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Abstract Radioactive cesium (137Cs) has seriously

become a human concern owing to exposure from a nuclear

accident release at a nuclear plant. Many efforts have

focused at the removal of radioactive cesium and remedi-

ation of a contaminated environment. To meet these

demands, an effective sorbent based on magnetic com-

posites functionalized with synthetic clay minerals was

demonstrated. This sorbent shows a high removal effi-

ciency of contaminated water containing suspended sor-

bents at a level of 0.5 mg ml-1 [137Cs of 84.68 Becquerel

(Bq) gram (g)-1], decontaminated to 0.47 Bq g-1

(99.44 % removal efficiency) with just one treatment. The

radioactive cesium is dramatically adsorbed into synthetic

clay minerals. Subsequently, a rapid and easy sorbent

separation from the radioactive cesium solution occurs

after treatment using a magnetic field. Thus, a magnetic

sodium-phlogopite sorbent can offer high potential for

in situ remediation.
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Introduction

Radioactive cesium (137Cs) removal has become an

emerging issue after the Fukushima Daiichi nuclear power

plant accident owing to environmental contamination. And

cesium bioavailability is strongly influenced by environ-

mental properties such as potassium content, pH, clay, and

organic matter (Buesseler et al. 2012). Radioactive cesium

based on its high radioactivity and relatively long half-life

time (30.2 years) is a significant element of nuclear waste

and nuclear fallout (Sangvanich et al. 2010). Cesium is

water soluble and behaves similarly to potassium and

sodium in a biological behavior profile. In addition,

radioactive cesium can trigger negative health effects

including carcinoma of the liver, kidney, bladder, renal

function, cardiovascular disease, and gastrointestinal dis-

tress (Grignard et al. 2008; Guéguen et al. 2008; Souidi

et al. 2006). Matrices as several different polymers, zeolite-

like materials, clay minerals, biomass, and metal oxides

have previously been investigated for Cs removal (Gupta

and Dubey 2005; Mercer and Ames 1978). Among them,

micas are ideal candidates for use as ion exchangers owing

to their large layer charge and thermal stability. Phlogopite

is an important and relatively common end-member com-

position of biotite. Phlogopite micas are found primarily in

igneous rocks. In particular, Na-phlogopite excels at

cesium removal (Stout et al. 2006). Recently, magnetic

nanoparticles have been the focus of significant research
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because they possess attractive properties that could see

potential use in tools including nanomaterials biomedicine,

magnetic imaging, storage, sensors, and environmental

remediation (Elliott and Zhang 2001; Gleich and Weize-

necker 2005; Gupta and Gupta 2005; Hyeon 2003; Lu et al.

2004; Mahendran and Philip 2012). Among the many types

of magnetic nanoparticles, iron oxide nanoparticles are

especially interesting because they are both magnetic and

catalytic. Iron oxide nanoparticles also have an advantage

because they are easy to synthesize with size-dispersed

products with high magnetic moments. Moreover, mag-

netic nanoparticles are a highly valuable substrate for the

attachment of inorganic- and organic-containing catalysts.

Iron oxide is generally considered biocompatible and is the

only nanoparticle material to have been approved by the

US Food and Drug Administration (Beveridge et al. 2011).

In this study, a magnetic composite with Na-phlogopite as

an effective technology for the removal of radioactive

cesium was elucidated.

Materials and methods

Chemicals

All chemicals used in this work were of analytical reagent

grade. Deionized water was used throughout the study.

Iron(III) chloride hexahydrate (FeCl3�6H2O), iron(II)

chloride tetrahydrate (FeCl2�4H2O), polyvinylpyrrolidone

(PVP), potassium hexacyanoferrate(II) trihydrate (K3-

[Fe(CN)6]�3H2O), a poly(diallyldimethylammonium chlo-

ride) (PDDA) solution (20 wt%, MW 400,000–500,000),

ammonium hydroxide (NH4OH), and hydrochloric acid

(HCl) were purchased from Sigma-Aldrich Co., Ltd. In

addition, cesium chloride (CsCl) was purchased from

Yakuri Co., Ltd.

Preparation of poly(diallyldimethylammonium

chloride) (PDDA)-coated iron oxide nanoparticles

and Na-phlogopite

A solution (20 ml) containing iron(III) chloride hexahy-

drate (FeCl3�6H2O) (2.16 g), iron(II) chloride tetrahydrate

(FeCl2�4H2O) (0.8 g), and poly(diallyldimethylammonium

chloride) (PDDA) (1.0 %, v/v) was deoxygenated by

bubbling with nitrogen gas for 10 min, followed by heating

to 80 �C. Subsequently, ammonium hydroxide (NH4OH)

(28 %, 10 ml) was added rapidly to the heated solution,

which was left to stir for another 1 h. After cooling to room

temperature, the formed PDDA-coated iron oxide (Fe3O4)

nanoparticles were isolated with the help of a magnet field

and washed three times with deionized water. In addition, it

was dried at room temperature. Finally, purified PDDA-

coated iron oxide nanoparticles were obtained. For Na-

phlogopite, the large single crystals of phlogopite mica

were broken into small pieces by hand followed by

grinding in a household blender in the presence of deion-

ized water. After grinding, the mica slurry was wet-sieved

and the \45-lm size fraction was collected for use.

Potassium was removed from the phlogopite mica flakes

using the procedure described by Scott and Stout (Stout

et al. 2006; Scott and Smith 1966). The\45-lm mica (5 g)

was equilibrated with 100 ml of a solution containing

1.0 M sodium chloride (NaCl)–0.2 N sodium

tetraphenylborate–0.01 M disodium ethylenediaminete-

traacetic acid (EDTA) for 168 h at room temperature. This

procedure was repeated a total of three times to ensure the

maximum removal of potassium from the interlayers of the

mica. The samples were suction-filtered through Whatman

50 filter paper and washed repeatedly with a solution

containing 40 % 0.5 N sodium chloride–60 % acetone (v/

v) to remove the precipitated potassium tetraphenylborate

from the sample. After the initial washings, the Na-phlo-

gopite was washed with a large volume of deionized water

under a vacuum to remove all entrained sodium chloride

and allowed to air-dry.

Preparation of magnetic Na-phlogopite

PDDA-coated iron oxide (1 g) was dispersed in 10 ml of

deionized water, and 0.01 M HCl was added to adjust the

pH to 6.0. Na-phlogopite (3 g), the pH of which ranges

from 2.4 to 2.7, was dispersed in 10 ml of deionized water

to which 0.01 M NaOH was added to adjust the pH to 6.0.

The slurry with PDDA-coated iron oxide and Na-phlogo-

pite obtained was then mixed thoroughly at room temper-

ature in a 50-ml polypropylene tube. Deionized water

(25 ml) was added to this mixture, and a permanent magnet

(1.4 tesla) was used to eliminate any excess Na-phlogopite

that alone is not attracted by a magnetic field, and thus, we

could magnetically separate the Na-phlogopite from the

mixture of Na-phlogopite and non-Na-phlogopite. This

purification step was repeated three times to obtain mag-

netic Na-phlogopite.
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Characterizations and adsorption test

The magnetic Na-phlogopite size and zeta potential were

determined using a particle size analyzer (Malvern Zeta-

sizer nano-ZS90, UK). Fourier-transform infrared (FT-IR)

spectra of the magnetic Na-phlogopite and Na-phlogopite

were recorded using a Thermo Scientific Nicolet iS5. The

particle size and morphology of the nanoparticles were

investigated using a scanning electron microscope (SEM)

and transmission electron microscope (TEM) at an accel-

erating voltage of 300 keV (Tecnai G2 F30, USA). And Cs

sorption isotherm in batch operation was analyzed by ICP-

MS (Elandic II, PerkinElmer). The concentrations of the

radioactive cesium (137Cs) before and after treatment with

the magnetic Na-phlogopite were measured using a high-

purity germanium (HPGe) detector (Canberra, USA).

Fig. 1 Schematic illustration of

magnetic Na-phlogopite

composites

Fig. 2 Electron microscopy images a SEM of Na-phlogopite, b TEM of Na-phlogopite

Fig. 3 FT-IR patterns of materials (a) Na-phlogopite, (b) magnetic

Na-phlogopite
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Results and discussion

The structure, morphology, and adsorption behavior of the

Na-phlogopite magnetic composite were investigated. To

coat Na-phlogopite on to the surface of PDDA-coated iron

oxide, a method was shown using a negatively charged Na-

phlogopite (zeta potential -70 mV) with a smaller amount

of positively charged PDDA-coated iron oxide, and the

surface area of the positively charged PDDA-coated iron

oxide composites is entirely covered with negatively

charged Na-phlogopite (Fig. 1). For sodium-phlogopite

synthesis, phlogopite mica was equilibrated with 1.0 N

sodium chloride–0.2 N sodium tetraphenylborate–0.01 M

disodium ethylenediaminetetraacetic acid (EDTA) solu-

tions at room temperature. Figure 2 shows the evaluation

of a Na-phlogopite structure using SEM and TEM. As a

shell, an evident strong resonance at 948 cm-1 is observed

in the FT-IR spectrum of Na-phlogopite. Magnetic Na-

phlogopite showed relatively low resonance owing to

magnetic property (Fig. 3). As shown in Fig. 4, the sepa-

ration of radioactive cesium (137Cs) using an external

magnet was rapidly achieved within 30 s in a batch

experiment. The high ion exchange efficiency of Na-phl-

ogopite in combination with the ease of the magnetic

separation provided a facile way for the cesium decon-

tamination. The magnetic composite showed high removal

efficiency even in radioactive wastes at low concentrations

of cesium. Finally, the magnetic Na-phlogopite can be

easily recovered from radioactive cesium using a magnet.

Table 1 shows the removal efficiency of radioactive

cesium. Based on the concentration manner of the sorbent,

radioactive cesium (137Cs) of 82.17, 84.68, and

85.29 Bq g-1 was decontaminated to 2.51 Bq g-1

(96.95 % at 0.1 mg ml-1), 0.47 Bq g-1 (99.44 % at

0.5 mg ml-1), and 0.31 Bq g-1 (99.64 % at 1.0 mg ml-1)

with just one treatment. All of this means that radioactive

Table 1 Removal efficiency of the radioactive cesium (137Cs) using magnetic Na-phlogopite

Adsorbent concentration (mg ml-1) Before treatment activity (Bq g-1) After treatment activity (Bq g-1) Removal efficiency (%) DFa

0.1 82.17 2.51 96.95 32.74

0.5 84.68 0.47 99.44 180.17

1 85.29 0.31 99.64 275.13

a DF as a decontamination factor means ratio of activity prior to and after the decontamination of radioactively contaminated water

Fig. 4 Magnetic separation process of Na-phlogopite. It was separated from radioactive cesium solution using a magnet
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cesium is dramatically adsorbed to Na-phlogopite in shells.

Because of the high surface adsorption, the DF value as a

decontamination factor means that the ratio of activity prior

to and after the decontamination in radioactive water

reached up to 275. The potent activity is probably due to

exchange between Na? and Cs? of monovalent cation.

Eventually, the adsorbent is strongly recommended to be

an excellent adsorbent for 137Cs. Figure 5 shows the

experimental data and the curves fitted by the Langmuir

model. It can be seen that the Langmuir model is suitable

for the Cs adsorption isotherm one by magnetic Na-phlo-

gopite adsorbent. The maximum adsorption capacity of the

magnetic Na-phlogopite toward radioactive cesium (137Cs)

is determined to be 69.79 mg/g. In environment, magnetic

composites have attracted a lot of interest because of their

distinguished properties that are a characteristic of there is

no remanent magnetization when the magnetic field is

removed.

Conclusion

In conclusion, we demonstrated the capability of magnetic

composites to remove radioactive cesium in the environ-

ment. The potent magnetic composites were synthesized

and characterized for their radioactive cesium adsorption

properties with high removal efficiency. Furthermore,

magnetic nanocomposites can be used as a rapid and ease

technology for the removal of radioactive cesium in an

environment using a magnetic field. Thus, the magnetic

Na-phlogopite sorbent can offer high potential for in situ

remediation.
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