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Abstract Multi-criteria decision-making methods sup-

port decision makers in all stages of the decision-making

process by providing useful data. However, criteria are

not always certain as uncertainty is a feature of the real

world. MCDM methods under uncertainty and fuzzy

systems are accepted as suitable techniques in conflicting

problems that cannot be represented by numerical values,

in particular in energy analysis and planning. In this

paper, a modified TOPSIS method for multi-criteria group

decision-making with qualitative linguistic labels is pro-

posed. This method addresses uncertainty considering

different levels of precision. Each decision maker’s

judgment on the performance of alternatives with respect

to each criterion is expressed by qualitative linguistic

labels. The new method takes into account linguistic data

provided by the decision makers without any previous

aggregation. Decision maker judgments are incorporated

into the proposed method to generate a complete ranking

of alternatives. An application in energy planning is

presented as an illustrative case example in which energy

policy alternatives are ranked. Seven energy alternatives

under nine criteria were evaluated according to the

opinion of three environmental and energy experts. The

weights of the criteria are determined by fuzzy AHP, and

the alternatives are ranked using qualitative TOPSIS. The

proposed approach is compared with a modified fuzzy

TOPSIS method, showing the advantages of the proposed

approach when dealing with linguistic assessments to

model uncertainty and imprecision. Although the new

approach requires less cognitive effort to decision makers,

it yields similar results.

Keywords Multi-criteria decision making � Linguistic
labels � TOPSIS � Qualitative reasoning � Energy planning

Introduction

Since social and economic development is affected by the

appropriate energy planning, evaluating sustainable

energy alternatives when determining valid energy poli-

cies is essential. However, assessing and selecting the

most suitable and sustainable types of energy in a geo-

graphical area is a complex problem. For governments

and businesses, important decisions include whether to

establish energy systems in a given place and deciding

which energy source, or combination of sources, is the

best option when considering potentially conflicting cri-

teria including environmental, technical and economic

aspects (Baños et al. 2011; Karimi et al. 2011). These

criteria in energy problems involve different qualitative

and quantitative variables and require specific techniques

to aggregate and summarize assessments made in such

complex situations.

Multi-Criteria Decision-Making (MCDM) approaches,

introduced in the early 1970s, are powerful tools used for
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evaluating problems and addressing the process of making

decisions with multiple criteria. MCDM involves struc-

turing decision processes, defining and selecting alterna-

tives, determining criteria formulations and weights,

applying value judgments and evaluating the results to

make decisions in design, or selecting alternatives with

respect to multiple conflicting criteria (Carlsson and Fuller

1996; Yilmaz and Dadeviren 2011). Moreover, MCDM

techniques have a strong decision support focus and

interact with other disciplines such as intelligent systems

dealing with uncertainty. Some of the currently used

MCDM methods, in which the present study can be

included, support decision makers in all stages of the

decision-making process by providing useful data to assess

criteria with uncertain values (Kara and Onut 2010).

The Technique for Order Preference by Similarity to the

Ideal Solution (TOPSIS), developed by Hwang and Yoon

(1981), is one of the most well-known distance-based

approaches for such decision making. TOPSIS ranks the

alternatives with respect to their geometric distance from

the positive and negative ideal solutions. This approach is

categorized as one of the MCDM methods in which value

judgments of criteria are expressed through crisp values.

However, in real situations when analyzing and quantifying

different types of variables from different spheres, it is

generally found that the information is imprecise and lacks

crispness due to inaccurate estimates of values from deci-

sion maker judgments (Herrera et al. 2008; Parreiras et al.

2010). Thus, in real situations, where the information is

imprecise, the alternatives can be better assessed by means

of fuzzy sets or linguistic variables (Herrera et al. 2008;

Ashtiani et al. 2009). In particular, in the case of MCDM

under uncertainty, fuzzy systems have been proven to

provide very suitable techniques for a remarkable range of

real-world problems and, in particular, in energy planning.

This is because these processes have many sources of

uncertainty, long time frames, intensive investments,

multiple decision makers and many conflicting criteria (Liu

2007; Tuzkaya et al. 2009).

When artificial intelligence (AI) techniques are used in

the development or assessment of alternatives, the resulting

systems are referred to as intelligent decision support

systems. These techniques attempt to understand and

explain the skill of human beings in reasoning without

precise knowledge (Doumpos and Grigoroudis 2013).

Qualitative reasoning (QR) techniques and fuzzy systems,

which are considered subfields of research in AI, offer

systematic tools for criteria assessment. Frequently, this

uncertainty is captured by using linguistic terms or fuzzy

numbers to evaluate the set of criteria or indicators. In

different studies, fuzzy MCDM approaches have been

developed to help energy planners and policy makers. In

fact, fuzzy and QR techniques are capable of representing

uncertainty, emulating skilled humans, and handling vague

situations (Dubois and Prade 1980; Tuzkaya et al. 2009).

Application of the fuzzy set theory, established by Zadeh

(1965), plays an important role in overcoming uncertain-

ties. Qualitative absolute order-of-magnitude models were

introduced into the QR field with the aim of using a lin-

guistic approach to work with different levels of precision

(Travé-Massuyès et al. 2005).

This paper contributes to the MCDM literature, and

especially to the models able to support uncertainty in

decision making, by developing a new methodology to

support decision making in complex areas like energy

problems. The method offers decision makers the possi-

bility to work with qualitative scales in their assessments.

Moreover, different levels of precision for different experts

based on their certain or uncertain knowledge helps to keep

all the information of their assessments instead of allowing

some information to be ignored. For example, if decision

makers do not have enough knowledge about one criterion,

they can indicate a range between ‘‘Very poor-Medium’’

instead of an exact assessment. Even if decision makers

don’t have any idea of the value for a specific attribute,

they can use the label ‘‘I don’t know,’’ modeled by ‘‘Very

poor-Very good.’’ In this direction, the main contribution

of this paper is a qualitative modified TOPSIS method,

which is introduced and applied for selecting sustainable

energy alternatives in a case example. This new method

handles uncertainty and imprecision by means of such

linguistic labels. Its main advantage is that, on the one

hand, experts can make mistakes if they are forced to make

more precise judgments than the available information

allows. On the other hand, a substantial loss of information

may happen if the experts are forced to make less precise

judgments. By allowing flexibility as to precision, this

method is able to capture the inherent ambiguity existing in

human reasoning.

The proposed method is based on QR techniques for

ranking multi-criteria alternatives in group decision mak-

ing with linguistic labels with different levels of precision.

It is inspired by a previous ranking method introduced by

Agell et al. (2012). The presented method is compared with

another MCDM approach based on a modified fuzzy

TOPSIS method developed by Chen (2000). This com-

parison is performed using an example based on data

provided by Kaya and Kahraman (2011).

Related work

Energy is a crucial factor for the economic development of

nations. As economies and human society advances, more

energy is required. The increasing scarcity of fossil fuel

energy and its pollution of the environment have given rise

to serious contradictions among the competing priorities of
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energy provision, environmental protection, and economic

development. Since the importance of renewable energies

has increased, a crucial decision for governments and

businesses is deciding the best choice of energy source

policies for investment (Polatidis et al. 2006).

The assessment and selection of the most suitable types

of energy in a geographical area is a complex problem

involving technical, economic, environmental, political and

social criteria. In addition, energy planning problems usu-

ally involve multiple decision makers. These problems

require the use of MCDM to evaluate environmental sus-

tainability. Because of their differences, each country must

prepare its own energy policies based on geographical and

environmental factors to address sustainability issues. It is

necessary to change the energy structure, integrating new

sources and modifying the way we use fossil fuel, because

of its damage to the environment. For this reason, several

planning strategies have been utilized in different

countries.

Many studies have applied MCDM methods as a useful

tool in energy planning (Tzeng et al. 1992; Georgopoulou

et al. 1998; Pohekar and Ramachandran 2004; Loken 2007;

Tsoutsos et al. 2009; Kahraman et al. 2010; Moghaddam

et al. 2011; Yeh and Huang 2014). For instance, in a study

by Tsoutsos et al. (2009), a set of energy alternatives were

determined for different sources of energy on the island of

Crete in Greece. The study constitutes an exploratory

analysis for regional energy planning in creating classifi-

cations of sustainable energy alternatives. Pohekar and

Ramachandran (2004) reviewed different published papers

on MCDM and considered their applications in the

renewable energy area. Another review of the various types

of renewable energy models such as solar, wind, biomass

and bio-energy is conducted by Jebaraj and Iniyan (2006).

Wang et al. (2009) conducted a literature review on

MCDM methods used for the selection of energy and their

applications to energy issues. The review identifies four

main criteria categories for the evaluation of energy sour-

ces and site selection problems: technical, economic,

environmental and social.

Table 1 shows the most important MCDM methods

used for assessing energy policy and management: AHP;

PROMETHEE; ELECTRE; and TOPSIS (Pohekar and

Ramachandran 2004). Beccali et al. (1998) introduced a

methodological tool able to organize the large set of vari-

ables of several specific assessments that help the decision

maker in a complex problem. The authors used the

ELECTRE methods to decide upon involving the use or

non-use of fuzzy set concepts on the Italian island of

Sardinia for renewable energy diffusion strategy planning.

The case study explored the advantages and drawbacks of

each ELECTRE methodology. In 2003, Beccali et al. used

ELECTRE III to select the most suitable innovative

technologies in the energy sector. Three decision scenarios

were posited, each representing a coherent set of actions,

and different fuzzification strategies were analyzed. In the

study of Boran et al. (2012), intuitionistic fuzzy TOPSIS

was introduced to evaluate renewable energy technologies

for electricity generation in Turkey.

The use of criteria and indicators is a common way to

describe and monitor complex systems and provide infor-

mation for decision makers. Four main criteria from a

sustainability point of view are accepted by experts in the

literature review on the application of the MCDM tech-

niques in energy planning: technological, environmental,

economic, and social (Begic and Afgan 2007; Doukas et al.

2007; Wang et al. 2008, 2009). Table 2 shows the most

important ‘‘criteria’’ and ‘‘indicators’’ used in recent

MCDM studies conducted on energy issues. Each indicator

is assigned to a specific criterion, and the corresponding

study citations are included.

In this study, from among the indicators in Table 2 the

most frequently used indicators in the literature have been

considered: efficiency; exergy (rational efficiency);

investment cost; operation and maintenance cost; NOX

emission; CO2 emission; land use; social acceptability; and

job creation.

To evaluate different sources of energy with respect to

these indicators, TOPSIS is one of the best known refer-

ence level models in the energy area. TOPSIS was devel-

oped by Hwang and Yoon (1981) and is based on an

aggregating function of the evaluation scores of experts; it

determines the best alternative by calculating the distances

from the positive and negative ideal solutions. The basic

idea is that the preferred alternative should have the

shortest distance from the ideal solution and the farthest

distance from the negative ideal solution (Opricovic and

Tzeng 2004; Hwang and Yoon 2005). Behzadian et al.

(2012) studied various literature reviews in sustainable

energy policy, energy planning, and suitable indicators for

assessing energy using the TOPSIS methodology.

Using linguistic variables and TOPSIS approach, which

takes values from a set of linguistic terms, was reported in

some studies for the evaluation of energy policy options

(Doukas et al. 2010; Kahraman et al. 2010). Doukas et al.

(2010) presented an extension of a numerical multi-criteria

TOPSIS method for processing linguistic information in

the form of 2-tuple fuzzy numbers. He shows how energy

policy objectives for sustainable development and renew-

able energy sources options are assessed using linguistic

variables. Kaya and Kahraman (2011) applied the modified

fuzzy TOPSIS, which takes an evaluated fuzzy decision

matrix as input to the selection of the best energy

alternative.

Linguistic variables enable experts to express their

preferences as a major issue to be faced for making a
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decision. Most of the selection parameters cannot be given

precisely, and decision makers usually express the evalu-

ation data of the suitability of the alternatives for various

subjective criteria, and the weights of the criteria, in

linguistic terms (Belton and Stewart 2002; Wang et al.

2009). There are many different representation formats that

can be used in each model, such as preference orderings,

utility values, multiplicative preference relations, fuzzy

Table 1 Review of MCDM applied to energy issues

Method Focus Author(s)

AHP Ranking energy alternatives Akash et al. (1999), Kablan (2004) and Nigim et al. (2004)

MAUT Examining energy policy Buehring et al. (1978)

Strategic energy planning Pan and Rahman (1998)

Goal Programming Energy resource planning Meier and Hobbs (1994)

Renewable energy planning San Cristóbal (2012)

TOPSIS Evaluating renewable energy Cavallaro (2010b) and Boran et al. (2012)

Assessing energy policy objectives Doukas et al. (2010)

Selecting the best energy alternative Kaya and Kahraman (2011); Proposed method

PROMETHEE II Ranking energy alternatives Georgopoulou et al. (1998) and Goumas and Lygerou (2000)

PROMETHEE I and II Assessing renewable energies Topcu and Ulengin (2004)

Sustainable energy planning Tsoutsos et al. (2009)

Assessing energy technologies Tzeng et al. (1992) and Oberschmidt et al. (2010)

ELECTRE III Energy planning Beccali et al. (2003) and Cavallaro (2010a)

Table 2 The most important criteria and indicators used in MCDM studies on energy issues

Criteria Indicators Author(s)

Technical Efficiency Begic and Afgan (2007) and Evans et al. (2009)

Exergy (rational efficiency) Kaya and Kahraman (2011)

Reliability Jing et al. (2012) and Kahraman et al. (2010)

Technical risk Nigim et al. (2004)

Energy payback time Stamford and Azapagic (2011)

Capacity Varun et al. (2009)

Economic Investment cost Evans et al. (2009), Wang et al. (2009) and Streimikiene et al. (2012)

Operation and maintenance cost Evans et al. (2009) and Jing et al. (2012)

Internal rate of return (IRR) Wang et al. (2009)

Payback period (PBP) Rovere et al. (2010) and Jing et al. (2012)

Net present value Rovere et al. (2010)

Availability of funds Stamford and Azapagic (2011)

Environmental NOX emission Kaya and Kahraman (2011) and Rovere et al. (2010)

CO2 emission Kaya and Kahraman (2011) and Rovere et al. (2010)

CO emission Kaya and Kahraman (2011) and Rovere et al. (2010)

Suspended particulate matter emission (SPM) Begic and Afgan (2007) and Wang et al. (2009)

Land use Beccali et al. (2003)

Noise Streimikiene et al. (2012)

Environmental risk Rovere et al. (2010)

Social Social acceptability Kaya and Kahraman (2011)

Job creation Begic and Afgan (2007) and Rovere et al. (2010)

Health risk Wang et al. (2009)

Fatal accidents Stamford and Azapagic (2011)
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preference relations and so on. Every representation format

has its own advantages and disadvantages, such as preci-

sion or ease of use and understanding. The use of fuzzy sets

theory has achieved very good results for modeling quali-

tative information. Such modeling can be treated as a

mechanism that mimics the human inference process with

fuzzy information. It is a tool with the ability to compute

with words the qualitative human thought process in the

analysis of complex systems and decisions. Therefore,

fuzzy logic is appropriate for unstructured decision making

(Zadeh 1975).

QR is another sub-area of AI that attempts to understand

and explain the ability to reason without having exact

information. The main objective of QR is to develop sys-

tems that enable operation in conditions of insufficient or

no numerical data (Forbus 1984; Travé-Massuyès et al.

2005). QR also addresses problems in such a way that the

principle of relevance is preserved, that is, each variable is

valued with the level of precision required. In group

decision evaluation processes, it is not unusual for a situ-

ation to arise in which different levels of precision have to

be used simultaneously depending on the information

available to each expert. QR tackles the problem of inte-

grating the representation of existing uncertainty within the

group (Agell et al. 2012).

Linguistic approaches have been widely used in MCDM

methods in several fields such as power generation for tri-

generation systems (Nieto-Morote et al. 2010; Wang et al.

2008; Chang et al. 2008), life cycle impact assessment

(Kara and Onut 2010; Cherubini and Strømman 2011), and

urban planning (Chang et al. 2008; Kowkabi et al. 2013;

Mosadeghi et al. 2015), among others. In energy planning,

different aspects of environmental assessments have been

considered in various studies, and examples include:

developing local energy sources to rank energy alternatives

(Goumas and Lygerou 2000), evaluating water resources

(Dai et al. 2010), assessing renewable energy alternatives

(Doukas et al. 2007; Kahraman et al. 2010) and finding

optimal locations for energy projects (Aras et al. 2004; San

Cristóbal 2012; Yeh and Huang 2014; Afsordegan et al.

2016). Doukas et al. (2007) present a MCDM approach

with linguistic variables to assist policy makers in formu-

lating sustainable technologies in a Greek energy system.

Furthermore, different applications of fuzzy MCDM

methods in energy planning can be found in Kahraman

(2008).

Materials and methods

A mathematical formulation is developed that contributes

to decision analysis in the context of multi-criteria and

group decision making for ranking problems. The method

used in the study of Agell et al. for ranking alternatives,

based on comparing distances against a single optimal

reference point, has been modified in the method proposed

in this paper to capture the idea of the TOPSIS approach

according to the best and worst reference points. To do so,

the proposed method of TOPSIS, namely ‘‘Qualitative

TOPSIS’’ (Q-TOPSIS) is defined after some preliminaries

are introduced.

Preliminaries

Absolute qualitative order-of-magnitude models

The absolute order-of-magnitude (AOM) models are con-

structed via a partition of an interval in R which defines the

set of basic labels. The partition is defined by a set of real

landmarks. A general algebraic structure called qualitative

algebra is defined; it provides a mathematical structure that

combines sign algebra and interval algebra. This structure

has been extensively studied by Travé-Massuyès et al.

(2005).

Definition 1 Let [a1, an?1] be a real interval and

{a1,…,an?1} a set of real landmarks, with a1\ ���\ an?1.

The basic labels are defined by Bi = [ai, ai?1], i = 1,…,n.

Each basic label Bi corresponds to a linguistic term. In a

generic sense, if r\ s, then Br\Bs, meaning that Bs is

strictly preferred to Br, such as ‘‘extremely bad’’\ ‘‘very

bad.’’

Definition 2 The non-basic labels describing different

levels of precision are defined as [Bi, Bj] = [ai, aj?1] where

i, j = 1,…,n, and i\ j. The label [Bi, Bj] corresponds to the

concept ‘‘between Bi and Bj.’’

In 2012, Agell et al. introduced a qualitative approach

for ranking alternatives described qualitatively that was

inspired by the reference point method. This approach

ranks a set of alternatives {A1,…,Al} by using a distance

function. This technique uses qualitative linguistic assess-

ments of alternatives and minimizes the distance between

them and a certain target point that models the best per-

formance for each criterion considered. The approach

considers that each alternative is defined by a set of r cri-

teria, and each criterion is evaluated by the judgments of a

team of m experts. These evaluations are given by means of

a set of qualitative labels with different levels of precision

belonging to a certain order-of-magnitude space

Sn ¼ f½Bi;Bj�ji; j ¼ 1; . . .; nþ 1; i� jg, considering [Bi,

Bi] = Bi.

In this way, each alternative Ai, i = 1,…,l, is repre-

sented by a k-dimensional vector of labels in ðSnÞk; Ai $
ðAi11 ; . . .;Ai1m ; . . .;Air1 ; . . .;AirmÞ; k being the product of the
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number of criteria and the number of experts: k = r�m.
Distances between linguistic k-dimensional vectors of

basic and non-basic labels are computed by using the

location function in Sn, which enables one to move from

an ordinal scale to a cardinal scale and is defined as

follows.

Definition 3 The location function definition in Sn is the

function l : Sn ! Z2 such that:

l Bi;Bj

� �� �
¼ �

Xi�1

s¼1

l Bsð Þ;
Xn

s¼jþ1

l Bsð Þ
 !

ð1Þ

where l is any measure defined over the set of basic labels,

for instance, (Bi) = ([ai, ai?1]) = ai?1 - ai.

In other words, the location function of a qualitative

label [Bi, Bj] is defined as a pair of real numbers whose

components are, respectively, the opposite of the addition

of the measures of the basic labels to its left and the

addition of the measures of the basic labels to its right.

By applying a function l to each component of the k-

dimensional vector of labels, each alternative Ai is codified

via a 2k-dimensional vector of real numbers:

LðAiÞ ¼ ðlðAi11Þ; . . .; lðAi1mÞ; . . .; lðAir1Þ; . . .; lðAirmÞÞ.

AHP method to compute weights

Special attention has been paid to the definition of the

criteria weights for aggregation functions in the MCDM

literature. Weights given to different criteria are particu-

larly important to obtain the overall preferential value of

the alternatives (Choo et al. 1999). Based on aggregation

procedures of MCDM models, the criteria weights can be

used in different ways. Weights can be defined as trade-off

or importance coefficients. In MCDM methods based on

distance functions, weights are obtained by trade-off

among criteria such as pair-wise comparison. In particular,

in this study, the well-known analytical hierarchy process

(AHP) is used to obtain weights of criteria to evaluate

energy alternatives.

AHP was developed by Saaty in the late 1980s (Saaty

1980, 1990). It evaluates the importance of each criterion

in relation to the others in a hierarchical manner. The

AHP method is based on structure of the model, com-

parative judgment of criteria and synthesis of the priori-

ties (Karimi et al. 2011). In the first step, a complex

problem is broken into a hierarchy with goal as an

objective, criteria and sub-criteria at levels and sub-levels

like a family tree. The second step begins with prioriti-

zation procedure in order to determine the relative

importance of the criteria within each level. The evalua-

tion of the hierarchy is based on pairwise comparison to

assess the DM preferences from the second level to

lowest one (Amiri 2010). At the last step, the relative

weights for each matrix have been found and normalized.

The AHP is considered a single synthesizing criterion

approach (Ishizaka and Nemery 2013).

This process can be performed with both qualitative and

quantitative criteria. In addition, to deal with the uncer-

tainty involved in some complex problems, a fuzzy

approach of AHP method, where linguistic variables are

used to represent the experts’ opinion, was developed

(Laarhoven and Pedrycz 1983). The fuzzy AHP considers

the fuzziness and vagueness of the decision makers (Kuo

et al. 2015; Russo and Camanho 2015). In general, experts

use linguistic terms, which are translated into fuzzy eval-

uation scores and weights are finally expressed via triangle

fuzzy numbers.

The proposed Q-TOPSIS method

The TOPSIS method proposed in this paper, called ‘‘Q-

TOPSIS,’’ can process information represented by quali-

tative terms in the absolute order-of-magnitude model that

was introduced in Subsection Absolute qualitative order-

of-magnitude models.

Let us consider a set of alternatives {A1,…, Al}, each one

defined by a set of r criteria, with each criterion assessed by

a team of m experts. These assessments are given by means

of a set of qualitative labels with different levels of precision

belonging to a certain order-of-magnitude space Sn.

Therefore, each alternative Ai, i = 1,…,l is represented by a

k-dimensional vector of labels, k being the product of the

number of criteria and the number of experts:

Ai $ Ai11 ; . . .;Ai1m ; . . .;Air1 ; . . .;Airmð Þ;
Aijh 2 Sn; i ¼ 1; . . .; l; j ¼ 1; . . .; r; h ¼ 1; . . .;m

We consider the qualitative positive reference label

(QPRL) as the k-dimensional vector A� ¼ ðBn; . . .;BnÞ; and
the qualitative negative reference label (QNRL) as the k-

dimensional vector A- = (B1,…,B1), which are considered

as reference labels to compute distances. Their location

function values are in:

LðA�Þ ¼ �
Xn�1

s¼1

l Bsð Þ; 0; . . .;�
Xn�1

s¼1

l Bsð Þ; 0
 !

ð2Þ

LðA�Þ ¼ 0;
Xn

s¼2

l Bsð Þ; . . .; 0;
Xn

s¼2

l Bsð Þ
 !

ð3Þ

Both the Euclidean weighted distances of each

alternative location L(Ai), i = 1,…,l, to A� and A-

locations are then calculated, thus dðLðAiÞ; LðA�ÞÞ and
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d(L(Ai), L(A
-)), by applying Eq. 4 to the vectors ðX; YÞ ¼

dðLðAiÞ; LðA�ÞÞ and (X, Y) = d(L(Ai), L(A
-)) respectively:

d X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

i¼1
wi

X2m

j¼1
Xji�Yji
� �2

r

ð4Þ

where wi is the weight corresponding to the ith indicator,

and Xij, Yji, j = 1,…,2 m, i = 1,…,r, are, respectively, the

components of X and Y. Finally, the qualitative closeness

coefficient of each alternative is obtained by Eq. 5, and the

alternatives are ranked according to the decreasing order of

QCCi values.

QCCi ¼
d�i

d�i þ d�i
; i ¼ 1; 2. . .; l: ð5Þ

where d�i and d�i are, respectively, the distance between the

alternative location L(Ai) and the QPRL location LðA�Þ and
the QNRL location L(A-). The ranking of alternatives can

be determined according to the pre-order defined by the

values of QCCi, and the closer to A� and further from A-

the alternative Ai, the greater the value of QCCi. In such a

case, common in TOPSIS methodology, the alternative Ai

with the maximum QCCi is chosen as the best option.

Results and discussion

A case example application of Q-TOPSIS

for selecting sustainable energy alternatives

To demonstrate the potential of this methodology, an

application for selecting sustainable energy alternatives is

presented. A case example, based on data provided in a

paper by Kaya and Kahraman (2011), is used to illustrate

the introduced approach. This case example enables us to

show the main advantages of the Q-TOPSIS method with

respect to the existing methods, i.e., classic TOPSIS and

fuzzy TOPSIS. Specifically, the ability of the proposed

method is to capture the uncertainty inherent in human

reasoning and by allowing experts to use ‘‘different levels

of precision’’ in their assessments. Although this is not

specific for energy issues, and it may applicable in general

for selecting the best from a set of alternatives, its suit-

ability for selecting sustainable energy alternatives is

clearly shown. Using linguistic labels with different levels

of precision for expert assessment is crucial when some

experts do not have enough knowledge about some aspect.

Alternatives, criteria, and indicators for sustainability

assessment

Seven alternatives were examined in the current paper:

conventional (A1), nuclear (A2), solar (A3), wind (A4),

hydraulic (A5), biomass (A6) and combined heat and power

(CHP) (A7). Nine indicators, with reference to the most

frequently used technical, economic, environmental, and

social criteria in evaluating energy options, were selected

to assess the given alternatives. Note that in this study in

order to compare results with Kaya and Kahraman (2011),

the same indicators have been selected and other important

indicators, such as environmental and health risk, and

environmental emissions such as CO, SO2 and SPM, were

not considered. For this reason, the Q-TOPSIS method is

performed on the basis of these nine indicators, as weighted

by a group of three experts.

The considered indicators according to each criterion

are: efficiency (I1) and exergy (rational efficiency) (I2) as

technological indicators; investment cost (I3) and operation

and maintenance cost (I4) as economic indicators; NOX

emission (I5), CO2 emission (I6), and land use (I7) as

environmental indicators; and social acceptability (I8) and

job creation (I9) as social indicators.

The considered indicators’ weights are: w1 = 0.09;

w2 = 0.1; w3 = 0.1; w4 = 0.11; w5 = 0.13; w6 = 0.15;

w7 = 0.11; w8 = 0.09; and w9 = 0.12 using fuzzy AHP

method. It is assumed that all the criteria are benefit cri-

teria. For instance, if energy source is evaluated as ‘‘very

good’’ in terms of ‘‘CO2 emission,’’ this means that the

CO2 emission level for energy option is ‘‘very low.’’

Results

Once the criteria evaluation is determined and the indica-

tors, weights, and alternatives are specified, the Q-TOPSIS

algorithm steps are executed. The Q-TOPSIS approach

considered in this example uses seven basic qualitative

labels. Table 3 shows these qualitative labels together with

their locations, considering the measure l over the set of

basic labels l(Bi) = 1, for all i = 1,…,7.

Each expert assesses each alternative by means of nine

qualitative labels (one for each indicator). Therefore, each

alternative A is represented by a 27-dimensional vector of

qualitative labels.

Table 3 Evaluation scores

Linguistic terms Qualitative labels Locations

Very poor (VP) B1 (0, 6)

Poor (P) B2 (-1, 5)

Medium poor (MP) B3 (-2, 4)

Fair (F) B4 (-3, 3)

Medium good (MG) B5 (-4, 2)

Good (G) B6 (-5, 1)

Very good (VG) B7 (-6, 0)
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A $ E1;1; . . .;E1;9;E2;1; . . .;E2;9;E3;1; . . .;E3;9

� �
ð6Þ

As mentioned, the location function then codifies each

alternative by a 54-dimensional vector of real numbers.

A $ X1;1; . . .;X1;18;X2;1; . . .;X2;18;X3;1; . . .;X3;18

� �
ð7Þ

Note that the vector in Eq. 7 for each alternative Ai is

obtained by combining the ith rows of the three matrices

given in Table 4. Considering separately the assessments

made by the three energy planning experts (E1, E2, and E3),

Table 4 shows the alternatives’ evaluation matrices via the

locations of the nine indicators.

The two vectors L(A-) = L(B1,…,B1) = (0, 6,…,0, 6)

and LðA�Þ ¼ L B7; . . .;B7ð Þ ¼ �6; 0; . . .;�6; 0ð Þ are con-

sidered as the reference labels to compute distances. The

qualitative Euclidean distance of each alternative from the

QPRL and QNRL is then calculated by means of (Eq. 8):

d A; ~A
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX9

i¼1
wi

X6

j¼1
Xji� ~Xji

� �2
r

ð8Þ

Weights mentioned in the previous subsection are

considered: w1 = 0.09; w2 = 0.1; w3 = 0.1; w4 = 0.11;

w5 = 0.13; w6 = 0.15; w7 = 0.11; w8 = 0.09; and

w9 = 0.12; and the procedure detailed in Subsection Q-

TOPSIS method was applied. Table 5 shows the values of

the distances to the QPRL and QNRL of each alternative

together with the values of the QCCi

According to the QCCi values, the best alternative is A4

(wind energy). The order of the remaining alternatives is

biomass (A6), solar (A3), CHP (A7), nuclear (A2), hydraulic

(A5) and conventional energy (A1).

Comparing Q-TOPSIS with modified fuzzy TOPSIS

Q-TOPSIS is compared with the modified fuzzy TOPSIS

methodology in two different aspects. In the first subsec-

tion, we compare theoretically the two methodologies, and

in the second subsection, we compare the results obtained

in Subsection A case example application of Q-TOPSIS for

selecting sustainable energy alternatives with the results

obtained in Kaya and Kahraman (2011) using the modified

fuzzy TOPSIS developed by Chen (2000). The main rea-

sons for comparing the proposed method with modified

fuzzy TOPSIS are that both methods are TOPSIS methods,

and both capture uncertainty through linguistic labels.

Therefore, as modified fuzzy TOPSIS method in some

theoretical points is close to Q-TOPSIS, it has been

selected for this comparison in order to show the new

contribution of our method.

Table 4 Qualitative decision

matrices
C1 C2 C3 C4 C5 C6 C7 C8 C9

E1

A1 (-5, 1) (-5, 1) (-4, 2) (-4, 2) (0, 6) (0, 6) (-1, 5) (-2, 4) (-4, 2)

A2 (-6, 0) (-3, 3) (0, 6) (-6, 0) (-2, 4) (-2, 4) (-2, 4) (-1, 5) (-5, 1)

A3 (-3, 3) (-3, 3) (-3, 3) (-3, 3) (-6, 0) (-5, 1) (-6, 0) (-5, 1) (-3, 3)

A4 (-2, 4) (-4, 2) (-5, 1) (-5, 1) (-5, 1) (-6, 0) (-6, 0) (-6, 0) (-3, 3)

A5 (-4, 2) (-5, 1) (-4, 2) (-3, 3) (-2, 4) (-1, 5) (-2, 4) (-3, 3) (-5, 1)

A6 (-3, 3) (-4, 2) (-3, 3) (-3, 3) (-5, 1) (-5, 1) (-4, 2) (-5, 1) (-5, 1)

A7 (-3, 3) (-4, 2) (-3, 3) (-2, 4) (-3, 3) (-3, 3) (-4, 2) (-5, 1) (-4, 2)

E2

A1 (-6, 0) (-4, 2) (-5, 1) (-3, 3) (0, 6) (-2, 4) (0, 6) (-1, 5) (-5, 1)

A2 (-5, 1) (-6, 0) (-2, 4) (-6, 0) (-2, 4) (-2, 4) (0, 6) (-2, 4) (-5, 1)

A3 (-2, 4) (-3, 3) (-4, 2) (-3, 3) (-6, 0) (-5, 1) (-5, 1) (-5, 1) (-4, 2)

A4 (-3, 3) (-4, 2) (-5, 1) (-5, 1) (-5, 1) (-6, 0) (-5, 1) (-6, 0) (-3, 3)

A5 (-3, 3) (-5, 1) (-4, 2) (-3, 3) (-2, 4) (-1, 5) (-2, 4) (-3, 3) (-4, 2)

A6 (-3, 3) (-3, 3) (-4, 2) (-3, 3) (-5, 1) (-5, 1) (-4, 2) (-5, 1) (-5, 1)

A7 (-4, 2) (-3, 3) (-3, 3) (-2, 4) (-3, 3) (-3, 3) (-5, 1) (-4, 2) (-4, 2)

E3

A1 (-6, 0) (-6, 0) (-4, 2) (-4, 2) (-2, 4) (-2, 4) (-1, 5) (-2, 4) (-4, 2)

A2 (-6, 0) (-6, 0) (0, 6) (-6, 0) (-1, 5) (-2, 4) (-2, 4) (-2, 4) (-5, 1)

A3 (-3, 3) (-3, 3) (-3, 3) (-3, 3) (-5, 1) (-5, 1) (-5, 1) (-5, 1) (-3, 3)

A4 (-1, 5) (-4, 2) (-5, 1) (-6, 0) (-6, 0) (-6, 0) (-5, 1) (-6, 0) (-3, 3)

A5 (-5, 1) (-5, 1) (-4, 2) (-3, 3) (-2, 4) (-1, 5) (-2, 4) (-3, 3) (-5, 1)

A6 (-3, 3) (-4, 2) (-3, 3) (-4, 2) (-5, 1) (-5, 1) (-4, 2) (-5, 1) (-4, 2)

A7 (-4, 2) (-3, 3) (-4, 2) (-3, 3) (-3, 3) (-3, 3) (-4, 2) (-5, 1) (-4, 2)
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Methods comparison

The modified fuzzy TOPSIS developed by Chen (2000)

that takes an evaluated fuzzy decision matrix as input is a

popular tool to analyze the ideal alternative. This MCDM

technique determines the best alternative by calculating the

distances from the fuzzy positive and fuzzy negative ideal

solutions according to an aggregation of the expert fuzzy

evaluation scores. In modified fuzzy TOPSIS, linguistic

preferences are converted to fuzzy triangle numbers (p1,
p2, p3). Table 6 shows the main differences between

Q-TOPSIS and the modified fuzzy TOPSIS method. The

differences noted in Table 6 represent four significant

improvements over modified fuzzy TOPSIS.

Generally speaking, both methods use linguistic vari-

ables, but in different ways: Q-TOPSIS in the form of

qualitative labels with different levels of precision and

fuzzy TOPSIS by means of linguistic labels corresponding

to triangle fuzzy numbers. Furthermore, the final aggre-

gation process of both methods finds the distance between

each alternative and the best and worst solutions. However,

there are some differences between these two methods.

Firstly, the Q-TOPSIS method does not require any pre-

vious discretization or definition of landmarks for defining

initial qualitative terms because the calculations are per-

formed directly with the labels through the location func-

tions. In contrast, in the modified fuzzy TOPSIS, fuzzy

labels are defined by means of cut-points that have to be set

before any aggregate triangle fuzzy numbers. Secondly, the

Q-TOPSIS method can address different levels of preci-

sion, from the most precise and basic labels to the least

precise label [B1, Bn], which can be used to represent

unknown values. In this way, experts are not forced to

make more precise judgments than they are capable of; as

mentioned earlier, sometimes decision makers can make

mistakes if they are required to make more precise judg-

ments than the available information allows. Finally, the

Q-TOPSIS methodology computations do not need to use

an aggregation of expert assessments or a prior normal-

ization. The former involves a loss of information, and the

latter concentrates expert assessments into a given range,

which causes reduced differences. However, as can be seen

in the next subsection, the results obtained by applying

both methodologies are similar.

Results comparison and sensitivity analysis

Modified fuzzy TOPSIS has been applied to the data

summarized in Subsection A case example application of

Q-TOPSIS for selecting sustainable energy alternatives.

Three experts evaluated the seven energy alternatives

[conventional, nuclear, solar, wind, hydraulic, biomass and

combined heat and power (CHP)] with respect to each one

of the nine technical, economic, environmental, and social

indicators using linguistic terms defined by the triangle

fuzzy numbers given in Table 7.

For theparticular scenario (w1 = 0.09;w2 = 0.1;w3 = 0.1;

w4 = 0.11; w5 = 0.13; w6 = 0.15; w7 = 0.11; w8 = 0.09;

and w9 = 0.12), the modified fuzzy TOPSIS provided the

following alternatives ranking: wind[biomass[ so-

lar[CHP[hydraulic[nuclear[ conventional energy.

Both algorithms were implemented using the same data, and

wind energy was found to be the best alternative among other

energy technologies on both studies for this particular scenario.

Although both MCDM linguistic approaches process uncer-

tainty in different ways, their results produce the similar

rankings.

In addition, a sensitivity analysis that considered the

four other scenarios, changing the weights considered for

each criterion (Table 8), was carried out to analyze the

results when applying both approaches. It is a crucial issue

in any multi-criteria method to determine whether the final

ranking is dependent and sensitive to the estimates of the

criteria weights.

The results of applying both approaches are summarized

in Table 9. Differences were found just in the shaded cells.

In each shaded cell, the first item always shows the

Q-TOPSIS result and the second item shows the modified

fuzzy TOPSIS result.

Table 5 Q-TOPSIS results d�i d�i QCCi

A1 8.514 9.033 0.485

A2 9.278 8.657 0.517

A3 10.528 5.420 0.660

A4 12.119 4.435 0.732

A5 8.204 7.973 0.507

A6 10.490 4.876 0.682

A7 9.136 6.495 0.584

Table 6 Differences between

the two methods
Differences Q-TOPSIS Fuzzy TOPSIS

Scale Qualitative labels Fuzzy triangle numbers

Granularity Multi-granularity Fixed granularity

Aggregation step Without prior aggregation Weighted mean

Normalization Without prior normalization Normalization
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Table 9 shows that the results obtained from both

methodologies always coincide in the first option, and in

general, they produce compatible rankings of alternatives.

In particular, in Scenario 2, both methodologies produce

exactly the same ranking. Greater differences were found

in the last scenario. A plausible reason for this finding is

that the variability (standard deviation) of the weights used

in the last scenario is significantly greater than in the rest of

the scenarios. Moreover, increasing the criteria weight of

C1 changes the position of the wind energy alternative in

the last scenario, meaning that this option is largely

dependent on the weights of efficiency indicator. The

alternatives which are changed in the positions were more

sensitive to the criteria weights changes.

Finally, to study the similarity between both ranking

methods, a simulation was conducted including 30 other

scenarios in which the weights considered changed randomly

for each criterion. Figure 1 shows the correlation coefficient

values obtained in the 30 scenarios. To this end, the Spear-

man’s rho and the Kendall’s tau correlation coefficients were

computed for each of the 30 scenarios. In all the scenarios,

highly significant values (p value\ 0.05) were obtained. The

mean and the standard deviation for these coefficients were:

�q ¼ 0:97 and �s ¼ 0:93, and Sq ¼ 0:037 and Ss ¼ 0:082,

respectively. The results indicate a high correlation between

the results obtained using both methods.

Table 7 Fuzzy evaluation scores for the alternatives

Linguistic terms Fuzzy numbers

Very poor (VP) (0, 0, 1)

Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)

Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)

Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

Table 8 Different weights of indicators for five scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

C1 0.09 0.2 0.2 0.05 0.3

C2 0.1 0.1 0.15 0.05 0.05

C3 0.1 0.05 0.05 0.1 0.05

C4 0.11 0.05 0.05 0.1 0.05

C5 0.13 0.1 0.2 0.15 0.2

C6 0.15 0.1 0.05 0.15 0.05

C7 0.11 0.1 0.05 0.15 0.05

C8 0.09 0.1 0.05 0.15 0.05

C9 0.12 0.2 0.2 0.1 0.2

Table 9 Sensitivity analysis

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Wind Biomass Biomass Wind Biomass

Biomass Wind Wind Biomass/Solar Solar

Solar Solar Solar Solar/Biomass Wind

CHP CHP CHP/Nuclear CHP CHP/Nuclear

Nuclear/Hydra Nuclear Nuclear/CHP Hydra Nuclear/CHP

Hydra/Nuclear Hydra Hydra Nuclear Hydra/ Convent.

Convent. Convent. Convent. Convent. Convent./Hydra
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Allowing experts to use different levels of precision

To highlight the ability of the method presented to cap-

ture the inherent uncertainty existing in human reasoning,

we present a simulated extension of the previous Scenario

1 where experts are allowed to use different levels of

precision in their assessments. In general, costs, social

acceptability and job creation are usually the criteria

involving more uncertainty, meaning that their results and

predictions can present greater differences. For this rea-

son, we consider that Expert 1 expresses uncertain

judgments when assessing criteria (C3, C4, C8 and C9) in

Scenario 1. Table 10 presents the previous values con-

sidered for Expert 1 assessments with respect to these

four criteria, whose locations are presented in Table 4,

along with the new assessments allowing different levels

of precision.

Considering these new assessments of Expert 1, the final

order of ranking is the same as the previous one: wind[
biomass[ solar[CHP[ nuclear[ hydraulic[ conven-

tional energy (see Table 9). Note that the modified fuzzy

TOPSIS method is not able to deal with these types of

Fig. 1 Spearman’s rho and Kendall’s tau correlation coefficients

Table 10 Expert 1 assessment using non-basic labels

E1 C3 C4 C8 C9

Basic labels Non-basic labels Basic labels Non-basic labels Basic labels Non-basic labels Basic labels Non-basic labels

A1 B5 [B2–B6] B5 B5 B3 B3 B5 [B3–B6]

A2 B1 B1 B7 B7 B2 [B1–B3] B6 B6

A3 B4 [B3–B5] B4 [B3–B5] B6 B6 B4 [B3–B5]

A4 B6 B6 B6 B6 B7 B7 B4 B4

A5 B5 [B4–B6] B4 [B1–B7] B4 [B3–B5] B6 B6

A6 B4 [B3–B5] B4 [B3–B5] B6 [B5–B6] B6 B6

A7 B4 [B1–B7] B3 [B1–B4] B6 B6 B5 [B4–B5]
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assessments; therefore, these results can only be computed

using the method proposed in this paper.

This example clearly shows the originality and the

contribution of the proposed method because, although it

allows experts to express their uncertainty through impre-

cise assessments, it yields the same final ranking; thus, the

same results can be obtained with less information. In

addition, this reinforces the idea that the proposed method

is more adaptable to real situations and requires less cog-

nitive effort on the part of the experts. However, obviously,

if the assessments are more imprecise, the obtained ranking

can be different, as can be seen in the situation presented in

Table 11.

The ranking based on these new assessments is wind[
solar[ biomass[CHP[ hydraulic[ nuclear[ conven-

tional energy. In the new order the respective places of solar/

biomass and hydra./nuclear are switched.

Conclusion

When considering environmental, technical, economic

and social aspects, it is crucial to analyze and quantify

different types of variables involving imprecision. These

factors, especially social ones, are not always precise, as

imprecisions and uncertainties are features of the real

world. Therefore, in order to provide useful data from

experts’ assessments, a new MCDM method to support

decision makers in all stages of the decision-making

process with uncertain values is presented. This impre-

cision is captured by using linguistic variables involving

qualitative labels with different levels of precision. This

approach, based on order-of-magnitude QR, provides a

model that can obtain results from non-numeric

variables.

The main contribution of this paper is the qualitative

TOPSIS method, which is introduced and applied in an

energy case study. Sustainable energy planning problems

require critical decisions in a variety of dynamic com-

plexities with respect to conflicting environmental, eco-

nomic, social and technical criteria. This method takes into

account intensity of preferences and gives experts the

capability to assess alternatives under uncertainty by

expressing their judgments using linguistic variables

involving qualitative labels. As an advantage of this

method, the use of qualitative labels with different levels of

precision is essential to obtaining user-friendly systems to

be used by energy planners for evaluation processes. This

method is able to capture the existing ambiguity inherent in

human reasoning and addresses the problem in such a way

that the principle of relevance is preserved: each variable is

valued with the level of precision required.

In this paper, the proposed Q-TOPSIS method is com-

pared with the modified fuzzy TOPSIS method, which uses

another type of linguistic variables. The modified fuzzy

TOPSIS approach utilizes fuzzy linguistic variables for

evaluating alternatives. For further research, the proposed

Q-TOPSIS method will be applied to real data to determine

the most appropriate sustainable energy alternative in a

specific geographical area. Moreover, regarding the appli-

cation for selecting sustainable energy alternatives, the

theoretical framework can be deeply extended to include

more indicators such as waste management, other envi-

ronmental pollutions (SO2, GHG, CO emissions and SPM),

public health and environmental risk and the impact of

possible accidents, which are crucial in energy studies.

Other parameters such as internal rate of return and pay-

back period are important economic parameters for

investment on any energy sources that will be considered in

future applications.
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Table 11 Expert 1 assessment using more non-basic labels

E1 C3 C4 C8 C9

Basic labels Non-basic labels Basic labels Non-basic labels Basic labels Non-basic labels Basic labels Non-basic labels

A1 B5 [B4–B6] B5 B5 B3 B3 B5 [B3–B5]

A2 B1 [B1,B2] B7 [B1–B3] B2 [B1–B3] B6 [B4–B6]

A3 B4 [B4–B7] B4 [B4–B6] B6 [B6–B7] B4 [B4–B6]

A4 B6 [B6,B7] B6 [B6,B7] B7 B7 B4 [B4–B6]

A5 B5 [B5–B6] B4 [B4–B6] B4 [B4–B6] B6 [B4–B7]

A6 B4 B4 B4 [B3–B5] B6 [B4–B6] B6 [B4–B6]

A7 B4 [B2–B6] B3 [B4–B5] B6 B6 B5 [B4–B6]
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