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Abstract The aim of this study was to compare the

performance of support vector machine and artificial neural

network techniques to predict the soil cation exchange

capacity of an agricultural research station in terms of soil

characteristics (clay, silt, sand, gypsum, organic matter).

The data consist of 380 soil samples collected from dif-

ferent horizons of 80 soil profiles located in the Khoja

(Khajeh) region of Azerbaijani provinces, Iran. The support

vector machine and artificial neural network models predict

the cation exchange capacity from the above soil charac-

teristics of the samples. The models’ results are compared

using three criteria, i.e., root-mean-square errors, Nash–

Sutcliffe and the correlation coefficient. A comparison of

support vector machine results with artificial neural net-

work method indicates that artificial neural network is

better than the support vector machine method in predic-

tion of the cation exchange capacity.

Keywords Clay � Khajeh � Modeling � Pedo-transfer

function � Sand

Introduction

Soil cation exchange capacity or CEC is a very important

characteristic, essential for measuring fertility and nutrient

retention capacity, and is a commonly applied indicator of

soil condition or vulnerability. Soil management of a

region has invoked this research to develop a predictive

model using measurements of a sample of CEC values of a

region. The predictive models are used to study the CEC

behavior in terms of contributory factors of soil composi-

tion of clay, silt, sand, gypsum and organic matter. These

soil constituents carry intrinsically negative charges on

their surface and therefore adsorb exchangeable cations

(Tang et al. 2009).

The two properties that most account for the reactivity

of soils are surface area and surface charge. Surface area is

a direct result of particle size and shape. Most of the total

surface area of mineral soil is due to clay-sized particle and

soil organic matter. Charge development in soils is inti-

mately associated with these same two fractions, although

the sand and silt size fractions may contribute some CEC if

coarse-grained vermiculite is present. Charge development

in soils occurs as a result of both isomorphic substitution

and ionization of functional groups on the surface of solids

that make up the soil matrix. These two mechanisms give

rise to the permanent and the pH-dependent charges of

soils, respectively (Yola et al. 2014). Plant roots are cap-

able of cation exchanges and root zones are where this

capability is exploited. The quantity of negative charges in

soil, known as CEC, is a measurable quantity, but their

direct measurements are expensive, difficult and time-

consuming (Evans 1989). Therefore, this paper aims to

gain an insight into modeling the CEC in terms of soil

composition of clay, silt, sand, gypsum and organic matter.

The significance of the CEC of the soil particles stems from
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the ‘ease’ of exchange of cations with one another to the

extent that they are readily available for plants. The CEC is

among the most important soil properties required in soil

databases (Manrique et al. 1991) and serves as an input to

soil and environmental models (Keller et al. 2001). Dif-

ferent study topics on the CEC include: fluoride sorption

and desorption on soils (Gago et al. 2014), monitoring

general variability of soil attributes to different land use

types in calcareous soils (Rezapour 2014), influence of

pasture degradation on soil quality indicators that included

physical, chemical, biological and micromorphological

attributes (Ayoubi et al. 2014), isolation of different soil

organic carbon fractions and coal C in a reclaimed minesoil

chronosequence (Chaudhuri et al. 2013), determination of

adsorption efficiency based on cation exchange capacity

(Gatima et al. 2006), study on adsorption of aqueous

phenol solution in soil (Subramanyam and Das 2009),

impact of sewage and mining activities on distribution of

heavy metals in the water–soil–vegetation system (Semhi

et al. 2013), potential impact of fluorine-rich fertilizers on

the aquifer system (Marimon et al. 2013), prediction of

subsurface heterogeneity of contaminated soil management

(Moon et al. 2013), identification of heavy metal sources in

agricultural soil (Huang et al. 2013), effects of cations and

anions on iron and manganese sorption and desorption

capacity in calcareous soils (Moharami and Jalali 2013),

effect of the addition of granitic powder to an acidic soil

(Silva et al. 2013), effects of agricultural practice and land

use on the distribution and origin of some potentially toxic

metals in the soils (Moghaddas et al. 2013). In the labo-

ratory procedure, CEC of the soils is measured by using the

ammonium acetate (NH4OAc) method through the

replacement of sodium (Na?) ions with ammonium (NH4?)

ions, but this is difficult, time-consuming and expensive

(Carpena et al. 1972). An alternative CEC estimation

approach is through the more easily measurable and readily

available soil properties such as particle size distribution

(clay, sand and silt content), gypsum and organic matter,

which are referred to as pedo-transfer functions (PTFs) as

coined in soil science (Bouma 1989). In recent years, data

mining techniques such as artificial neural networks (ANN)

and support vector machines (SVM) have been widely used

in the modeling of various complex environmental prob-

lems (Yilmaz and Kaynar 2011). A neural network is an

adaptable system that learns relationships from the input

and output datasets and is able to predict a previously

unseen dataset of similar characteristics to the input set

(Haykin 1999; ASCE 2000). Previous PTF studies for

formulating CEC models using ANNs include (Van Bladel

et al. 1975; Baker and Ellison 2008; Tang et al. 2009;

Minasny and McBratney 2002; Minasny et al. 1999;

Schaap et al. 1998; Silveira et al. 2013). Gruszczyñski

(2009) applied multiple regression, polynomial neural

network and fuzzy neural network (ANFIS) to prediction of

CEC in southern Poland. The results showed that ANFIS is

better than the multiple regression and polynomial neural

network models. Tang et al. (2009) investigated four radial

basis function neural networks (RBFN) into the estimation

of CEC from 457 soil physicochemical properties. Soil

horizon; pH; organic carbon content; and clay, silt and sand

contents were taken as the input variables. The results show

high correlation coefficients between predicted and mea-

sured CEC values.

As an alternative to ANN, the SVM proposed by Vapnik

(1998) is a powerful tool for nonlinear classification,

regression and time series prediction (Wang et al. 2008).

SVM belong to kernel-based learning approaches and have

gained wide popularity. SVM are a kind of supervised

machine learning system that use a linear high-dimensional

hypothesis space called feature space. The basic idea of

working principle of SVM is provided by the use of kernel

functions that implicitly map the data to a higher-dimen-

sional space. This makes SVM a powerful tool for mod-

eling the nonlinear complex environmental problems

(Bhagwat and Maity 2012). Several studies reported the

use of SVM in forecasting the soil water (Wu et al. 2008),

soil moisture prediction (Gill et al. 2006), estimation of soil

hydraulic parameters (Twarakavi et al. 2009), modeling

soil diffuse reflectance spectra (Rossel and Behrens 2010)

and soil type classification (Kovačević et al. 2010). Liao

et al. (2014) also used SVM, multiple stepwise regression

(MSR) and ANN models to estimate the CEC from easily

measured physicochemical properties (e.g., texture, soil

organic matter, pH) based on 208 soil samples in Qingdao

City, China. They indicated that the SVM model has better

results than the ANN and MSR models to estimate CEC

values. Sensitivity analysis was also conducted to explore

the influence of each input parameter on the CEC predic-

tions. The clay and sand content are the most and weakest

parameters, respectively.

Study area

The area under study covers approximately 8000 ha (be-

tween the longitude: 46�350–46�400E and latitude: 35�080–
35�120N) in the Khoja region, Tabriz, Azerbaijan, Iran. The

Khoja Soil and Water Conservation Research Station is

located 30 km at the east of Tabriz and 60 km from Eher

(also mentioned as Ahar). The prevailing semiarid climate

in the region is cold continental with a mean annual rainfall

of 220–270 mm. The altitude in the vicinity of the region is

approx. 1550 m above the mean sea level. The region is
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surrounded by mountains and hills through which the River

Aji flows to Lake Urmu. The underlying rock formations

are often granitic intrusion related to the Oligo-Miocene

age, intruding through a sequence of calcareous rocks. The

sampling procedure was started by carrying out a prelim-

inary soil investigation and then designing a random

sampling procedure, but flexibility is exercised during the

setting out of the sampling locations to reflect the inherent

variability of soil (e.g., the sampling points are set out

capturing the locations with tree lines, variability due to

soil texture or locations with notable land use changes).

The underlying principle in selected sample location is that

the results are representative of the soil, such that the fitted

models are not a construct of the particular measurement

but are capable of being a representative of the whole area

by capturing its inherent variability. The study area is

located on floodplain with well-established flooding pat-

terns, and therefore, soil variability depends more on local

weathering than regional variability or land use. There

have been past attempts to assess land suitability of the site

for agricultural purposes by using various methods (Mal-

ekian and Jafarzadeh 2011), which were used as prelimi-

nary basis before taking the necessary steps to gather data.

On this basis, the decisions on designing the sampling

procedure were made, and subsequently, sampling at reg-

ular grid points was found to be more appropriate for this

study area, but the randomness was allowed within the

number of samples at each soil horizon.

Materials and Methods

Artificial neural networks (ANNs)

ANNs, often traced back to McCulloch and Pitts (1943),

are inspired by the working of the brain and nerve systems

in biological organisms with a capability for self-learning

and automatic abstracting and with a possible benefit of

reducing modeling times. One application of ANNs is an

alternative modeling strategy to traditional methods of data

and time series analysis. Fundamental processing element

of ANNs is a neuron. At the hidden layers, each neuron

computes wij, a weighted sum of its p input signals, xi, for

i ¼ 0; 1; 2; . . .; n and then applies a nonlinear activation

function to produce an output signal, uj. The model of a

neuron is shown in Fig. 1. A neuron j is described math-

ematically by the following pair of equations:

uj ¼
Xp

i¼1

wij � xi ð1Þ

and

xj ¼ u uj � hj
� �

ð2Þ

where h is a threshold function, and its use has the effect of

applying an affine transformation to the output of the linear

combiner in the model of Fig. 1 (Haykin 1999; Melesse

and Hanley 2005), and in this study, the logistic sigmoid

nonlinear function (Bilgili et al. 2007) is used for this

purpose, expressed as:

ux ¼
1

1 þ e�x
ð3Þ

The type of ANN used in this study is a feed-forward

multilayer perceptron (MLP) with back propagation (BP)

learning algorithm, as commonly used in various complex

environmental problems such as soil science applications

of MLP. The structure of a three-layer MLP is shown in

Fig. 2. MLP with back propagation (BP) is a popular form

of training multilayer neural networks learning algorithm,

and it is widely used in solving various classification and

prediction problems. Back propagation convergence is

slow, but it has the advantages of accuracy and adaptability

(Kisi 2005).

Fig. 1 Nonlinear model of a neuron (Haykin 1999) Fig. 2 Simple configuration of multilayer perceptron neural network
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It consists of three layers: an input layer, a hidden layer

and an output layer. A set of neurons or nodes are arranged

in each layer. The number of neurons in the input and

output layers is defined depending on the number of input

and output variables of the system under investigation,

respectively. However, the number of neurons in the hid-

den layer(s) is usually determined via a trial-and-error

procedure. As seen from the figure, the neurons of each

layer are connected to the neurons of the next layer by

weights. The typical performance function used for training

feed-forward neural networks is the mean sum of squares

(MSE) of the network errors:

MSE ¼ 1

N

XN

j¼1

Tj � Oj

� �2 ð4Þ

where Tj is the target output, Oj is the actual output at

output unit j, and N is the number of data patterns.

Support vector machines (SVM)

The SVM is based on statistical learning theory (Vapnik

1998) Because of good generalization performance, SVM

is receiving increasing attention in pattern classification

and nonlinear regression estimation (Cao and Tay Francis

2003). For a given training data with N number of samples,

represented by x1; y1ð Þ; . . .; xN ; yNð Þ, where x is an input

vector and y is a corresponding output value, SVM esti-

mator (f) on regression can be represented by:

f xð Þ ¼ w � ; xð Þ þ b ð5Þ

where w is a weight vector, b is a bias, ‘�’ denotes the dot

product and ; a nonlinear mapping function. A smaller

value of w indicates the flatness of Eq. (5), which can be

obtained using minimizing the Euclidean norm as defined

by w2
�� ��. Vapnik (1995) introduced the following convex

optimization problem with an e-insensitive loss function

for regression using SVM:

minimize
1

2
w2 þ C

XN

K¼1

nþk þ n�k
� �

subject to

yk � w � ; xkð Þ þ bð Þ� eþ nþk
�yk þ w � ; xkð Þ þ bð Þ � eþ n�k k ¼ 1; 2; � � � ;N
nþk ; n

�
k � 0

8
><

>:

ð6Þ

where C is a positive trade-off parameter or capacity

parameter that determines the degree of the empirical error

in the optimization problem and determines the trade-off

between the flatness of the function and the amount to

which deviations larger than e are tolerated. Also n�k ; n
þ
k

are slack variables representing upper and lower con-

straints on the output system over the error tolerance e

(Misra et al. 2009). Lagrangian multipliers and the Karush–

Kuhn–Tucker (KKT) condition were used to solve the

optimization of Eq. (6) in a dual form. Support vectors are

the input vectors that have nonzero Lagrangian multipliers

under the KKT condition (Yoon et al. 2011). Figure 3

shows a schematic diagram of the SVM used in this study.

In natural processes, almost all the predictor variables

(input space) are nonlinearly related to the predicted vari-

able. This limits a linear formulation of the problem as

shown in Eq. (6). This limitation is solved by mapping the

input space on to some higher-dimensional space (feature

space) using a kernel function. The kernel function enables

us to implicitly work in a higher-dimensional feature space.

Eq. (5) can then be modified by using Lagrangian multi-

pliers ðai and a�i Þ as following:

f x; ai; a
�
i

� �
¼

XN

i¼1

ai � a�i
� �

� K x; xið Þ þ b ð7Þ

where K x; xið Þ is the kernel function. Commonly used

kernel functions include the linear, polynomial, radial basis

and sigmoid kernel functions. In this study, the widely used

radial basis function (RBF) kernel function was used. The

RBF kernel function is defined by Eq. (8):

K x; xið Þ ¼ exp � x� x2
i

r2

� �
ð8Þ

while using SVM with RBF kernel function, one has to

optimize three parameters during training, which includes

kernel parameter ðrÞ, capacity parameter ðCÞ and insensi-

tive loss function ðeÞ. In this study, an internal cross-vali-

dation (Wang and Hu 2005) during creation of SVM model

Fig. 3 A schematic structure of SVM model (Yoon et al. 2011)
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is adopted to have an optimal combination of the three

parameters.

Data specification

Present study includes 380 soil samples collected from

different horizons of 80 soil profiles. The approach adopted

in this study consists of marking 80 sites spaced at

approximately 1000 m on the map of the area at a scale of

1:25,000. These sites were set out using the GPS, and bores

were dug of the size of 1 m 9 2 m 9 1.5 m (depth).

Samples were taken from each site and were analyzed in

laboratory to measure their content of CEC, clay, silt, sand,

gypsum and OM. For this study, texture represented by

clay, silt and sand as well as gypsum and organic matter

was measured by Bouyoucos hydrometer, Stone’s and

Walkley-Black methods, respectively (Sayegh et al. 1978;

Nelson and Sommers 1982) and the CEC values (in

Cmol Kg-1) were determined using the Bower method

(Sparks et al. 1996). Total data of 380 samples were

divided randomly in a way to use 323 for model training,

whereas remaining 57 samples (15 % of total samples)

were used for testing the models. The size of sand particles

ranges between 2.0 and 0.05 mm; silt, 0.05 and 0.002 mm;

and clay, less than 0.002 mm. Gypsum, known to chemists

as calcium sulfate dihydrate (CaSO4–2H2O), is a soft nat-

urally occurring mineral and primarily used in agriculture

as a ‘clean green’ soil conditioner and fertilizer (Anonymus

1992). Organic matter in soil is composed of carbon,

oxygen, hydrogen, nitrogen, phosphorus and sulfur, which

is a complex mixture of substances that range from freshly

deposited plant and animal parts to the residual humus-

stable organic compounds. Clay minerals usually range

from 10 to 150 meq/100 g in CEC values. Organic matter

ranges from 200 to 400 meq/100 g. So, the kind and

amount of clay and organic matter content greatly influence

the CEC of soils (Parker 2010). The key statistic values of

the dataset used are presented in Table 1, and Table 2

presents the estimated values of correlation between the

variables, according to which: (1) The correlation between

CEC, silt and gypsum is poor, and (2) CEC is directly

correlated with clay, silt and OM but inversely with sand

and gypsum. Based on Table 1, the training and testing

data are broadly agreeable to each other, whereas Table 2

shows that the correlation of the CEC with the input

variables is ranked in the order of clay, OM, sand (inverse

correlation), silt and gypsum, but it is rather concerning

that the cross-correlation between silt and sand is quite

strong.

Performance measures

Three performance criteria, correlation coefficient (CC),

root-mean-square error (RMSE) and the Nash–Sutcliffe

efficiency coefficient (E), are used in this study to assess

the goodness of fit of the models. The CC, which ranges

from -1 to 1, is a statistical measure of how well the

regression line is close to the observed data, and a

coefficient of ±1 indicates that the regression line per-

fectly fits the observed data. The RMSE can provide a

balanced evaluation of the goodness of fit of the model as

it is more sensitive to the larger relative errors caused by

the low value, and the perfect model will have a value of

zero. The E-values range between -? and 1.0, with = 1

obtained by perfect fits. These performance measures and

information criteria are calculated by (Ghorbani et al.

2013):

CC ¼
Pn

i¼1 CECoð Þi� CECo

� �� �
CECeð Þi� CECe

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 CECoð Þi� CECo

� �� �2Pn
i¼1 CECeð Þi� CECe

� �� �2
q

ð9Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 CECoð Þi� CECeð Þi

� �2

n

s

ð10Þ

Table 1 Summary of statistics characteristics of input and output parameters

Training Testing

Data points Mean Max Min Std CV Data points Mean Max Min Std CV

Input

Clay (%) 323 31.43 55.72 3.86 9.69 0.31 57 30.24 53.26 10.02 10.40 0.34

Silt (%) 323 28.92 54.63 3.03 9.35 0.32 57 26.22 49.96 6.95 10.71 0.41

Sand (%) 323 39.58 89.96 3.61 15.70 0.40 57 43.59 79.60 13.33 17.98 0.41

Gypsum (%) 323 7.65 49.30 0.10 8.56 1.12 57 5.90 21.50 0.70 5.73 0.97

OM (%) 323 0.44 1.45 0.00 0.28 0.64 57 0.39 1.11 0.00 0.27 0.69

Output

CEC (Cmol K g-1) 323 26.21 5.02 4.61 0.31 57 13.48 25.19 50.3 5.24 0.39

Data points = number of data; max = maximum value; min = minimum value; std = standard deviation; CV = coefficient of variation

Int. J. Environ. Sci. Technol. (2016) 13:87–96 91

123



E ¼ 1 �
Pn

i¼1 CECoð Þi� CECeð Þi
� �

Pn
i¼1 CECoð Þi� CECo

� �� � ð11Þ

where the subscripts ‘o’ and ‘e’ represent the observed and

estimated values; the average value of the associated

variable is represented with a bar above it and n is the total

number of records.

Results and Discussion

In the application of ANN and SVM in this study for the

predication model, five soil characteristics including clay,

silt, sand, gypsum and organic matter are considered as the

input variables, and CEC is considered as the output

variable. In order to develop PTFs using proposed models

to predict CEC, both training and test data were normalized

using following equation:

xn ¼
x� xmin

xmax�xmin

ð12Þ

where xn is the normalized value (lying between 0 and 1), x

is the original data point, xmin, and xmax are the minimum

and maximum values in the dataset, respectively. In this

study, an MLP model has been constructed for predicting

the CEC using the MATLAB software, which also ran-

domizes the dataset, as the data points are not time series.

Neurons in the input layer have no transfer function.

Logistic sigmoid transfer function was used in the hidden

layer, and linear transfer function (purelin) was employed

from the hidden to the output layers as an activation

function. Logistic sigmoid activation function is known as

the most used nonlinear activation function. Most impor-

tant features of the sigmoid functions are continuity and

differentiability. Purelin activation function is a pure linear

function which outputs any inputs without any change.

This is to enable the network to be able to take care of any

nonlinearities in the input data and at the output, to be able

to give a wide range of values (Zhang et al. 1998).

The neural network used in this study was trained using

1000 epochs and the Levenberg–Marquardt learning algo-

rithm. The optimal value of learning rate and momentum

used in present study was 0.001 and 0.9, respectively.

Mean square error (MSE) is used as the performance

measure of MLP. The optimal number of neuron in the

hidden layer was identified using a trial-and-error proce-

dure by varying the number of hidden neurons from 1 to

20. Results from Fig. 4 suggest that a neural network with

one hidden layer having 13 nodes performs well with this

dataset and achieves CC value = 0.920,

RMSE = 1.803 Cmol Kg-1 and E = 0.846 with training

and CC = 0.860, RMSE = 2.731 Cmol Kg-1 and

E = 0.723 with testing dataset. The ANN modeling was

implemented using MATLAB software. Figure 5 shows

the scatter plots obtained from the optimum ANN model

for training and testing dataset. Results in terms of various

performance measures and Fig. 4 suggest that used neural

network model achieves close approximations of the actual

observations, suggesting effectiveness of this modeling

approach in predicting CEC values.

To compare the performance of neural network model-

ing approach, SVM, another modeling approach is used for

predicting CEC values. Many studies on the use of SVM in

soil science suggested the improved performance by RBF

kernel-based SVM (Twarakavi et al. 2009; Zhu and Xu

2011; Cisty et al. 2011; Lamorski et al. 2013; Shi et al.

2013). Therefore, in present study, the RBF kernel with

parameter c is used as the kernel function. Therefore, in

this study, the RBF kernel with parameters (C, e, r) is used

as the kernel function for CEC modeling and the accuracy

of a SVM model is dependent to identify the parameters.

To obtain a suitable value of these parameters (C, e, r), the

RMSE was used to optimize parameters. The performance

criteria with optimal parameters (C, e, r) = (4.68, 0.79,

2.36) suggest that SVM perform well in predicting CEC

values (CC = 0.896, RMSE = 2.040 Cmol Kg-1 and

E = 0.803 with training set and CC = 0.849,

RMSE = 2.796 Cmol Kg-1and E = 0.709 with testing

Table 2 Correlation matrix of

the data used
Clay (%) Silt (%) Sand (%) Gypsum (%) OM (%) CEC (Cmol Kg-1)

Clay (%) 1 0.37a -0.82a 0.03 0.06 0.61a

Silt (%) 0.37a 1 -0.83a -0.03 0.18a 0.37a

Sand (%) -0.82a -0.83a 1 -0.002 -0.14a -0.59a

Gypsum (%) 0.03 -0.03 -0.002 1 -0.27a -0.17a

OM (%) 0.06 0.18a -0.14a -0.27a 1 0.59a

CEC (Cmol Kg-1) 0.62a 0.37a -0.59a -0.17a 0.59a 1

a At 0.05 level of significance
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Table 3 Performance

evaluation criteria of SVM and

ANN models

Model Training Testing

CC RMSE (Cmol Kg-1) E CC RMSE (Cmol Kg-1) E

ANN 0.92 1.803 0.846 0.86 2.731 0.723

SVM 0.896 2.04 0.803 0.849 2.796 0.709
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set). Figure 6 shows the scatter plots of the results obtained

using the SVM model for training and testing dataset. The

results show almost perfect agreement between predicted

and measured values.

The performance of the ANN and SVM techniques is

compared in Table 3. Given the obtained results in Table 3,

results indicate an appropriate performance by both models

for CEC prediction. ANN model with high CC (0.920),

lowest RMSE equal to (1.803 Cmol Kg-1) and highest

Nash–Sutcliffe coefficient (0.846) with training data and

high CC (0.860), lowest RMSE equal to (2.731 Cmol Kg-1)

and highest Nash–Sutcliffe coefficient (0.723) with test

dataset found to be performing well in comparison with SVM

models with this dataset. Comparison of ANN and SVM

models as illustrated in Fig. 7 suggests that both ANN and

SVM methods perform poorly in extrapolating the maximum

and minimum values of CEC data.

Conclusion

In this study, ANN and SVM were used to predict the CEC

for an agricultural site using five input variables. From

these results, following conclusion can be drawn:

The results from this study suggest that both ANN and

SVM models had the ability to predict CEC within

acceptable limits. ANN and SVM methods perform poorly

in extrapolating maximum and minimum values of CEC

data. ANN model provided better estimation in the testing

period in comparison with SVM for CEC prediction.

Before using both ANN and SVM modeling approaches for

CEC prediction, it is suggested that these techniques may

be used with the datasets from different regions as all

machine learning approaches are data-dependent in nature.
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