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Abstract This study introduces the Hill model for mod-

elling sorption kinetics and illustrates its efficacy using

formal model selection procedures. Although the coeffi-

cient of determination (R2) value can be used to ensure

goodness-of-fit of a particular model to a set of data, a

measure that incorporates the number of model parameters,

such as the Bayesian information criterion, law of iterated

logarithm criterion, Akaike information criterion, and the

extra sum-of-squares F-test is necessary to undertake reli-

able model selection. This study undertook a formal model

selection procedure based on these criteria, in combination

with the coefficient of determination, for a range of can-

didate kinetics sorption models [the pseudo-second order

(PSO), the intra-particle diffusion (IPD), Power, Elovich,

and the four and five parameter Hill models]. It was found

that the model order that statistically best described the

data was Hill 5[Hill 4[ pseudo-second order[Elo-

vich[ Power[ IPD as given by the evidence ratios,

information criterion weights and Bayes factors. The extra

sum-of-squares F-test, only applicable to nested models,

confirms the best fit order as Hill 5[Hill 4[ PSO mod-

els. Two new parameters (T and kHill) have also been

defined that give the Hill models a mechanistic meaning

directly comparable to the well-defined parameters of the

pseudo-second-order model, namely, the pseudo-second-

order rate constant kpso and the instantaneous sorption

coefficient hpso. In the field of geochemistry the use of the

four and five parameter Hill models for describing sorption

kinetics has been overlooked with many studies favouring

the PSO model. It is strongly recommended that the Hill

model be considered more widely as a general predictive

tool in geochemistry.

Keywords Hill model � Pseudo-second order �
Adsorption � Kinetics � Model selection � AIC

Introduction

The removal of contaminants from aqueous solutions onto

solid substrates is an increasingly well utilised remediation

method (Robinson et al. 2001). Many studies have inves-

tigated modelling sorption system kinetics. For example,

Fan et al. (2003) studied the application of pseudo-first

order (PFO) and pseudo-second order (PSO) models for

fluoride removal by hydroxyapatite, fluorspar, calcite and

quartz; Igwe and Abia (2007) investigated the removal of

metals using maize cob; Leyva-Ramos et al. (2010) studied

fluoride sorption using diffusion and kinetic models; and

Dimovic et al. (2011) analysed the removal of Co2? by

bone char using PFO and PSO kinetic models.

A series of studies have also compared linear and non-

linear fitting methodologies for sorption kinetic models,

(Ho (2006), Kumar and Sivanesan (2006b), Kumar and

Sivanesan (2006a), El-Khaiary et al. (2010) and Chowdh-

ury and Das (2011)). These studies used the coefficient of

determination (R2) to compare between model fits and

recommended nonlinear fitting methodologies over linear

methods. However, the R2 approach does not take into

account the number of model parameters and will therefore

always favour higher parameter models, and as such, is a

poor method for model selection (Johnson and Omland

2004). Methods that account for a model’s goodness-of-fit
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(R2) and its number of parameters are better suited for

model selection. Such methods include information crite-

rion (IC) and likelihood ratio tests (LRT).

The most widely used LRT is the statistical F-test which

takes into account the number of parameters and data

points and compares the fits based on the sum-of-squares.

The F-test (Eq. 1) does this through statistical hypothesis

testing, however, the models must be nested (i.e. the first

model is a simplified version of the second).

F ¼ RSS1 � RSS2ð Þ= df1 � df2ð Þ
RSS2=df2ð Þ ð1Þ

where F is the F-statistic (ratio), RSS1 and RSS2 are the

sum of squared residuals of the less and more complicated

models, respectively; df1 and df2 are the respective degrees

of freedom [number of data points (N)—number of

parameters (p)] for the less/more complicated models.

Computing the F-statistic then allows the p value (proba-

bility value) to be found. If the p value is less than a pre-

defined significance level (a), generally 5 %, then the

simpler model (the null hypothesis) can be rejected. If the

F-statistic approaches 1 then the simpler model will be the

better fitting model and p[ a.
Model selection based on information criteria has the

advantage that it can be used to compare both nested and

non-nested models and is simple to interpret. The ‘‘best’’

model is defined as the one with the lowest (most negative)

information criterion when comparing models fitted to the

same data. Model selection is most commonly carried out

using the Akaike Information Criterion (AIC, Eq. 2), after

Akaike (1974).

AIC ¼ N: ln
RSS

N

� �
þ 2ðpþ 1Þ ð2Þ

where N is the number of data points, RSS is the sum of

squared residuals, andp thenumber ofmodel parameters. The

AIC is calculated using the Kullback–Leibler discrepancy (a

measure of the distance between the probability density

generated by themodel and reality (Wagenmakers andFarrell

2004)) and takes into account both a model’s goodness-of-fit

R2 and its number of parameters. However, it has the

disadvantage of not being ‘‘consistent’’, meaning it does not

guarantee that the probability of selecting the wrong model

approaches zero as the number of data points tends to infinity

(Foubert et al. 2002; Wagenmakers and Farrell 2004; Stone

2005). Information criterion that are ‘‘consistent’’ include the

Schwarz Bayesian information criterion [BIC, Eq. 3,

(Schwarz 1978)] and Khinchin’s Law of Iterated Logarithm

Criterion [LILC, Eq. 4, (Hannan and Quinn 1979; Foubert

et al. 2002)].

BIC ¼ N: ln
RSS

N

� �
þ ðpþ 1Þ ln ðNÞ ð3Þ

LILC ¼ N ln
RSS

N

� �
þ p ln ðln ðNÞÞ ð4Þ

where the parameters are as described above.

The BIC is grounded in Bayesian principles and is based

on the empirical log-likelihood and does not require the

specification of priors. The BIC therefore attempts to

identify a posteriori what the most probable model is for a

particular data set (Atukeren 2010). The small and large

sample properties of the BIC are defined in the literature

and document extensive evidence in favour of the BIC over

other model selection criteria (Atukeren 2010). The

advantages and disadvantages of the AIC and BIC have

been discussed elsewhere and for a theoretical discussion

the reader is directed to Kass and Raftery (1995), Burnham

and Anderson (2002), and Wagenmakers (2007).

The BIC is structurally similar to the AIC but includes

an additional penalty for the number of data points and

therefore favours simpler models as N ? ?. Qian and

Field (2002) showed that model selection criteria that

include a penalty term as an increasing function of the

model dimension (i.e. p) will always select the simpler

model, consequently for large data sets the use of BIC and

LILC as model selection criterion is preferred. In com-

parison to the F-test, Atukeren (2010) reported that for data

with N[ 50 the BIC behaves more conservatively as

compared to an F-test conducted at the a = 5 % signifi-

cance level.

It has been normal practice in many fields to accept the

‘‘best’’ model based on the raw AIC, BIC or any infor-

mation criteria values, with the ‘‘best’’ model having the

lowest (most negative) value. This, however, makes it

difficult to unambiguously interpret the results (Wagen-

makers and Farrell 2004). A better method is to calculate

the relative criterion weights for each model with the

model having the most statistical confidence being the one

with the lowest value (Wagenmakers and Farrell 2004).

The information criterion weights, wi(IC), for the ith

model, can be found from Eq. 5a, where IC is the respec-

tive information criterion (AIC, BIC, etc.).

wiðICÞ ¼
expð�0:5DiðICÞÞPK

k¼1

expð�0:5DkðICÞÞ
ð5aÞ

Di IC is the difference in information criterion value for

the ith model with respect to the information criterion

value of the ‘‘best’’ candidate model (i.e. the model having

most negative IC value, ICmin) is calculated from:

Di ICð Þ ¼ ICi � ICmin ð5bÞ

The strength of evidence in favour of one model over

another is then obtained by dividing their respective

relative weights (further explanation and examples are
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given in Wagenmakers and Farrell (2004)). This is also

supported by Motulsky and Christopoulos (2004) who

define an evidence ratio (ER):

ER ¼ 1

e�0:5DIC
ð6Þ

In addition, BIC calculations can also be used to

approximate the strength of evidence in favour of one

model over another using procedures developed by Jeffreys

(1939) as outlined in Kass and Raftery (1995) and Raftery

(1995). This involves the calculation of an approximate

Bayes factor (BF) without the difficulties of formal

Bayesian statistical analysis (i.e. the calculation of a

prior). It has been shown (Kass 1993; Kass and Raftery

1995) that the BIC is related to the BF B as shown in Eq. 7.

2 ln ðBjkÞ � BICk � BICj ð7Þ

where Bjk is the BF for of model j versus model k, and the BIC

values calculated for themodels viaEq. 3.When 1 B Bjk B 3,

there is evidence for model k being preferred but it ‘‘is not

worthmore than amention’’, when 3 B Bjk B 20 the evidence

is ‘‘positive’’; when 20 B Bjk B 150 the evidence is ‘‘strong’’

and; when Bjk C 150 the evidence is ‘‘very strong’’ (Kass and

Raftery 1995). Inspection of Eqs. 5a–7 indicates that the cal-

culation of the BF (Bjk) is therefore the same as the evidence

ratio (Eq. 6) and/or the inverse of the relative weights.

Model background

Four models commonly used in the geochemical literature

include the PSO model, the intra-particle diffusion (IPD),

Power, and Elovich models. In addition this study con-

siders two new models based on the Hill model never

before used in geochemical modelling.

The PSO model is arguably the most widely used

kinetics sorption model and was used in the studies by

Blandhard 1984, Ho and McKay (1998b) and Chowdhury

and Das (2011). It is often recommended because it con-

siders system heterogeneity (Diaz-Nava et al. 2008). The

nonlinear (preferred) form of the PSO equation is:

qt ¼
t

1
h
þ t

qe

ð8aÞ

where qt (mg g-1) is the amount of contaminant sorbed at

time t,qe (mg g-1) is the sorption capacity at equilibrium, and

the instantaneous sorption coefficient h ¼ kpsoq
2
e(Ho and

McKay 1998b), where kpso is the PSO rate constant

(g mg-1 min-1). The half-life (t0.5) or time for 50 %

maximum removal occurs when qt = qe/2. Equating this

with Eq. 8a it can be shown that

t0:5 ¼
1

kpsoqe
ð8bÞ

The four and five parameter Hill model has been widely

used to study sigmoidal dose effect relationships in

biochemical, physiological, and pharmacological contexts

(Holford and Sheiner 1981; Khinkis et al. 2003). The Hill

equation was introduced by Hill (1910) to describe the

relationship between oxygen tension and the saturation of

haemoglobin (Goutelle et al. 2008) as described by

Barcroft and Camis (1909). A variant of the Hill

equation has recently been used to describe reaction

kinetics in biochemical system (Smadbeck and Kaznessis

2012). However, the Hill model appears to have been

overlooked for studying the kinetics of sorption even

though there is a strong relationship between the Hill

equation (and variations thereof) and the Guldberg and

Waage law of mass action (Goutelle et al. 2008) which

describes the kinetic aspects of chemical reactions.

The four parameter Hill (Hill 4) model is:

qt ¼ Dþ ðA� DÞ
1þ t

kHill4

� ��n ð9Þ

where A is the maximum (equilibrium) removal capacity

(mg/g), D is the minimum removal asymptote or the

amount of contaminant removed (mg/g) as t ? 0, kHill4
(min) is the time when 50 % of the observed removal

((A - D)/2) has occurred (half-life) and n is the Hill

parameter (unitless) which reflects the steepness (sig-

moidicity) of the curve. n becomes significant in systems

where initial inhibition of contaminant removal is

observed, for example, where the adsorbate is poisoned

(inhibited) or competition for sorption site exists.

The five parameter model (Hill 5) differs from the Hill 4

model in that it allows for asymmetry in the sigmoidal curve

by the addition of the asymmetry parameter E (unitless):

Varying the parameterE provides significant flexibility in the

initial rate and the shape of the curve.Due to the presence ofE

in Eq. 10a, the half-life time of the reaction can be found from

Eq. 10a. By setting E = 1 (Eqs. 10a and 10b), the Hill 5

equation reduces to the Hill 4 (Eq. 9) and therefore Eq. 10b

becomes t0.5 = kHill5 indicating that the parameter kHill5 in

Eq. 10a is equivalent to the half-life time.

qt ¼ Dþ ðA� DÞ

1þ t
kHill5

� ��n� �E
ð10aÞ

t0:5 ¼ kHill5ðð2
1
Eð Þ � 1ÞÞ

1
�nð Þ ð10bÞ

As the Hill 4 model is a simplified version of the Hill 5

model (e.g. when E = 1), they are considered to be ‘‘nested’’

models (Motulsky and Christopoulos 2004). Similarly it can

be shown that the PSO model is a ‘‘nested’’ (simplified)

version of the Hill 4 model. Consider the case n = 1,D = 0,

and A = qe (the maximum sorption/removal capacity) the

Hill 4 equation, reduces to:
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qt ¼
qet

t þ kHill
ð11Þ

Re-writing the PSO Eq. 8a becomes:

qt ¼
hqet

qe þ ht
ð12Þ

Equating Eq. 11 with 12 it can be shown that:

kHill ¼
qe

hpso
ð13Þ

Therefore, under the given conditions, substituting

Eq. 13 into Eq. 11 gives the PSO Eq. (12). Consequently,

these models are ‘‘nested’’ indicating that the more

complicated Hill models are derived by adding

parameters to the more-simple (PSO) model.

The IPD equation has been used to model many sys-

tems, (Igwe and Abia 2007; McKay and Poots 1980) and

has the form as given by Weber and Morris (1963) in (Ho

et al. 2000):

qt ¼ at0:5 þ C ð14Þ

where qt (mg g-1), a (mg g-1 min-1) is the IPD rate

constant, and C (mg g-1) represents the boundary layer

diffusion effects and t is time (min). A good model fit

indicates that the rate limiting step of a sorption reaction is

likely to be IPD (Weber and Morris (1963) in (Ho et al.

2000)):

The Power model (Eq. 15) is a modified form of the

Freundlich equation (Asci et al. 2012) and has been used to

describe kinetics in soil systems (Motlagh 2012):

qt ¼ atb ð15Þ

where qt (mg g-1), and a (mg g min-1) and b (unitless) are

rate constants that are calculated from the intercept and

slope (respectively) of a linear plot of ln(qt) versus ln(t). A

good model fit indicates a diffusion-controlled process

(Havlin et al. 1985).

The Elovich model, originally proposed by Roginsky

and Zeldovich (1943) (McLintock 1967) has been used to

describe the sorption kinetics of gases on heterogeneous

surfaces (Low 1960) and also to study the heterogeneous

sorption kinetics of many types of systems (Chien and

Clayton 1980; Ho and McKay 1998a; Igwe and Abia 2007;

Pavlatou and Polyzopoulos 1988; Perez-Marin et al. 2007).

The traditional linear form of the Elovich model, as given

by Perez-Marin et al. (2007) is:

qt ¼
1

b ln abð Þ þ
1

b ln tð Þ ð16Þ

where a is the initial sorption rate (mg g-1 min-1) and b is

the desorption constant (g mg-1). For the data to be

described by the Elovich model, a plot of qt versus

ln(t) should yield a linear fit.

Analysis of model selection methodologies has previ-

ously been explored for sorption isotherms (Ho 2004). This

study concluded that it is not appropriate to use R2 to

compare the fitting of kinetic models, but did not propose

an alternative. More recent research (Wen et al. 2006; Ho

2006) also failed to put forward an improved model

selection methodology. This paper applies the BIC, LILC,

and AIC model selection criterion along with the F-test and

the coefficient of determination (R2) to compare the rela-

tive and absolute performance of six candidate models

applied to high resolution kinetic data from eight experi-

mental systems varying in pCO2 and calcite surface area.

The candidate models include the PSO, the Hill 4 and Hill

5, IPD, Power, and Elovich models. The models were fitted

under the assumptions of the ordinary least-squares (OLS)

fitting under the standard assumptions of error indepen-

dency, normality, and constancy of variance. All experi-

ments were carried out at the Centre for Geotechnical and

Materials Modeling research laboratories at the University

of Newcastle, NSW, Australia over the period 2011–2013.

Materials and methods

In this study, a series of free-drift kinetic experiments as

described by Plummer et al. (1978), were undertaken to

compare the ability of a range of models to characterise the

kinetics of fluoride removal in the presence of granulated

calcite (CaCO3). Experimental parameters include the cal-

cite fraction size (surface area) and the CO2 partial pressure

(pCO2), yielding a wide range of experimental dynamics.

The fluoride concentration was recorded at 10 or 60 s

intervals, yielding a high temporal resolution under con-

trolled conditions. Prior to the start of each experiment,

400 mL of potassium fluoride stock solution was added to

500 mL polypropylene beakers, pH and F electrodes were

installed and stirring was initiated. Calcite of the selected

size was pre-weighed so that a constant solid liquid ratio of

33.3 g/L was attained for each experiment. A sealed ‘‘At-

mosbag’’ (Sigma-Aldrich) was installed around the experi-

ment and CO2 gas was used to inflate the bag through a tube.

CO2 gas is used to enhance the fluoride removal kinetics

(Sleap et al. 2013) and a very slow gas flow was continued

throughout the experiment to maintain positive pressure

inside the ‘‘Atmosbag’’.

The experiments were typically allowed to run for

1–7 days, to ensure that enough timewas given for the system

to reach equilibrium. Calibration of the fluoride ion-selective

and pH electrodeswas routinely conducted at the start and end

of each experiment. It was found that the final calibration

closelymatched the original values and therefore, the driftwas

negligible. At the start and the end of each experiment, sam-

ples were taken for ion chromatography analysis.
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With free-drift methodology, the rate of change in pH

directly relates to the CaCO3 dissolution rate (Sun et al.

2000) and so both the fluoride concentration and pH data

were recorded for the duration of the experiments. The

experiments were undertaken in a temperature-controlled

environment at 20 ± 0.2 �C. The preparation, equipment,

and methodology of the experiments are described in the

following sections.

Granulated calcite (CaCO3) was used as the solid sub-

strate in this study. Crushed limestone from a quarry

(DML, Attunga, NSW) was prepared for free-drift kinetic

experiments. This involved sieving into particle size frac-

tions of\150 lm (ASTM-E11\ 100 mesh), 150–300 lm
(100–50 mesh), 300–425 lm (50–40 mesh), and

425–600 lm (40–30 mesh), rinsed with deionized water

and oven dried at 40 �C. Multipoint Kr-BET (Brunauer,

Emmett, and Teller) sorption analysis was conducted on all

size fractions, prior to the experiments using a Micromer-

itics Tristar 3000 to determine the surface area of the

various sieved fractions. The calcite was then examined

using an X-ray fluorescence analyser (Philips PW1404

wavelength dispersive sequential XRF, with\±2 % error

for elemental analysis). This showed that the limestone

used in these experiments was 99 % pure CaCO3 with trace

quantities of MgO (1 %), strontium (168 ppm), barium

(71 ppm), zirconium (40 ppm), and other trace elements at

concentrations of\40 ppm.

The experiments were conducted in two different CO2

partial pressure environments, *10-0.52 atm (30 %) and

*100 (100 %). The gas was commercially produced (BOC

Scientific Gases) with certificates of analysis to ANA5024

standards and indicated errors of ±0.2 % or less. Overhead

digital stirrers were utilised to provide highly accurate

stirring rates which were logged using Lab Companion

software. A stirring rate of 200 rpm (±0.8 %) was used

throughout the experimental process and checked using a

stroboscope. Temperature was recorded using a DT80 da-

tataker with T type thermocouples located under each

beaker. To determine the effects of the Hill sigmoidal

parameter n (Eqs. 9 and 10a) experiments were conducted

under the exact same conditions using \150 lm only at

pCO2 *10-1.15 atm (7 %), *10-1.0 atm (10 %),

*10-0.52 atm (30 %), *10-0.22 atm (60 %) and

*10� atm (100 %).

Anhydrous potassium fluoride (KF) (Sigma-Aldrich)

and de-ionised (DI) water was used in the preparation of

fluoride stock solutions. In all cases, the initial fluoride

concentration was 2,000 mg/L. The DI water was produced

by a Millipore Milli-Q 185 water de-ioniser (18.2 MX/cm).

Anions (F�, Cl�, SO2�
4 and PO3�

4 ) were analysed using a

Dionex ICS5000 ion chromatograph running Chromeleon

6.8 software equipped with an AS18/AG18 anion capillary/

guard columns with conductivity detection. Ion chroma-

tography calibration standards were prepared from a Dio-

nex Seven Anion Standard II solution by dilution with

18.2 MX/cm DI water. To optimise the ion chromatograph

peak separation and resolution, all samples were syringed

from the beaker and filtered using a 0.45 lm nylon mem-

brane filter (Pall-Life Sciences) and diluted with 18.2 MX/
cm DI water.

The pH was measured using Orion 9165BN pH elec-

trodes. Multipoint calibrations were completed using pH 4,

7 and 10 NIST buffers [Orion] until a slope of between 92

and 102 % of the theoretical pH slope (52–60 mV/decade)

was achieved. Fluoride was measured with Orion 9609BN

fluoride ion-selective electrodes. Multipoint calibrations

were completed using 10, 100, 1,000, and 2,000 mg L-1 of

potassium fluoride made up from stock solution, until a

slope of -54 ± 2 mV/decade was achieved. Exact con-

centrations of each standard were determined by ion

chromatography.

Fluoride probes were placed into the stock solutions

prepared for experimentation and connected to a PC-based

datalogger via ion-selective electrode pre-amplifiers.

CO2(g) was then equilibrated and calcite added, fluoride

removal was then recorded at either 10 or 60 s intervals.

The fluoride ion-selective electrode measured the

activity or ‘‘effective concentration’’ of free fluoride ions in

solution. The fluoride ion activity, A, is related to free

fluoride ion concentration,Cf , by the activity coefficient, ci.
To correct for varying activity coefficients, all fluoride

calibration standards were analysed by ion chromatography

to obtain accurate fluoride concentration values. These ion

chromatography concentration values were then used to

determine calibration curves for the fluoride electrodes.

Consequently, the problems of ionic strength effects (i.e.

activity) were effectively eliminated.

All model fitting was completed with the nonlinear

curve fitting Originpro 9.1 software. Model comparisons,

AIC, BIC, and F-tests were also completed within Orig-

inpro 9.1. GraphPad Prism (v6.0) was also used to cross-

check Originpro 9.1 fitting and for Monte Carlo simula-

tions. Monte Carlo simulations allow randomized Gaussian

resampling of the data (based on a known standard devi-

ation) to construct a ‘‘new’’ set of data.

Data from each experiment were fitted with the candi-

date models using GraphPad Prism (v6.0). The best fit

parameters were then used to simulate a randomized

resampling of the data to construct a new data set calcu-

lated from a Gaussian distribution as per Motulsky and

Christopoulos (2004). The standard deviation of the

residuals (Syx) as reported from the initial model fit was

used for the Monte Carlo simulations, in all cases this was

not more than ± 0.5 mg/g. For each model 1,000 Monte
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Carlo simulations were made to generate the 95 % confi-

dence intervals (CIs) for each model parameter.

Results and discussion

The Hill models minimum asymptote parameter (D) were

in all cases constrained to zero as unless there are pre-

defined sources or sinks of contaminant, at t = 0 D = 0

(i.e. qt = 0). This effectively reduces the Hill 4 model to 3

parameter, and the Hill 5 model to 4 parameter.

Knowledge of the error structure is a necessary pre-

requisite for the comparison of alternative mathematical

models and the application of parametric statistical tests

(AskelÖf et al. 1976). When the error distribution of the

system is not known, the uncertainty in the values of the

model parameters along with more realistic confidence

intervals (CIs) can be obtained from the application of

Monte Carlo computations (Motulsky and Ransnas 1987;

Mishra et al. 2011). Monte Carlo computations (1,000)

were done for the fastest (\150 lm; pCO2 *100 %) and

slowest (425–600 lm; pCO2 *30 %) experiments for all

six candidate models. Table 1 shows the upper and lower

95 % CIs generated from 1,000 Monte Carlo computations

for the PSO, Hill 4 and Hill 5 models only. Analysis of the

simulations shows that in all cases the observed data

(Figs. 1, 2) fall within the Hill 5 95 % CIs supporting the

assumptions of error independency, normality, and con-

stancy of variance. This is not surprising as the error

structure is not likely to affect modelling conclusions to

Table 1 Monte Carlo 95 % confidence intervals for the kinetically fastest and slowest calcite/fluoride experiments

Calcite fraction (lm) pCO2 (%) PSO Hill 4 Hill 5

95 % CI* kpso (910-4) qe A kHill4 n A E kHill5 n

\150 lm 100 U 48.476 59.523 59.354 5.214 1.543 59.333 0.505 9.213 1.836

L 50.074 59.577 59.366 5.251 1.555 59.348 0.531 9.698 1.864

425–600 lm 30 U 1.018 57.081 61.836 202.942 0.841 59.003 0.688 275.744 0.965

L 1.033 57.245 62.271 206.852 0.852 59.850 0.777 315.926 1.028

* U is upper 95 % CI; L is lower 95 % CI

Fig. 1 Comparison of observed and modelled data for pCO2 *100 % experiments with Hill 5 95 % confidence intervals (CIs). a\150 lm
calcite; b 425–600 lm calcite
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any large extent given the number of data points (*7,800)

in each experiment. In addition, visual inspection of the

kinetics shows that the Hill 5 model has exceptional ability

to fit rapid (Fig. 1a) and/or asymmetric (Fig. 2a) data with

the 95 % CIs for the Hill 5 model also shown.

Model selection: least squared (R2) fitting and F-tests

Figures 1 and 2 compare the observed data to the modelled

results only for the highest (\150 lm) and lowest

(425–600 lm) surface area calcite fractions at each pCO2

with all other results falling between. Modelling was

completed on the full data set; however, the curves have

been truncated to the first 200 min to enable clearer

examination of the early part of the removal curves.

The least-squares fitted parameters are shown in

Tables 2 and 3. The results show that the Power, IPD, or

Elovich (Table 2) models, in general, have a good R2

([0.9). However, these models appear to be unable to cope

with rapid kinetics. In particular, the R2 decreases sharply

Fig. 2 Comparison of observed and modelled data for pCO2 *30 % experiments with Hill 5 95 % confidence intervals (CIs). a\150 lm
calcite; b 425–600 lm calcite

Table 2 Least-squares fitted parameter values for Power, IPD, and Elovich models

Calcite fraction (lm) pCO2 (%) Power IPD Elovich

a b R2 C a R2 a b R2

\150 100 53.6 0.013 0.182 57.92 0.03 0.054 1.31 0.013 0.163

150–300 100 11.8 0.228 0.919 22.87 1.08 0.822 2.82 0.100 0.971

300–425 100 10.03 0.247 0.943 20.12 1.13 0.866 2.21 0.098 0.981

425–600 100 6.05 0.325 0.973 12.63 1.42 0.938 1.16 0.082 0.972

\150 30 31.54 0.108 0.624 45.00 0.708 0.388 154.34 0.151 0.695

150–300 30 10.63 0.223 0.917 20.08 0.95 0.816 2.87 0.119 0.968

300–425 30 7.90 0.222 0.964 15.942 1.16 0.907 1.76 0.102 0.981

425–600 30 5.35 0.325 0.965 10.74 1.29 0.928 1.07 0.094 0.972

* h ¼ kpsoq
2
e
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for the fastest reactions (\150 lm fraction) as determined

by the instantaneous sorption rate hpso (Table 3) with all

R2\ 0.182.

For the nested models PSO, Hill 4 and Hill 5 (Table 3)

the R2 values for the Hill models, superficially indicate a

better fit than the PSO, which is not surprising given that

the increase in the number of parameters automatically

implies a better fit from the R2 fitting method (Johnson and

Omland 2004). When the R2 of nested models are close, the

statistical F-test (Eq. 1.) allows a comparison to determine

Table 3 Least-squares fitted parameter values for PSO, Hill 4 and Hill 5 parameter models

Calcite fraction (lm) pCO2 (%) PSO Hill (4 parameter) Hill (5 parameter)

h* kpso (910-4) qe R2 A k n R2 A E k n R2

\150 100 17.5 49.2 59.6 0.936 59.4 5.2 1.5 0.996 59.3 0.5 9.5 1.8 0.998

150–300 100 0.7 1.8 60.2 0.997 62.2 93.9 0.9 0.998 60.4 0.6 169.4 1.1 0.999

300–425 100 0.6 1.6 59.8 0.995 64.0 120.1 0.8 0.999 61.9 0.7 201.1 1.0 1.000

425–600 100 0.4 0.8 66.5 0.994 76.2 260.5 0.8 0.999 74.2 0.9 318.6 0.8 0.999

\150 30 3.4 48.2 64.5 0.934 62.6 23.7 1.5 0.964 61.6 0.1 95.4 7.5 0.997

150–300 30 0.7 2.5 51.3 0.996 52.9 81.9 0.9 0.998 50.6 0.5 196.2 1.2 0.999

300–425 30 0.5 1.5 55.8 0.991 63.7 158.9 0.7 0.999 59.5 0.6 306.0 1.0 0.999

425–600 30 0.3 1.0 57.2 0.997 62.0 204.9 0.8 0.999 59.4 0.7 296.6 1.0 0.999

Note the minimum asymptote for the Hill 4 and Hill 5 models was constrained to zero

Table 4 Model selection criterion results for pCO2 *100 % experiments

Experiment Model N p R2 RSS BIC LILC AIC Rank

\150 lm PSO 23,786 2 0.936 5,565.4 -34,519.8 -15,003.6 -34,544.0 3

Hill 4 23,786 3 0.996 271.0 -106,383.3 -46,221.7 106,423.7 2

Hill 5 23,786 4 0.998 172.5 -117,121.2 -50,888.8 117,169.6 1

Elovich 23,786 2 0.163 68,328.3 25,129.9 10,901.9 25,105.6 4

Power 23,786 2 0.182 68,837.7 25,306.5 10,978.6 25,282.3 5

IPD 23,786 2 0.054 82,743.8 29,683.1 12,879.4 29,658.9 6

150–300 lm PSO 7,684 2 0.997 2,437.4 -8,796.1 -1,075.3 -8,816.9 3

Hill 4 7,684 3 0.998 1,186.6 -14,309.3 -11,159.8 -14,344.0 2

Hill 5 7,684 4 0.999 1,069.0 -15,111.2 -12,667.1 -15,146.0 1

Elovich 7,684 2 0.971 22,651.1 8,333.8 7,293.4 8,312.9 4

Power 7,684 2 0.919 62,752.5 16,163.7 7,318.2 16,142.8 5

IPD 7,684 2 0.822 139,331.2 22,292.9 7,932.2 22,272.0 6

300–425 lm PSO 7,686 2 0.995 3,942.2 -5,104.9 -2,227.5 -5,125.7 3

Hill 4 7,686 3 0.999 362.0 -23,439.0 -10,197.1 -23,473.7 2

Hill 5 7,686 4 1.000 317.7 -24,444.0 -10,633.0 -24,478.7 1

Elovich 7,686 2 0.981 15,661.4 5,497.7 2,377.1 5,476.9 4

Power 7,686 2 0.943 45,316.1 13,663.8 5,923.6 13,643.0 5

IPD 7,686 2 0.866 108,553.1 20,378.1 8,839.6 20,357.3 6

425–600 lm PSO 7,686 2 0.994 6,644.6 -1,092.2 -484.8 -1,113.1 3

Hill 4 7,686 3 0.999 684.4 -18,554.1 -8,071.7 -18,581.9 2

Hill 5 7,686 4 0.999 666.8 -18,744.7 -8,157.8 -18,779.4 1

Elovich 7,686 2 0.972 32,448.8 11,096.7 4,808.8 11,075.9 5

Power 7,686 2 0.973 31,939.9 10,975.2 4,756.0 10,954.4 4

IPD 7,686 2 0.938 72,896.0 17,317.5 7,510.4 17,296.7 6

N is the number of data points, p is the number of parameters. Note: values between criterion cannot be compared
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which model one actually fits better. Tables 4 and 5 define

all the parameters required to calculate the F-test using

Eq. 1.

Comparison of the Hill 4 and Hill 5 models to the PSO

model (the null hypothesis) in all cases give a statistically

highly significant result (p\ 0.001) at the traditional 5 %

significance level, indicating that the PSO model can be

rejected and that the data are best described by the Hill 5

parameter model. For example, the kinetically fastest

experiments using \150 lm calcite at pCO2 *100 %

(Table 4) gave F(PSO, Hill 4) = 464,637.3, p\ 0.001 and

F(PSO, Hill 5) = 371,750.6; p\ 0.001. Setting the Hill 4

model as the null hypothesis, the Hill 5 model also showed

a statistically highly significant result with the Hill 5

parameter model favoured over the Hill 4 parameter model

with F(Hill 4, Hill 5) = 13,579.9.4; p\ 0.001. In all cases,

the F-test results indicate that, in comparison to the Hill 4

or Hill 5 models at the traditional 5 % significance level,

there is zero chance of obtaining results that fit significantly

better using the PSO. Similarly, the Hill 5 should be the

model of choice based on the F-test as it is statistically

superior in the order Hill 5[Hill 4[PSO.

Model selection: information criterion tests

When comparisons between non-nested models are

required, information criterion tests can be used. Data

shown in Tables 4 and 5 were used to calculate the

information criterion for the AIC, BIC, and LILC using

Eqs. 2–4, respectively. For each experiment, Tables 4

and 5 show the raw information criterion results with the

most negative value for the respective information cri-

terion the ‘‘best’’ model. In seven out the eight experi-

ments, every information criterion ranked the models in

the order Hill 5, Hill 4, PSO, Elovich, Power, and IPD.

However, in the 425–600 lm calcite fraction at pCO2

*100 % (Table 4), the order was Hill 5, Hill 4, PSO,

Power, Elovich and IPD. Consequently, the Hill 5 model

Table 5 Model selection criterion results for pCO2 *30 % experiments. N is the number of data points, p is the number of parameters. Note:

values between criterion cannot be compared

Experiment Model N p R2 RSS BIC LILC AIC Rank

\150 lm PSO 924 2 0.934 4,059.0 1,388.0 594.8 1,373.5 3

Hill 4 924 3 0.964 2,183.2 821.8 346.5 802.5 2

Hill 5 924 4 0.997 161.9 -1,575.0 -2,739.5 -1,599.1 1

Elovich 924 2 0.695 18,734.2 2,801.2 1,208.6 2,786.7 4

Power 924 2 0.624 23,029.4 2,991.9 1,291.4 2,977.4 5

IPD 924 2 0.388 37,498.7 3,442.4 1,487.1 3,427.9 6

150–300 lm PSO 6,977 2 0.996 1,910.3 -9,011.2 -3,923.9 -9,031.7 3

Hill 4 6,977 3 0.998 1,094.6 -12,887.9 -5,610.8 -12,915.3 2

Hill 5 6,977 4 0.999 649.1 -16,524.8 -26,818.9 -16,559.0 1

Elovich 6,977 2 0.968 15,774.3 5,718.1 2,473.0 5,697.6 4

Power 6,977 2 0.917 41,584.6 12,481.3 5,410.2 12,460.7 5

IPD 6,977 2 0.816 92,526.5 18,061.2 7,833.5 18,040.7 6

300–425 lm PSO 5,977 2 0.991 6,273.6 -714.8 126.9 -735.4 3

Hill 4 5,977 3 0.999 509.7 -18,220.6 -6,388.8 -18,248.0 2

Hill 5 5,977 4 0.999 354.5 -20,745.6 -7,331.0 -20,779.9 1

Elovich 5,977 2 0.981 12,550.7 4,123.1 1,926.8 4,102.6 4

Power 5,977 2 0.964 24,032.6 8,655.7 3,613.2 8,635.1 5

IPD 5,977 2 0.907 62,447.4 15,318.1 6,091.9 15,297.5 6

425–600 lm PSO 6,976 2 0.997 2,443.1 -7,292.9 -3,177.6 -7,313.4 3

Hill 4 6,976 3 0.999 644.6 -16,578.6 -7,213.6 -16,606.0 2

Hill 5 6,976 4 0.999 580.1 -17,305.6 -7,532.6 -17,339.9 1

Elovich 6,976 2 0.972 22,673.8 8,249.4 3,572.3 8,228.8 4

Power 6,976 2 0.965 28,029.7 9,728.7 4,214.8 9,708.1 5

IPD 6,976 2 0.928 58,179.7 14,823.1 6,427.2 14,802.5 6
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is the ‘‘best’’ model for fitting the data under the con-

ditions described.

As the raw information criterion data are often difficult

to interpret (Wagenmakers and Farrell 2004), the relative

weights for each model criterion (Eq. 5a) or the evidence

ratio (Eq. 6) can be calculated. In addition, the BIC can

also be used to calculate a BF (Eq. 7) for each model.

These methods give an indication of the relative strength of

the evidence for favouring one model over another. Table 6

shows an example of one experiment (425–600 lm calcite,

pCO2 *100 %) where the model strength of evidence has

been calculated from the raw information criterion

(Table 2). The BF has been left out as this is equivalent to

the evidence ratio (ER) and the inverse of the relative

weight (wi). It is clear that the Hill 5 model is without a

doubt the most strongly favoured over all other tested

models having evidence ratios of 2.3 9 10159 (AIC),

1.8 9 1069 (LILC), and 7.3 9 10157 (BIC) times that of the

closest (Hill 4) model. This in effect gives the Hill 5 model

a probability of [99.99 % of being the ‘‘best’’ model.

Analysis of all other experiments also confirms this finding

(not shown). All other models (PSO, etc.) have such a large

DIC that their relative weight approaches zero and conse-

quently the respective evidence ratio, being 1/relative

weight, therefore approaches infinity (undefinable). In

addition in every experiment, DBIC is[150 and accord-

ingly the evidence is ‘‘very strong’’ that the Hill 5 model is

the ‘‘best’’ model of those tested (Kass and Raftery 1995).

The Hill equation as a mechanistic model

Hill model parameters are generally only empirical in

nature and therefore have no mechanistic meaning. In this

section, we derive physical meanings for the parameters of

the Hill model through unit analysis and comparison with

the well-established parameters of the PSO model.

Table 7 shows the parameters for the PSO model, the

comparable Hill 4 and Hill 5 parameters and their respec-

tive units. The PSO initial sorption rate, hpso
(mg g-1 min-1) can be shown to be dimensionally equiv-

alent to a parameter we define as the Hill initial sorption

rate hHill where:

hHill4 ¼
A� D

kHill4
ð17Þ

hHill5 ¼ TA2 ð18Þ

As the Hill equation already includes the parameter k

(min), we define a new parameter, T (the Turner

parameter), which is dimensionally equivalent to the

Pseudo-Second-Order rate constant, kpso(g mg-1 min-1).

Equations 19 and 20 define T for the Hill 4 and Hill 5

models, respectively.

T ¼ hHill4

ðA� DÞ2
¼ 1

kHill4ðA� DÞ ð19Þ

T ¼ 1

t0:5ðA� DÞ ð20Þ

where t0.5 is given by Eq. 10b.

To prove the above relationships, the data were fitted by

the PSO, Hill 4 and Hill 5 models and Eqs. 17–20 applied.

Figure 3a shows the Hill and PSO model results of the

pCO2 *30 % experiments (Table 3) and compares the

derived T parameter to the corresponding kpso parameter. It

is evident that the newly defined T parameter closely

matches the respective kpso parameter with the differences

attributed to better fitting of the data by the Hill models as

supported by the F-test, AIC, BIC, and LILC calculations.

Table 6 Information criterion (AIC, BIC, LILC) weight and evidence ratio (ER) results for 425–600 lm calcite at pCO2 *100 %

DAIC wi(AIC) ER

AIC

DLILC wi(LILC) ER

LILC

DBIC wi(BIC) ER

BIC

PSO 10,026.5 0 – 4,355 0 – 10,012.7 0 –

Hill 4 733.9 4.3 9 10-160 2.3 9 10159 319 5.4 9 10-70 1.9 9 1069 727 1.4 9 10-158 7.3 9 10157

Hill 5 0 1 1 0 1 1 0 1 1

Elovich 25,568.7 0 – 11,104.9 0 – 25,555 0 –

Power 27,048 0 – 11,747.4 0 – 27,034.3 0 –

IPD 32,142.4 0 – 13,959.8 0 – 32,128.7 0 –

DIC = (ICi-ICmiu) see Eq. 5b
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The T parameter, and therefore its comparison to kHill, is

not affected by changes in the Hill parameter n. For

example, it can be seen (Fig. 3a) that as n increases the

comparison of T to kpso remain very close indicating that

Eqs. 19 and 20 are independent of n with variations once

again due to poor fitting of the PSO model as indicated by

F-test, AIC, BIC, and LILC calculations (Table 5).

Application of Eqs. 17 and 18 to the experimental data

allows a comparison of the instantaneous sorption rates

(hHill and hpso). For example, the experiment using pCO2

*30 %;\150 lm calcite, hpso *3.4 with hHill4 *2.7 and

hHill5 *2.4. However, the experiment using pCO2

*100 %; 150–300 lm calcite results in hpso *0.80 and

hHill *0.76. Consequently, it appears that smaller sized

fractions (e.g.\150 lm) show the largest difference due to

the apparent inability of the PSO model to fit systems

undergoing rapid kinetic processes. The poorer fitting of

the PSO model (Figs. 1a, 2a) is therefore attributed to the

increased dissolution rate of the higher surface area calcite.

Similar results are obtained for the pCO2 *100 % exper-

iments (not shown), with comparable T and kpso; hHill and

hpso values obtained for both the Hill models.

Figure 3a also shows an apparent large discrepancy in

n for the \150 lm calcite fractions. However, this is a

function of the superior fitting of the Hill 5 model due to

the asymmetry parameter (E). The addition of the

Table 7 Pseudo-second order (PSO) and Hill model parameter unit comparison

Description PSO parameter Units Hill 4 parameter* Hill 5 parameter Units

Sorption rate hpso mg g-1 min-1
hHill4 ¼ ðA�DÞ

kHill4
hHill5 ¼ TA2 mg g-1 min-1

Reaction half-life t0:5 ¼ 1
kpsoqe

min t0:5 ¼ kHill4 t0:5 ¼ kHill5ðð2
1
E � 1Þ

�1
nð Þ min

Rate constant kpso ¼ hpso
q2e

g mg-1 min-1
T ¼ 1

kHill4ðA�DÞ T ¼ 1
t0:5ðA�DÞ g mg-1 min-1

Equilibrium sorption capacity qe mg g-1 A**, D A, D mg g-1

* kHill has units of time (min)

Fig. 3 The influence of the Hill sigmoidal parameter, n on (a) model reaction rate constants kpso, THill4, and THill5; b Instantaneous sorption hpso,

hHill4, and hHill5. For experimental data pCO2 *30 % (see Table 3 for further detail)
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E parameter allows the Hill model to reproduce the

asymmetry in the observed data (Gottschalk and Dunn

2005; Giraldo et al. 2002). Figure 3a (pCO2 = 30 %, cal-

cite fraction\150 lm) provides an interesting comparison

of the models as this system shows significant asymmetry

in the observed sorption curve. It is clear that the Hill 5

model outperforms all other models for this experiment as

seen by the superior fit to the observed data (Fig. 1a) and

the much lower BIC, LILC and AIC values (Table 5) as

well as the F-test as detailed above. Consequently, neither

the Hill parameter n, which represents the shape (sig-

moidicity) of the kinetics curve, nor the asymmetry factor

E, affects the derived T and h parameter analogy with the

PSO model.

Conclusion

This study undertook a formal model selection procedure

based on the BIC, LILC, AIC, sum-of-squares F-test, in

combination with the coefficient of determination (R2)

for a range of candidate kinetics sorption models. The

candidate models were as follows: the PSO, Hill 4 and

Hill 5, IPD, Power, and the Elovich models. This study

has emphasised the importance of incorporating the

number of parameters into the model selection proce-

dures. Previous studies have used only the R2 for model

evaluation and selection; however, this is not a statisti-

cally robust approach and can be prone to over-fitting.

The R2 value can be used to ensure goodness-of-fit of a

particular model to a particular set of data; however, a

measure that incorporates the number of model param-

eters, such as the F-test for nested models, and the BIC,

LILC, AIC for all models is necessary to undertake

reliable model selection.

Even though the AIC is considered not to be a ‘‘con-

sistent’’ information criterion unlike the BIC or LILC

(Foubert et al. 2002; Wagenmakers and Farrell 2004; Stone

2005), the results presented show that AIC and BIC all

predict the ‘‘best’’ model rankings in the same order and

demonstrate that the order of superiority of models for

fitting the data was Hill 5[Hill 4[PSO[Elo-

vich[ Power[ IPD. This was also supported by all other

model fitting tests along with the evidence ratios, infor-

mation criterion weights and BFs.

Unit and numerical analysis between the Hill and PSO

models has shown that parameters of the Hill model have a

physical mechanistic meaning and that the newly defined

T parameter of the Hill models is equivalent to the pseudo-

second-order rate constant (kpso). Similarly, it has been

shown that PSO instantaneous sorption coefficient, hpso,

can also be obtained from fitted Hill model parameters with

very good agreement. In the field of geochemistry, the use

of the four and five parameter Hill models for describing

sorption kinetics has been overlooked with many studies

favouring the PSO model. It is strongly recommended that

the Hill model be considered more widely as a general

predictive tool in geochemistry.
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