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Abstract To assess the ecotoxicological and sanitary

situation in two European metropolis, Rostov-on-Don

(Southern Russia) and Munich (Southern Germany),

wastewaters of the two cities were examined with a panel

of bacterial lux-biosensors: Vibrio aquamarinus VKPM

B-11245, Escherichia coli MG1655 (pXen7), E. coli

MG1655 (pRecA-lux), E. coli MG1655 (pSoxS-lux),

E. coli MG1655 (pKatG-lux), E. coli MG1655 (pIbpA-

lux), E. coliMG1655 (GrpE-lux), E. coliMG1655 (pFabA-

lux). The presence of different genotoxic compounds and

substances with the oxidative and membrane-damaging

effects was revealed in contaminated wastewater with the

applied panel of the lux-biosensors. The integral toxicity

was approximately the same in both cities but demon-

strated opposite trends. The presence of genotoxicants and

peroxides was higher in the majority of the Munich

wastewater samples. There were also differences in the

presence of individual toxicants. The presence of the

genotoxic compounds might also promote development

and dissemination of several antibiotic resistance traits

found in microorganisms, a feature more pronounced in

Rostov-on-Don wastewaters. By means of polymerase

chain reaction assay, antibiotic resistance genes to such

antibiotics as ermB, vim and vanB were revealed in two

Munich samples. Antibiotic resistance genes were present

at all Rostov samples, and genes ndm, vanA, vanB and

ermB were found. Taken together, the proposed analytical

approach with the application of the constructed panel of

biosensors can be applied for monitoring of the ecotoxi-

cological contamination in the wastewaters of large cities.

Keywords Antibiotic resistance genes � Cell membrane

damage � Genotoxicity � Municipal sewage � Prooxidant
effect

Introduction

Industry development, growth of the cities and population

lead to increase in both water consumption and water

disposal (Figueras and Borrego 2010). Influx of a large

amount of poorly purified sewage deteriorates the ecolog-

ical and epidemiological quality of water ecosystems

(Poma et al. 2012).

Effluents from sewage treatment plants are sources of a

wide range of chemicals entering the aquatic environment

(Sturve et al. 2008). As a result of industrial activity and

household usage, a mixture of chemicals including PAHs,

solvents, heavy metals, plasticisers, pharmaceuticals, flame

retardants, antioxidants and washing and cleaning-related

compounds is dumped into sewage (Paxéus 1996; Halling-

Sorensen et al. 1998).

The high number of pollutants in sewage (Stadler et al.

2012; Tang et al. 2013) leads to the need for ecotoxico-

logical assessment of water quality. Fast and effective

methods are necessary for toxicity assessment. They

include evaluation of such toxicity parameters as integral

toxicity, genotoxicity and oxidative stress. As a rule, their

detection is quite complicated to perform as a big amount

of substances can cause similar effects (Tang et al. 2013).

The chemical analysis that initially prevails in toxicity
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assessment of sewage, determines components and con-

centration of the polluting substances in the environment.

However, it is unable to reveal the mechanisms of their

toxic effects and the impact of pollution on living organ-

isms (Ma et al. 2014).

One of the most promising approaches used for the

environment monitoring is the application of biosensors

(Daniel et al. 2008; Palchetti and Mascini 2008; Sorensen

et al. 2006), including those based on bioluminescent

bacteria (Ren 2004; Woutersen et al. 2011; Elad et al.

2011, 2013; Ji et al. 2013; Zhang et al. 2013; Ding et al.

2015; Eltzov et al. 2015).

Usage of lux-biosensor batteries provides an opportunity

to evaluate the presence of different toxic substances in

ecosystems simultaneously: DNA-tropic compounds (Ptit-

syn et al. 1997; Vollmer et al. 1997; Biran et al. 2010),

heavy metals (Lyngberg et al. 1999; Hakkila et al. 2004;

Ivask et al. 2009), polychlorinated biphenyls (Layton et al.

1998), substances causing oxidative stress (Lee and Gu

2003, Zavilgelsky et al. 2007), damaging proteins (Van

Dyk et al. 1994, 1995) and membranes (Choi and Gu

1999), etc. Besides, there is an opportunity to make a

preliminary conclusion about the mechanism of their

action.

The ability of many compounds to damage the genetic

material of living organisms deserves special attention. The

presence of the genotoxicants might significantly increase

mutation rates and support rapid development and dis-

semination of such unwanted features as antibiotic resis-

tance genes (ARG) number increase in microorganisms

(Harwood et al. 2001; Iversen et al. 2002; Schwartz et al.

2003; Sahlström et al. 2009; Munir et al. 2011; Korze-

niewska and Harnisz 2013; Amos et al. 2014).

Polymerase chain reaction (PCR) of the total DNA

extracted from sewage or active sludge from waste treat-

ment facilities can be successfully applied to follow the

presence of ARG (Guillaume et al. 2000; Szczepanowski

et al. 2009). It is known that traditional methods of sewage

treatment are not effective enough and both effluents and

active sludge of sewage treatment plants contain ARG and

antibiotic resistant bacteria in significant amounts (Munir

et al. 2011).

Accordingly, combining toxicity testing by means of

bacterial biosensors and investigating ARG presence in

sewage will allow obtaining a complex assessment of

biological safety and quality of the municipal sewage.

The approach proves to be helpful in comparison with

sewages of two large cities of Western and Eastern Europe

and supplies with information on ecotoxicological param-

eters and presence of several determinants of resistance and

bacterial contamination of their wastewaters. Wastewaters

of the Rostov-on-Don and Munich were selected as the

subject of the study. Studied wastewaters were collected at

wastewater treatment plants of the Rostov-on-Don and

Munich during the years 2012–2013. Munich and Rostov-

on-Don are similar according to the number of inhabitants

(*1,300,000 and *1,100,000 people), but considerably

differ from the viewpoint of the living standards and of the

population mobility.

Materials and methods

The present research was carried out on wastewaters.

Site of collection

The studied wastewaters were collected at municipal

wastewater treatment plants of the Rostov-on-Don and

Munich.

Sampling

Wastewater samples were taken at wastewater treatment

plants, at the stage of microbiological purification on

October 05, 2012; December 03, 2012; May 29, 2013; and

July 08, 2013. A portion (500 ml) of each sample was

packed in sterile chemically clear containers and sent to the

laboratory. In the laboratory, it was subsampled into 50 ml

aliquots and stored at -20 �C until analyzed.

Bacterial strains and culture conditions

Strains Vibrio aquamarinus VKPM B-11245 (Vibrio

aquamarinus DSM 26054), E. coli MG1655 (pXen7-lux),

E. coli MG1655 (pRecA-lux), E. coli MG1655 (pKatG-

lux), E. coli MG1655 (pSoxS-lux), E. coli MG1655

(pIbpA-lux), E. coli MG1655 (pFabA-lux) were used in

this study. Strains are kindly provided by I.V. Manukhov

(Federal State Unitary Enterprise ‘‘GosNIIGenetika’’).

Strain Vibrio aquamarinus VKPM B-11245 was isolated

by us from Black Sea water. It has high sensitivity for toxi-

cants and used for analysis of general toxicity (Sazykin et al.

2014). The strain is more sensitive compared to the recom-

binant Escherichia coli strain with the cloned lux-operon P.

leiognathi, used in the test system « Ecolum » (Methods

2007; Deriabin and Aleshina 2008).

The biosensor with PrecA promotor fixes the presence

of the factors causing damage of DNA in a cell. The

biosensor with the PkatG promoter fixes production of

hydroperoxides in a cell and with the PsoxS promotor-

superoxide anion and NO (Vollmer et al. 1997; Belkin

et al. 2003; Lee and Gu 2003; Zavilgelsky et al. 2007;

Lushchak 2011). Biosensor strain with PibpA promotor

responds to the substances damaging proteins (Van Dyk

et al. 1994, 1995). Biosensor strain with PfabA promotor
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responds to the substances damaging membranes (Choi and

Gu 1999).

Bioluminescent strains were obtained by transformation

of E. coli MG1655 by hybrid plasmids pXen7, pRecA-lux,

pKatG-lux, pSoxS-lux, pIbpA-lux, pFabA-lux. The gene

cassette luxCDABE Photorhabdus luminescens under the

control of Plac, PrecA, PkatG, PsoxS, PibpA, PfabA pro-

moters, respectively, was used in these biosensors. These

plasmids are created on the basis of pBR322 and contain a

selective marker of ampicillin resistance (Amp gene).

The bacterial strains were cultivated in Luria–Bertani

(LB) medium (Maniatis et al. 1982), containing 100 lg of

ampicillin/ml. The cultures were grown under constant

shaking to early exponential phase at 37 �C. Cells were

used immediately for stress induction tests.

Chemicals

All of the chemicals usedwere of analytical grade. Hydrogen

peroxide was from ‘‘Ferraine.’’ Methyl viologen, N-methyl-

N0-nitro-N-nitrosoguanidine (MNNG) (‘‘Sigma-Aldrich’’)

and ZnSO4 were obtained from «Sigma-Aldrich». Pen-

tachlorophenol, glucose-6-phosphate, NADP were obtained

from ‘‘AppliChem.’’ Test solutionswere prepared in distilled

water immediately before the tests. Rat liver microsomal

enzymes (S9 fraction) were from ‘‘Moltox.’’

Biosensors assay procedure

Wastewater samples to be tested were added in 20-ll
portions to wells of a 96-well microplate containing 180 ll
of the culture. In the control, 20 ll of distilled water was

added. Twenty microliters of toxicant solution (in case of

positive control for promoter activation) was introduced

into other wells.

For control activation of the PsoxS promoter, methyl

viologen was used, for PkatG promoter activation—hy-

drogen peroxide, for PrecA promoter activation—N-

methyl-N0-nitro-N-nitrosoguanidine (MNNG) (« Sigma »),

for PIbpA promoters—high temperature (50 �C, 5 min),

for PfabA promoter—pentachlorophenol. As positive con-

trol for E. coli MG1655 (pXen7), zinc sulfate was used.

When determining genotoxicity in an embodiment with

metabolic activation (designated in the tables as ‘‘?S9’’),

160 ll of culture, 20 ll of the water sample (in the control

variant—20 ll of distilled water) and 20 ll of activating
mixture comprising S9 fraction of rat liver microsomal

enzymes (‘‘Moltox,’’ USA) were added to the wells.

Luminescence measurements were taken on microplate

luminometer LM–01T (‘‘Immunotech’’). Numerical values

of a bioluminescence were expressed in relative lumines-

cence units.

Calculation

The criterion of toxic influence is bioluminescence inten-

sity change of the test object in the researched sample in

comparison with the control sample.

Strong toxic influence of the studied toxicant on bacteria

is evaluated according to the inhibition of their biolumi-

nescence for 30-min exposition period.

The quantitative assessment of the test reaction param-

eter is reflected as a dimensionless number—the toxicity

index (T), calculated according to the formula:

T ¼ 100 Ik � Icð Þ=Ic;

where Ic and Ik are the intensity of bacteria luminescence in

proof and control samples, respectively, at fixed exposition

time of the studied solution with test object.

In some cases, a situation is possible when biolumi-

nescence intensity of an analyzed sample is higher than that

of the control sample. In that case irrespective of the size of

negative T value, the conclusion about the absence of the

sample toxicity is drawn, and the toxicity index equals

zero.

The technique allows three threshold levels of the tox-

icity index:

• Admissible degree of toxicity: The toxicity index is less

than 20.

• The sample is toxic: The toxicity index is equal or more

than 20 and\50.

• The sample is highly toxic: The toxicity index is equal

or more than 50.

All the experiments were carried out in three indepen-

dent replications.

The induction factor, Fi, was defined as the relation of

luminescence intensity of a lux-biosensor suspension,

containing tested sample (Lc), to the luminescence intensity

of a lux-biosensor control suspension (Lk): Fi = Lc/Lk.

When the degree of luminescence induction is evaluated in

environmental samples, it should be noted that many of the

substances included in their composition, can enhance and

suppress bacterial bioluminescence, influencing the bacte-

rial luciferase enzyme that can cause artifacts. To solve this

problem, the isogenic E. coli MG1655 (pXen7) lux-operon

is under the control of a constitutive promoter which was

used to correct the artifacts associated with changes in

luciferase activity.

Therefore, besides, the induction factor coefficient of

luminescence suppression (K) was determined: K = lc/lk,

where lc—luminescence intensity suspension lux-strain

with constitutive promoter in the presence of the test

compound; lk—luminescence intensity control suspension

lux-strain with constitutive promoter.
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The correct values of the induction factor were calcu-

lated using the formula I = Fi/K, where Fi—induction

factor, K—coefficient of luminescence suppression.

Difference reliability of bioluminescence in experiment

from control value was estimated by t-criterion with the

help of Excel program. The conclusion about sample tox-

icity was made at p\ 0.05.

If at significant differences from control induction factor

values were\2, the detected genotoxic effect was evalu-

ated as « weak » , and if they were in the range from 2 to

10—as « medium » , above 10—as « strong » . All the

experiments were carried out three times independently.

DNA extraction from samples of sewage

Forty milliliters of each sewage sample was centrifuged for

7 min at 8000g, 4 �C (Allegra X-30R centrifuge, Beckman

Coulter, USA), and the sediment was suspended in 800 ll
of TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and

transferred into 2-ml Eppendorf tubes. Then, 200 ll 10 %

of SDS was added to resuspend the sediment and carefully

mixed. The suspension was incubated for 30 min at 99 �C,
incubated with 250 ll of 5 M NaCl solution and carefully

mixed. Then, it was centrifuged for 5 min at 14000g, at

room temperature (MiniSpin plus centrifuge, Eppendorf,

Germany), and the supernatant was transferred to a new

2-ml Eppendorf tubes. To the supernatant, 750 ll of the

isopropanol was added; the mixture was allowed to dis-

solve for 10 min at ?4 �C and then centrifuged 7 min at

14,000g. The sediment was washed twice with 70 %

ethanol and dissolved in deionized water.

PCR assay

Commercial available PCR kits from ‘‘Litekh’’ (Moscow,

Russia) were used for PCR assay. Resistance to car-

bapenems (genes vim, ndm, oxa-48), cephalosporins (ge-

nes ctx-M b mecA), glycopeptides—vancomycin and

teicoplanin (genes vanA and vanB) and erythromycin

(gene ermB) was discovered in sewage samples. Amplifi-

cation was carried out in 0.2-ml PCR test tubes. In total,

20 ll of PCR mix and 5 ll of DNA from sewage were

introduced into the tubes. PCR assays were carried out

according to the protocol of the manufacturer using the

T-100 amplifier (‘‘Bio-Rad,’’ USA). Amplification prod-

ucts were detected by horizontal electrophoresis. The

presence of a band corresponding in size to inner control

included into the PCR mix proved the success of the

amplification process. The presence of antibiotic resistance

genes was confirmed by the presence of a band corre-

sponding to positive control included into each PCR kit.

Electrophoresis of the obtained amplicons was carried

out in 1,2 % agarose gel, in 0,5X TBE buffer (0.54 g/l Tris

base, 0.275 g/l boric acid, 1 mM EDTA, pH 8.3) for 1 h at

7 V/cm in the SE-2 camera for horizontal electrophoresis

(‘‘Helikon,’’ Russia).

Results and discussion

A battery of bacterial lux-biosensors was applied to assess

the toxicity of Rostov-on-Don and Munich wastewaters,

and the pollution dynamics within the studied time period

was evaluated. The use of a battery of bioluminescent tests

can indicate general stress as a result of complex mixtures

and provide information about the real risk to water

environment.

The data presented allow the comparison of pollutants

presence in wastewaters of the two cities (Table 1). Values

of the bioluminescence induction factor (Fi) of bacterial lux-

biosensors on the basis of E. coli MG1655 were obtained

after diluting wastewaters 1: 100 due to the high toxicity of

wastewaters, which does not allow to evaluate luminescence

induction of bacterial sensor strains adequately (Eltzov et al.

2015). A natural biosensor strain Vibrio aquamarinus

demonstrated even higher sensitivity to the integrated toxi-

city, in comparison with lux-biosensors on the basis of

E. coli, and thus, the samples were diluted 1:1000.

According to the data presented in Fig. 1, the maximum

integrated toxicity in Rostov-on-Don wastewaters was

observed in October 2012 and that of Munich wastewa-

ters—in July 2013. In December 2012, May 2013 and July

2013, the toxicity index decrease was registered in

wastewaters of Rostov-on-Don. On the contrary, the toxi-

city index was higher in the wastewaters of Munich. Thus,

during the observation period, the Rostov and Munich

wastewaters showed comparable values of integrated tox-

icity, but, simultaneously, oppositely directed trends.

Luminescent bacteria (Vibrio fischeri, Photobacterium

phosphoreum, etc.) have been used for assessing the inte-

gral toxicity in ecological monitoring for many years. One

of the results of their response is a change in light emission

intensity depending on sample toxicity degree. Results

from luminescent bacteria acute toxicity test proved to be a

valuable tool for efficient wastewaters pollution control

(Rodrigues and Umbuzeiro 2011; Kokkali and Delft 2014;

Prasse et al. 2015).

For instance, it was shown by Palma et al. (2010) that V.

fisheri luminescence suppression correlates with the gen-

eral content of phosphorus, chlorine compounds and heavy

metals. P. phosphoreum was successfully used for deter-

mination of different molecular weight fractions of sludge

treating synthetic wastewater containing 4-chlorophenol

(Zhao et al. 2015). V. fischeri was used for assessment of

ecotoxicity of mobile forms of heavy metals in sewage

sludge (Gondek et al. 2014).
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The dump filtrates behave likewise (Bhalla et al. 2013).

The concentration of dissolved substances and toxicity of

wastewaters increase during the periods of plentiful rainfall

and were demonstrated with bacterial lux-biosensors and

toxic influence on amphibian larvae (Palma et al. 2010;

Park et al. 2014).

June and July are supposed to be the rainiest months in

Munich. At the same time, there is an efficient storm

drainage system directing wastewaters into the general

collectors and further to the wastewater treatment facilities

in Munich. In contrast, in Rostov, there is almost no storm

drainage and the most part of rainfall flows directly to the

Don River. The maximum rainfall in Rostov is in June and

from December to January with October being one of the

driest months of the year.

Detection of DNA damage is the most essential toxicity

effect that can be discovered with the help of biolumines-

cent bacteria strains. Genotoxicity assessment is of great

importance for public and environmental health; therefore,

genotoxicity testing is among the most widely used

bioassays in ecotoxicology (Prasse et al. 2015).

Escherichia coli MG1655 (pRecA-lux) strain was used

for genotoxicity assessment. Comparison of the induction

factors determined with the E. coli MG1655 (pRecA-lux)

biosensor showed that Munich wastewaters contain a larger

amount of direct genotoxicants in winter, spring and

summer samples (Fig. 2). During spring and summer, the

increase in the induction factor was observed for promu-

tagen substances using metabolic activation (Fig. 3) and

direct mutagens (Fig. 2) in Munich wastewaters.

In Rostov wastewaters, on the contrary, the concentra-

tion of the direct mutagens and promutagen compounds

was the highest in October and in July, correspondingly.

One can assume, due to the high levels of pollution in

spring and summer in Munich, both direct mutagens and

promutagens stream into wastewaters simultaneously,

perhaps as part of the same pollutants. The trend toward

increase in genotoxicity corresponds with the growth of the

integrated wastewaters toxicity in Munich during the

observation period. In contrast, in Rostov, there were two

maximum genotoxicant inflows separated by an interval of

8 months; one—in October 2012, the inflow of direct

genotoxicants, and another—in July 2013—the inflow of
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Fig. 1 Integral toxicity of Rostov-on-Don and Munich wastewaters

(strain Vibrio aquamarinus VKPM B-11245): 1—October 2012; 2—

December 2012; 3—May 2013; 4—July 2013

Table 1 Bioluminescent response of bacterial lux-biosensors to Rostov-on-Don and Munich wastewaters

Date and location

of sampling

The toxicity index (T) The induction factor (I)

Vibrio aquamarinus

VKPM

B-11245

E. coli

MG1655

(pRecA-lux)

E. coli

MG1655

(pKatG-lux)

E. coli

MG1655

(pSoxS-lux)

E. coli

MG1655

(pIbpA-lux)

E. coli

MG1655

(pFabA-lux)

-S9 ?S9

October 05, 2012

Rostov-on-Don 20.83* 1.97* 1.24 1.43 2.28* 2.75* 3.38*

Munich 2.86* 2.16* 1.32 2.57* 1.36 2.98* 3.21*

December 03, 2012

Rostov-on-Don 14.01* 1.30 1.69* 2.47* 2.39* 1.10 2.58*

Munich 7.12* 2.31* 1.65* 2.66* 2.10* 1.59* 2.69*

May 29, 2013

Rostov-on-Don 1.22* 1.71* 1.64* 1.71* 1.21 2.13* 2.10*

Munich 8.86* 2.90* 2.86* 1.25 1.24 1.73* 3.15*

July 08, 2013

Rostov-on-Don 2.86* 1.64* 2.36* 1.59* 1.15 2.49* 2.03*

Munich 19.63* 2.82* 2.71* 2.04* 2.58* 1.83* 4.03*

* Differences compared to the control samples are statistically significant, t-criterion, p\ 0.05. Metabolic activation samples are marked ?S9,

without activation -S9
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promutagens. Moreover, the promutagens increase was

linked with the fall of the integrated wastewaters toxicity,

potentially indicating changes of the composition of the

pollutants.

Many of the wastewater compounds are known to be

toxic to organisms due to their ability to form reactive

oxygen species and cause oxidative stress (Sturve et al.

2008). Therein, they are also able to cause critical effects

such as oxidative damage to lipids and proteins (Living-

stone 2001; Carney Almroth et al. 2008). Consequently,

using the parameters of oxidative stress in monitoring of

environmental pollution has increased in recent years and

has a great significance as an early warning signal (Vala-

vanidis et al. 2006).

In order to investigate the presence of compounds that

may cause oxidative stress, E. coli MG1655 (pKatG-lux)

and E. coli MG 1655 (pSoxS-lux) strains were used. E. coli

MG1655 (pIbpA-lux) and E. coli MG1655 (pFabA-lux)

sensor strains were used for detection of protein and

membrane damages, correspondingly.

A large amount of peroxides that cause oxidative stress

was detected in Munich wastewaters in all time probes

except for samples collected in May (Fig. 4). Their maxi-

mum concentration both in Munich and in Rostov

wastewaters was observed in winter (possibly due to their

greater stability at low temperatures and, as a consequence,

their accumulation). It should be noted that the contribution

of peroxides into integrated Munich wastewaters toxicity

during the observation period decreased.

Escherichia coli MG 1655 (pSoxS-lux) biosensor

response to the presence of substances that cause the

superoxide anion formation was higher in the wastewaters

of Rostov-on-Don in October 2012 and in the wastewaters

of Munich in July 2013. Their maximum concentration in

the wastewaters of Rostov occurred in October and

December 2012 and in Munich wastewaters—in July 2013

(Fig. 5). The general trend toward reduction in concentra-

tion of substances causing oxidative stress (except October

2012 samples) in Rostov wastewaters correlates with the

integrated toxicity decrease.

E. coli MG1655 (pIbpA-lux) sensor strain response to

the presence of substances that cause protein damages was

the strongest in the wastewaters of Rostov-on-Don and of

Munich in autumn (see Fig. 6) and changed likewise over

the period of observation in both cities. However, a relative

contribution of the substances causing protein damage to

the integral toxicity and the number of promutagens

increased in Rostov wastewater that indicates qualitative

changes in the wastewaters composition. In Munich, on the

contrary, the contribution of the protein-damaging agents

to the integral toxicity of wastewaters decreased during the

whole observation period.

The response of the E. coli MG1655 (pFabA-lux)

biosensor to the membrane-damaging substances was 1.5
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Fig. 2 Wastewaters genotoxicity: E. coli MG1655 (pRecA-lux)

biosensor response without using metabolic activation: 1—October

2012; 2—December 2012; 3—May 2013; 4—July 2013
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Fig. 3 Wastewaters genotoxicity: E. coli MG1655 (pRecA-lux)

biosensor response using metabolic activation: 1—October 2012;
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and 2 times higher in Munich sewage in May and July

2013. The increase in the membrane-damaging substance

concentrations was observed in Munich wastewaters during

winter–summer period. Their presence decreased in Rostov

wastewaters over the research period (Fig. 7). The changes

in concentrations of the membrane-damaging substances

(e.g., surfactants) largely correlated with the changes in the

integral wastewaters toxicity of Rostov and Munich during

the observation period. Thus, it can be assumed that the

membrane-damaging agents were mainly responsible for

the integral wastewaters toxicity. Genotoxicants of both

direct and indirect action were the main toxic pollutants for

Munich and substances that caused oxidative stress—for

Rostov-on-Don.

The toxicity of Munich wastewaters seems to be pri-

marily caused by the presence of membrane-damaging

substances, genotoxicants and substances causing forma-

tion of superoxide anion (especially in the summer

sample). This is supported by the highest responses of the

biosensors E. coli MG1655 (pFabA-lux), E. coli MG1655

(pRecA-lux) and E. coli MG 1655 (pSoxS-lux) along with

the highest index of integrated toxicity of Vibrio aqua-

marinus VKPM B-11245, respectively. Most probably, the

presence of the prooxidant substances can promote geno-

toxic effects, either by activating promutagens by oxidation

or by direct DNA alkylation.

Integral toxicity of Rostov-on-Don wastewaters is also

largely conditioned by cell membrane damage. Direct

mutagens and substances that cause oxidative stress (pri-

marily superoxide anion) also contribute to the toxicity.

Thus, the similar mechanism of toxic action of municipal

waste can be stated in these two cities.

PCR analysis of the total DNA isolated from sewage

indicated the presence of genes confirming resistance to

erythromycin (ermB) in Munich samples dating from

December 03, 2012, and July 08, 2013, and the presence

of vim genes (Enterobacteriaceae and Pseudomonas

resistance to carbapenems) and vanB genes (Entero-

coccus resistance to teicoplanin) in a sample from

December 03, 2012. However, in spring and autumn

samples, none of the analyzed genes was identified. All

the total DNA samples from wastewaters of Rostov

displayed the presence of ARG: October 05, 2012—re-

sistance to carbapenems (ndm), vancomycin (vanA) and

teicoplanin (vanB); December 03, 2012—erythromycin

(ermB); May 29, 2013—erythromycin (ermB), car-

bapenems (ndm), vancomycin (vanA) and teicoplanin

(vanB); July 08, 2013—erythromycin (ermB) and tei-

coplanin (vanB).

Although even in Germany, only one-fourth of antibi-

otics can be associated with their use in hospitals (Küm-

merer and Henninger 2004), the constant presence and a

wide range of ARG in the Rostov-on-Don wastewaters,
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compared to Munich, are probably due to the free public

availability of antibiotics (OTC sales) and less control of

the antibiotics usage in Russia.

ARG in Munich sewage were detected in winter and

summer samples, which also caused the largest oxidative

stress response in bacterial biosensors (SoxS-lux and KatG-

lux). In Rostov sewage, on the contrary, the greatest variety

of ARG was determined in autumn and spring samples.

These samples showed a higher induction factor of the

biosensor responding to direct mutagens (RecA-lux with-

out metabolic activation). Both effects, detected with the

biosensors, may be caused by biocides. Gaze et al. (2011)

reported an increase in the number of mobile genetic ele-

ments with resistance genes after bacterial exposure to

biocides and detergents. On the other hand, no influence of

detergents has been observed; biosensor induction coeffi-

cient for membranes damage [E. coli MG1655 (pFabA-

lux)] did not correlate with the presence of variety of ARG

in sewage. Also no connection between the range of ARG

and response level of the other biosensors was revealed.

Conclusion

A composite response of the applied biosensors panel allows

not only to assess the presence of toxic substances in

wastewaters of the two cities, but also to evaluate the toxic

spectrum of pollutants in environmental monitoring of

aquatic ecosystems. Taken together, the data obtained with

the bacterial lux-biosensors demonstrate that the integral

toxicity of wastewaters of both Munich and Rostov during

the observation period was at the similar level but demon-

strated opposite trends. The complex response of the biolu-

minescent sensors panel revealed that the toxicity of sewage

of both Munich and Rostov-on-Don is mainly caused by the

membrane-damaging substances. Direct genotoxicants and

promutagens, as well as substances that cause oxidative

stress, make a significant contribution to the integral toxicity

of sewage. The Rostov wastewaters, according to expression

of various toxicity mechanisms in different samples, were

more susceptible to variations in their qualitative composi-

tion compared to Munich wastewaters.

A larger spectrum of ARG was detected in the wastewa-

ters of Rostov-on-Don in comparison with those of Munich.

Prooxidant compounds and direct genotoxicants, as well-

known stressors, can directly increase the frequency of

mutagenesis but also facilitate distribution of the mobile

ARG-bearing elements already present in this epitope. This

might directly influence the resistome of municipal

wastewaters. The uncontrolled use of antibiotics and their

availability in Russia should be kept in mind. However, the

effect of membrane-damaging substances on the variety of

ARG in municipal wastewaters was not found.
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