On the other hand, there are strains, which can be

characterized more comparable or even weaker zinc-bind-

ing ability, than the ones in our study: Romera et al. (2007)

reported that the filamentous green alga Spirogyra insignis

removed a maximum of 21.1 mg g-1 of zinc, Pawlik-

Skowrońska (2003) reported 8.1 mg g-1 for an other fila-

mentous green alga, Stigeoclonium tenue (exposure to

2 mg l-1 zinc for 3 weeks). A strain of Scenedesmus

quadricauda removed 5.03 mg g-1 zinc after 24 h incu-

bation from solutions ranging from 0.5 to 11 mg l-1 (Omar

2002), similar amount (5 mg g-1) was reported for Euglena

gracilis (Fukami 1988).

The most common arrangements used for the removal of

inorganic contaminants are high-rate algal ponds (HRAP)

and the patented algal turf scrubber (ATS), which employs

suspended biomass of common green algae, cyanobacteria

or consortia of both (Perales-Vela et al. 2006). Algal spe-

cies, which are common in the environment of the planned

localities of these kinds of ponds, could be more suitable to

inoculate and maintain these systems than species from an

entirely different environment. On the basis of the results

presented here, it can be concluded that there are common

green algal species in surface waters, whose tolerance to

zinc and zinc-binding ability makes them feasible in treat-

ment of wastewaters with 1–20 mg l-1 zinc contamination.

Conclusion

Based on these results, it can be concluded that the studied

green algal species are zinc tolerant; they are able to sur-

vive relatively high zinc concentrations. This paper pro-

vides new data for the zinc tolerance and zinc removal

ability of the green algae M. pusillum and M. griffithii.

Both species are able to remove significant amount of zinc,

and the larger proportion of removed zinc is bound by

adsorption onto the cell surface. Living biomass of the

studied species could be applicable for biosorption,

3–7 days exposition up to 20 mg l-1 zinc concentration at

pH 7–7.5. It can be concluded that living biomass of the

studied strains—common algal species in Hungarian sur-

face waters—as newly introduced metal tolerant species

could be good alternatives for application and/or bases of

future research.

Acknowledgments The research was supported by the EU and co-

financed by the European Social Fund under the project ENVIKUT
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