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Abstract Blasting is a widely used technique for rock

fragmentation in opencast mines and tunneling projects.

Ground vibration is one of the most environmental effects

produced by blasting operation. Therefore, the proper pre-

diction of blast-induced ground vibrations is essential to

identify safety area of blasting. This paper presents a pre-

dictivemodel based on gene expression programming (GEP)

for estimating ground vibration produced by blasting oper-

ations conducted in a granite quarry, Malaysia. To achieve

this aim, a total number of 102 blasting operations were

investigated and relevant blasting parameters were mea-

sured. Furthermore, the most influential parameters on

ground vibration, i.e., burden-to-spacing ratio, hole depth,

stemming, powder factor, maximum charge per delay, and

the distance from the blast face were considered and utilized

to construct theGEPmodel. In order to show the capability of

GEP model in estimating ground vibration, nonlinear mul-

tiple regression (NLMR) technique was also performed

using the same datasets. The results demonstrated that the

proposed model is able to predict blast-induced ground

vibration more accurately than other developed technique.

Coefficient of determination values of 0.914 and 0.874 for

training and testing datasets of GEP model, respectively

show superiority of this model in predicting ground vibra-

tion, while these values were obtained as 0.829 and 0.790 for

NLMR model.

Keywords Blasting � Ground vibration �
Gene expression programming � Nonlinear multiple

regression

Introduction

The rock excavation is one of the most important works in

the surface mines. For this purpose, blasting operation is the

most common and economical technique among available

techniques. Nevertheless, in the blasting operations, a large

amount of explosive energy is wasted to create environ-

mental impacts like flyrock, ground vibration, air over-

pressure, and back break which can affect surrounding area

(Khandelwal and Singh 2006, 2007; Khandelwal and

Kankar 2011; Ebrahimi et al. 2015). Among these envi-

ronmental issues, ground vibration is recognized as an

undesirable phenomenon which may lead to damage to

surrounding structures, adjacent rock masses, roads,

underground workings, slopes, railroads, the existing

ground water conduits, and the ecology of the nearby area

(Singh and Singh 2005; Toraño et al. 2006; Ozer et al. 2008;

Verma and Singh 2011; Faramarzi et al. 2014; Dindarloo

2015a). Hence, proper estimation of ground vibration may

minimize/reduce the blasting environmental problems.

Chemical reaction of explosive may create high-pressure

gas, when explosive material is detonated in a blast hole.
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Then, the created gas pressure crushes the surrounding rock

mass to the blast hole. The detonation pressure decays or

dissipates quickly. After that, in the ground, a wave motion

is produced by the strain waves conveyed to the adjacent

rocks (Duvall and Petkof 1959). The strain waves are

propagated as the elastic wave when the stress wave

intensity reduces to the ground level (Dowding 1985).

These waves are known as ground vibration.

Normally, ground vibration can be recorded based on

two factors, i.e., frequency and peak particle velocity

(PPV). According to many researchers (Bureau of Indian

Standard 1973; Kahriman 2002; Singh 2004; Singh and

Singh 2005; Sawmliana et al. 2007), PPV is set as an index

for measuring ground vibrations as it is an important indi-

cator for controlling the structural damage criteria. During a

few past decades, in order to predict PPV produced by

blasting, many vibration predictors have been proposed

empirically (e.g., Duvall and Petkof 1959; Langefors and

Kihlstrom 1963; Davies et al. 1964; Ambraseys and Hen-

dron 1968; Roy 1993). In the mentioned predictors, PPV

values are obtained from two factors, i.e., maximum charge

per delay and distance from the blast face. Nevertheless, as

a result, these empirical approaches are not good enough,

whereas high degree of PPV estimation is required to

determine blast safety area. This is maybe due to incorpo-

ration of only limited numbers of influential parameters on

PPV (maximum charge per delay and distance from the

blast face) in these predictors, whereas it is also influenced

by other controllable or non-controllable parameters like

burden, spacing, stemming, and powder factor (Singh and

Singh 2005; Khandelwal and Singh 2007). Apart from

empirical predictors, statistical techniques have been

widely utilized for PPV prediction (e.g. Verma and Singh

2011, 2013a; Hudaverdi 2012). In these techniques, some

other input parameters related to blasting design, rock mass

properties, and explosive material were utilized for ground

vibration prediction (e.g., Singh and Singh 2005; Khan-

delwal and Singh 2009; Hajihassani et al. 2015b; Dindarloo

2015a). However, the implementation of statistical tech-

niques is not reliable if new available data are different from

the original ones (Khandelwal and Singh 2009; Mohamed

2011; Verma and Maheshwar 2014).

During the recent years, soft computing techniques have

also been extensively applied and developed to predict

ground vibration caused by blasting. Many scholars high-

light the successful use of these techniques in the field of

ground vibration prediction. Khandelwal and Singh (2006)

examined empirical predictors and artificial neural network

(ANN) model to predict PPV and frequency values

obtained from 150 blasting events and concluded that ANN

results are more accurate compared to empirical predictors.

In another study of ground vibration prediction, Monjezi

et al. (2011) developed ANN, empirical and statistical

models for blasting operations conducted in Siahbisheh

pumped storage dam, Iran. They used a database com-

prising of 182 datasets in order to predict PPV and con-

cluded that ANN can implement better in predicting PPV

compared to other proposed models. Iphar et al. (2008) and

Jahed Armaghani et al. (2015) developed the adaptive

neuro-fuzzy inference system (ANFIS) for estimating PPV

induced by blasting. A fuzzy inference system (FIS) model

was proposed by Fisne et al. (2011) for evaluation and

prediction of 33 PPV values obtained from the Akdaglar

quarry, Turkey. Another fuzzy model was employed and

suggested for indirect determination of PPV using 6 dif-

ferent controllable input parameters in the study carried out

by Ghasemi et al. (2013). They highlighted the high-per-

formance prediction of the fuzzy model in estimating PPV.

Mohamed (2011) proposed both ANN and FIS models for

estimating PPV and reported that FIS approach can provide

slightly higher performance capacity in approximating

PPV. Based on obtained blasting parameters from Bakh-

tiari Dam, Iran, Hasanipanah et al. (2015) utilized and

introduced a support vector machine (SVM) model to

estimate PPV. Dindarloo (2015b) developed a SVM model

for estimating 100 PPV values collected from Golegohar

iron ore mine, Iran. They used 12 model inputs of both

controllable and non-controllable parameters in order to

predict PPV and found that the developed model is a ver-

satile tool for predicting PPV. Two hybrid intelligent

techniques namely particle swarm optimization (PSO)-

ANN and imperialism competitive algorithm (ICA)-ANN

were developed in the studies carried out by Hajihassani

et al. (2015a, b), respectively. A summary of previous

investigations in the field of PPV prediction and their

prediction performances are shown in Table 1.

Gene expression programming (GEP) which is the

developed version of genetic programming (GP) and

genetic algorithm (GA), has been used to solve engineering

problems (e.g. Teodorescu and Sherwood 2008; Alkroosh

and Nikraz 2011; Mollahasani et al. 2011; Ozbek et al.

2013). GEP is a new algorithm which can introduce rela-

tionships between input parameters to estimate output.

Utilization of the GEP algorithm in the field of rock

mechanics and mining engineering has only been limited

into a few studies. For instance, Baykasoglu et al. (2008)

and Çanakcı et al. (2009) proposed new models based on

GEP for solving problems related to compressive and

tensile strength of the rock with high degree of accuracy.

Ozbek et al. (2013) and Dindarloo and Siami-Irdemoosa

(2015) developed GEP models for prediction of the uni-

axial compressive strength (UCS) of the rock samples.

Their study represented a good agreement between the

measured UCS and predicted by GEP model. Ahangari

et al. (2015) proposed two models, i.e., GEP and ANFIS to

estimate settlement induced by tunneling and indicated the
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superiority of their developed GEP model compared to

ANFIS predictive model in settlement prediction. More

specifically, in the field of ground vibration prediction, a

GEP technique was employed and proposed for prediction

of the frequency of the adjacent ground vibrations in the

study conducted by Dindarloo (2015a).

As far as the authors know, there is no study developing

GEP technique for predicting PPV induced by blasting.

Therefore, in the present study, a model based on the

mentioned model is proposed to estimate PPV values

obtained from a granite quarry in Penang, Malaysia. To

show the ability of GEP model in predicting PPV, nonlinear

multiple regression (NLMR) analysis was also performed.

Materials and methods

Gene expression programming

Gene expression programming (GEP) is a data-drivenmethod

that firstly introduced by Ferreira (2001). Unlike GP and GA

techniques that have been widely applied in the field of rock

mechanics and mining engineering (Baykasoglu et al. 2008;

Ozbek et al. 2013; Güllü 2012; Ahangari et al. 2015; Din-

darloo 2015a), GEP is not yet a well-established technique in

the mentioned fields. GEP is the developed version of GP and

GA and can surmount their shortcomings such as difficulties

of applying genetic operators on trees (Ferreira 2001;

Baykasoglu et al. 2008; Teodorescu andSherwood2008).The

main difference between these three algorithms is related to

the nature of the individuals or solutions. In GA, the individ-

uals are expressed as binary (0 and 1) strings with the fixed

length which are called chromosomes. While, in GP, the

solutions are computer programs (CPs) that follow the Lost of

Irritating Superfluous Parentheses (LISP) language and are

able to express as parse trees with different sizes and shapes.

The structure of individuals inGEP is somehowacombination

of twoprevious algorithms. InGEP, similar toGA, individuals

are considered as linear chromosomes with the fixed length

and similar to GP, they can be shown in tree structure with

different sizes and shapes called expression tree (ET) (Ferreira

2001; Zhou et al. 2003; Kayadelen 2011; Güllü 2012; Din-

darloo 2015a). GEP algorithm consists of five main compo-

nents namely terminal set, function set, fitness function,

operator(s), and stop condition. The fundamental steps ofGEP

algorithm are shown in Fig. 1. The process of GEP modeling

can be summarized as follows:

Step 1 Certain number of chromosomes is generated

randomly based on the number of population

Step 2 The chromosomes of initial population are

expressed as ET and mathematical equations

Table 1 Summary of previous investigations in the field of PPV prediction

Reference Technique Input No. of dataset R2

Iphar et al. (2008) ANFIS DI, MC 44 0.98

Monjezi et al. (2011) ANN HD, ST, DI, MC 182 0.95

Khandelwal et al. (2011) ANN DI, MC 130 0.92

Mohamed (2011) ANN, FIS DI, MC 162 ANN = 0.94

FIS = 0.90

Fisne et al. (2011) FIS DI, MC 33 0.92

Li et al. (2012) SVM DI, MC 32 0.89

Mohamadnejad et al. (2012) SVM, ANN DI, MC 37 SVM = 0.89

ANN = 0.85

Ghasemi et al. (2013) FIS B, S, ST, N, MC, DI 120 0.95

Monjezi et al. (2013) ANN MC, DI. TC 20 0.93

Jahed Armaghani et al. (2014) PSO-ANN S, B, ST, PF, MC, D, N, RD, SD 44 0.94

Hajihassani et al. (2015b) ICA-ANN BS, ST, PF, MC, DI, Vp, E 95 0.98

Hasanipanah et al. (2015) SVM DI, MC 80 0.96

Dindarloo (2015b) SVM RD, E, UCS, TS, Js, B, S, HD/B, SC, ST, DPR, DI 100 0.99

Hajihassani et al. (2015a) PSO-ANN BS, MC, HD, ST, SD, DI, PF, RQD 88 0.89

Jahed Armaghani et al. (2015) ANFIS DI, MC 109 0.97

Burden (B); Spacing (S); hole length (HL); stemming (ST); powder factor (PF); blastability index (B); support vector machine (SVM); maximum

charge per delay (MC); rock density (RD); hole diameter (D); hole depth (HD); burden to spacing (BS); number of row (N); particle swarm

optimization (PSO); subdrilling (SD); distance from the blast face (DI); total charge (TC); rock quality designation (RQD); Young’s modulus

(E); imperialist competitive algorithm (ICA); p-wave velocity (Vp); adaptive neuro-fuzzy inference system (ANFIS); fuzzy inference system

(FIS); coefficient of determination (R2); uniaxial compression strength (UCS); tensile strength (TS); joint spacing (Js); hole depth-to-burden ratio

(HD/B); specific charge (SC); delay per row (DPR)
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Step 3 The fitness of each chromosome is evaluated

according to the fitness function, and if the

stopping conditions are not reached, the best of

first generation is selected based on roulette wheel

method

Step 4 In the fourth step, the genetic operators (core of

GEP algorithm) are applied to the remaining

chromosomes in order to create modified

individuals. These operators are described later

Step 5 After applying genetic operators on the

chromosomes, they create the next generation

and this process is repeated for a specified number

of generations

A linear chromosome in GEP is created using terminals

and functions. Depending on the problem to be solved,

terminals or input parameters may be consisted of numer-

ical constants. In GEP, some simple mathematical opera-

tors (e.g., ?, -, 9, and 7), nonlinear functions (e.g., sin,

cos, tan, arctan, and sqrt), logical and Boolean operators

are selected as function set(s).

Chromosomes in GEP include a series of linear symbolic

strings with fixed length that are composed of one or two

genes. Each gene includes a head and tail. The head con-

tains symbols that represent both functions and terminals,

whereas the tail is composed of only terminals. The length

of the head (h-head size) is an input parameter of the

algorithm and according to the nature of the problem, its

complexity can be determined. There is no a definite way

for determining value of the head size, so head size should

be obtained through trial-and-error method according to

suggestions of previous GEP studies (e.g., Ferreira 2006;

Baykasoglu et al. 2008; Teodorescu and Sherwood 2008;

Alavi and Gandomi 2011; Dindarloo 2015a). The tail length

(t) which is a function of h and the number of arguments of

the function (nmax), is expressed as follows (Ferreira 2001;

Teodorescu and Sherwood 2008; Güllü 2012):

t ¼ h nmax � 1ð Þ þ 1 ð1Þ

The sum of h and t is equal to the chromosome length.

Karva is a new language that was developed to read and

express the information encoded in the chromosomes (K-

Expression) (see Fig. 2a). Karva language is created using

functions, terminals, and constants that are placed in a linear

string. The numbers at the top of the terminals or functions are

their position in the chromosome. Each gene on a

chromosome is decoded in the form of sub-ET, and finally,

these sub-ETs create a more complex version of ET (multi

sub-ET). Expression of the gene as a sub-ET is simple and

straightforward. To correctly express of the gene, there are

four rules that are presented in the studies conducted by

Ferreira (2001, 2006):

• The root node of ET must contain a function which is

located in thefirstposition (positionNo.0) of chromosome.

• Each function has an argument number but, the argument

number of terminals is zero. For example, the functions

of ?, -, *, / have two arguments while Q is composed

only one argument.According to the number of argument

of function, each node split to sub-nodes.

• Terminals and functions according to their positions in

the chromosome are listed from top to down and left to

right in each line.

• This process continues until a line containing terminal

is formed.

As an example, Fig. 2a shows the three-genic chromo-

some with length 45 (h = 7, t = 8) that each of the gene

can be expressed to a sub-ET (see Fig. 2b), and eventually

the equations related to each sub-ETs can be extracted by

reading from left to right and bottom to top (see Fig. 2c).

When the sub-ETs are in the form of algebraic or Boolean

expression, any algebraic or Boolean functions (with more

than one argument) can be used to link the sub-ETs in order

to obtain multi-subunit ET. Note that, the most widely used

functions for algebraic sub-ETs are addition or multipli-

cation, while they are OR and IF for Boolean sub-ETs. AFig. 1 Flowchart of GEP algorithm
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part of the chromosome that can be expressed in an ET is

named as open reading frame (ORF) (Yang et al. 2013).

Genetic operators

Genetic operators have an important role in all of the

genetic algorithms and creation of the next generation.

Changes in the rate of genetic operators led to a funda-

mental change in the structure of the algorithm. So, the

appointment of them is very important in the GEP design.

In the following sections, some explanations about genetic

operators including mutation, inversion, transposition, and

recombination and their implementations are described.

Mutation

Mutation can occur anywhere in the chromosome, but the

structure of the chromosomes should be saved. In the

heads, a mutation can replace any symbol with another

function or terminal, but in the tails this replacement causes

the terminal change with another terminal. Mutation has a

rate that is the division of a number of mutations into the

chromosome length (Güllü 2012). It is suggested that the

mutation rate should be usually used in the range of

0.01–0.1 (Ferreira 2002; Teodorescu and Sherwood 2008;

Kayadelen 2011).

Inversion

Inversion operator reverses a small segment (1–3 positions)

only in the head of chromosomes and may be used with

low probability. Ferreira (2001) and Brownlee (2011)

suggested an inversion rate of 0.1 for this operator.

Transposition

This operator selects a fragment of the chromosome (inser-

tion sequence) that can be jump to another position in the

chromosome. There is three types of transposition operators:

(1) a fragment with a function or terminal in the first position

duplicate into the head (IS transposition), (2) short fragment

with the function in the first position duplicate and move to

the first position of the chromosome (RIS transposition), and

(3) randomly selected genes are transposed to the beginning

point of the chromosome (gene transposition). All types of

these operators have a rate that is varied between 0.1 and 1

(Ferreira 2001; Baykasoglu et al. 2008; Yang et al. 2013).

Recombination

Similar to transposition operator, there are three kinds of

recombination (also called crossover) in GEP algorithm. In

all of them, two chromosomes are selected randomly.

Fig. 2 Different expressions of three-genic chromosome, a K-Expression, b expression tree, c mathematical equations

Int. J. Environ. Sci. Technol. (2016) 13:1453–1464 1457
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These three recombination operators include one-point

recombination, two-point recombination, and gene trans-

position. Ferreira (2001, 2006) recommended the value of

0.7 for sum of these three operators. More information

regarding these operators can be found in the studies

conducted by Ferreira (2001, 2006) and Brownlee (2011).

Case study and input selection

In order to develop predictive models for indirect measure of

PPV, a granite quarry in Penang state, Malaysia, was

selected and subsequently its blasting operations were

investigated. Pulau Pinang coated by two main granite plu-

ton, i.e., Pluton Penang north and south. Pluton is divided

into three main units which are recognized as granite Tan-

jung Bunga, granite Feringgi, and mikrogranit on the top.

While south Penang Pluton consists of muscovite–biotite

granite that contains more mikrolin, especially in the south

of the island. Generally, main rock type observed in the

studied site is granite. The thickness of the top soil is usually

less than three feet, and it is more sandy clay with humus and

tree roots. A view of studied quarry is shown in Fig. 3.

The purpose of blasting in this site is to produce aggre-

gates for various construction works with capacity range of

500,000–700,000 tons per year. In this quarry, depending on

the weather condition, 2 or 3 blasting operations were

conducted per week. ANFO and dynamite were used as the

main explosive material and initiation, respectively. Blast-

ing operations were conducted using blast hole diameters of

76 and 89 mm. In addition, minimum and maximum

numbers of blast holes were 18 and 84, respectively.

Moreover, values of 865.6 and 9420.5 kg were designed for

minimum and maximum of total explosive weights in these

blasting operations. In these events, some of the control-

lable blasting parameters, e.g., burden, spacing, stemming

length, hole diameter, hole depth, total charge, number of

hole, maximum charge per delay, powder factor, sub-dril-

ling, and distance from the blast face were measured.

Additionally, PPV vales were monitored using Vibra ZEB

seismograph having transducers for PPV measurement.

Note that, measured distances between the blast face and

monitoring point were ranging from 285 to 531 m. These

distances were selected because of a distance of about

400 m between the studied quarry site and surrounding

residential area. In total, 102 blasting operations and their

pattern parameters were identified in this study.

As mentioned earlier, according to many scholars (Du-

vall and Petkof 1959; Langefors and Kihlstrom 1963; Roy

1993; Singh et al. 2008; Monjezi et al. 2012), maximum

charge per delay (MC) and distance from the blast face (DI)

are the most effective factors on PPV. In addition, burden,

spacing, and burden-to-spacing ratio have been extensively

utilized for predicting PPV by some researchers (Ghasemi

et al. 2013; Jahed Armaghani et al. 2014; Ghoraba et al.

2015; Hajihassani et al. 2015a, b) in their predictive models.

Apart from that, powder factor, stemming, and hole depth

were set as input parameters in various studies (Monjezi

et al. 2011; Jahed Armaghani et al. 2014; Hajihassani et al.

2015a). Hence, in this research, burden-to-spacing ratio,

stemming length, powder factor, the maximum charge per

delay, hole depth, and distance from the blast face were

selected and set as input parameters to predict PPV. A

summary of input and output data utilized in the modelling

analysis of this study is shown in Table 2.

Results and discussion

This section presents modelling procedures of the devel-

oped models to predict PPV values produced by quarry

blasting operations. As mentioned before, BS, HD, ST, PF,

Fig. 3 View of the studied quarry
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MC, and DI were utilized as input parameters in this study

to predict PPV. The following sections describe modelling

design of GEP and NLML techniques in predicting PPV.

PPV prediction by GEP model

The main objective of using GP in this study is to find a

function for PPV prediction. Eventually, a model in form of

PPV ¼ f BS;HD; ST; PF;MC;Dð Þ is obtained where BS,

HD, ST, PF, MC, and D are input variables to predict PPV.

The process of GEP design was performed considering the

presented flowchart in Fig. 1. As a first step of design,

whole 102 datasets were divided randomly to training and

testing datasets. Training datasets were used for PPV model

development, while testing datasets were performed to

check the performance prediction of the developed model.

Swingler (1996) and Looney (1996) suggested 20 and 25 %

of whole dataset for testing purpose, respectively. Further-

more, Nelson and Illingworth (1990) introduced a range of

(20–30 %) for evaluation of the performance capacity of the

developed model. Based on the suggested percentages,

20 % of data (20 datasets) was selected for testing and

validation purpose and remaining 80 % (82 datasets) was

chosen to develop PPV models. In GEP design, the software

of Gene Xpro Tools 4.0 was performed. In this study,

several GEP models with different parameters (number of

chromosomes, head size, number of genes, linking function

and etc.) based on literature’s recommendations (e.g.,

Baykasoglu et al. 2008; Mollahasani et al. 2011; Güllü

2012; Yang et al. 2013; Dindarloo, 2015a) were conducted

and finally, five models with highest performance predic-

tion were chosen (see Table 3). To propose GEP models,

each randomly selected dataset was presented separately to

the software. BS, HD, ST, PF, MC and D are inputs of the

system that are also known as terminal sets in GEP algo-

rithm. There are many function sets that can be used to

relate input and output parameters. Nevertheless, evaluation

and utilization of all of them may increase the complexity

degree of the proposed model. So, determination of the

function sets is a critical task in design of GEP models.

The GEP functions used in this study are comprised of

simple mathematical operators like {?, -, 9, 7} and also

some non-linear functions like {sin, cos, tan, A tan, Ln, Exp,

^2, ^3, 3Rt, Sqrt}. Using trial-and-error procedure and con-

sidering the suggestions of Ferreira (2001),multiplication (9)

and addition (?) are used for linking of the genes. As it can be

seen in Fig. 1, genetic operators should be applied, respec-

tively, on chromosomes. The researchers have suggested the

values of 0.044, 0.1, 0.1, 0.3, 0.3, and 0.1 for mutation,

inversion, transposition (IS, RIS and Gene transposition),

one-point recombination, two-point recombination, and gene

recombination, respectively (Ferreira 2001; Baykasoglu et al.

2008). So, these values were fixed for the constructed five

models. As a criteria of fitness function for determining the

optimal solution, mean absolute error (MAE)was selected for

models No. 1, 2, 3 and 5, while root-mean-square error

(RMSE) was performed for model No. 4. The equations of

MAE and RMSE are expressed as follows:

MAE ¼ 1

n

Xn

i¼1

Xipred � Ximes

�� �� ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1

xipred � ximes

�� ��
s

ð3Þ

where ximes and xipred are actual and predicted values byGEP,

respectively, and n is the number of data (fitness cases). To

evaluate the performance of five models, some performance

indices including coefficient of determination (R2), variance

account for (VAF) and RMSE were computed. The

definition of the R2 and VAF are given as follows:

R2 ¼ 1�
PN

ði¼1Þ ximes � xipred
� �2

PN
i¼1 ximes � �xð Þ2

ð4Þ

VAF ¼ 1�
var ximes � xpred

� �

var ximesð Þ

� �
� 100 ð5Þ

where �x is the mean value of the x. The results of the

performance indices for five built GEP models are listed in

Table 4. GEP algorithm selects the best individual (chro-

mosome) based on fitness function (e.g. MAE). As shown

in Table 4, model No. 1 with the MAE values of 0.755 and

0.851 for training and testing datasets, respectively, out-

performs the other developed models. Considering other

performance indices and evaluation criteria, it was found

Table 2 Summary of the data

used in the modelling and their

categories

Parameter Unit Symbol Category Min Max Mean

Burden-to-spacing ratio – BS Input 0.70 0.92 0.82

Hole depth m HD Input 5.2 23.2 14.1

Stemming length m ST Input 1.9 3.6 2.63

Powder factor kg/m3 PF Input 0.23 0.94 0.65

Maximum charge per delay kg MC Input 45.8 305.6 179.6

Distance from the blast face m DI Input 285 531 379.5

Peak particle velocity mm/s PPV Output 0.13 11.05 5.34
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that the model No. 1 shows the best results compared to

other constructed models.

The best chromosome belongs to the generation of 2477

(from 2500 generations) which consists of five genes where

each gene shows the formation of a sub-ET (see Fig. 4a).

The connections of these five sub-ETs by multiplication

function cause a formation of ET. The length of the

chromosome is 17 (h = 8, t = 9). K-Expression of the

selected GEP model is given in Fig. 4b.

Finally, the mathematical formula of each gene belong to

their sub-ETs can be extracted [seeEqs. (6)–(10)], and overall

predictive relationship for PPV estimation can be achieved by

multiplying the Equations of (6)–(10) as it can be seen in

Eq. (11). Therefore, this equation can be used in practice for

predicting PPV before conducting blasting operation.

Gene1 : Cos
ST

MC� HD
þ Sin

ffiffiffiffi
D

3
p� 	
 �3

ð6Þ

Gene 2 : Cos
�5:142486BSþ D

�5:142486MC


 �
þ Exp �1:776978ð Þ

ð7Þ

Gene3 :
ffiffiffiffiffiffi
PF

p
� Ln

ffiffiffiffiffiffi
ST

3
p� 	� 	

þ Sin BS3
� �

ð8Þ

Gene3 :
ffiffiffiffiffiffi
PF

p
� Ln

ffiffiffiffiffiffi
ST

3
p� 	� 	

þ Sin BS3
� �

ð9Þ

Gene5 : BSþ 6:570953� PF ð10Þ

PPV ¼ Gene 1� Gene 2� Gene 3� Gene 4� Gene 5

ð11Þ

The graphs of the predicted PPV values obtained from

selected GEP model against the measured PPV values for

training and testing datasets are displayed in Fig. 5a. This

shows high reliability of the GEP technique in predicting

PPV induced by blasting operation.

PPV prediction by NLMR model

The regression analysis is a statistical tool that is used to

recognize the relationships between variables. The purpose

of multiple regressions is to learn more about the rela-

tionships between several independent variables and

dependent variable(s) (Verma and Singh 2013b; Tripathy

et al. 2015; Ghiasi et al. 2016). In the NLMR technique,

both nonlinear and linear relationships, e.g., exponential,

logarithmic, and power, can be employed. The NLMR

approach is used for the establishment of mathematical

formulas to make a prediction on dependent variables

based on known independent variables in the geotechnical

engineering field (Yagiz et al. 2009; Yagiz and Gokceoglu

2010; Shirani Faradonbeh et al. 2015).

Since GEP is conceptually non-linear, NLMR model is

selected to develop PPV predictive model for comparison

purpose. In this regard, using simple regression models and

considering the same training and testing datasets of GEP

Table 3 Selected GEP models

with their parameters
GEP parameters Value

GEP model number

1 2 3 4 5

Terminal set BS, HD (m), ST (m), PF (kg/m3), MC (kg), D (m)

Fitness function MAE MAE MAE RMSE MAE

Number of chromosomes 32 42 24 31 30

Head size 8 9 5 7 8

Number of genes 5 3 5 4 3

Linking function Multiplication Multiplication Multiplication Addition Addition

Number of generation 2500 2500 2500 2500 2500

Table 4 Values of performance

indices for constructed GEP

models

GEP model Training Testing

R2 RMSE VAF MAE R2 RMSE VAF MAE

1 0.914 0.920 91.304 0.755 0.874 0.963 87.107 0.851

2 0.842 1.266 84.087 0.938 0.864 1.420 73.886 1.033

3 0.834 1.276 83.369 0.936 0.875 1.487 82.017 1.133

4 0.837 1.260 83.694 0.991 0.880 1.079 84.438 0.861

5 0.871 1.126 87.071 0.845 0.871 1.361 86.903 1.168
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modelling, a NLMR equation was developed. In con-

structing the NLMR model, results of BS, HD, ST, PF, MC

and D were used as model inputs. NLMR model was built

using statistical software package of SPSS version 16

(SPSS 2007). The developed NLMR equation for esti-

mating PPV is presented as follows:

PPV ¼ 4:585� BS7:28 þ 0:227� HD� 4:158� ST

þ 1:139� PF2:144 þ 0:014

�MC0:779 � 0:036� e0:009�D þ 11:86 ð12Þ

PPV value obtained from the Eq. (12) is expressed as

Fig. 4 a Sub-ETs for the selected gene model, b K-Expression of the selected GEP model

Fig. 5 Measured and predicted PPV for training and testing datasets. a Using GEP, b using NLMR
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mm/s. Predicted PPVs by NLMR technique and measured

PPVs for training and testing datasets is illustrated in

Fig. 5b. R2 values of 0.829 and 0.790 for training and

testing datasets express suitable performance prediction of

the proposed NLMR model. Evaluation of the developed

NLMR equation will be discussed later.

Comparison of the model performances

AGEPmodel was developed to predict the PPV produced by

blasting. For comparison purposes, NLMR technique was

also used and proposed for PPV estimation. These models

were constructed using six input parameters namely BS, HD,

ST, PF, MC and D. In this study, R2, VAF, MAE and RMSE

were calculated to check the performance prediction of the

developed GEP and NLMR models. Theoretically, a pre-

dictive model is excellent when R2 = 1, VAF = 100 %,

MAE = 0 and RMSE = 0. Considering testing datasets,

values of 0.874, 87.107, 0.851, and 0.963 were obtained for

R2, VAF, MAE, and RMSE, respectively, indicate higher

degree of accuracy provided by GEP model, while these

values were achieved as 0.790, 69.261, 1.221, and 1.498 for

NLMR technique. In addition, for training datasets, these

values were obtained as 0.914, 91.304, 0.755 and 0.920 for

GEP model, while values of 0.829, 80.878, 1.125, and 1.365

were achieved for NLMR model. As a result, by developing

GEP model, for instance, RMSE results are decreased from

1.498 to 0.963 and from 1.365 to 0.920 for testing and

training datasets, respectively. In addition, similar trends can

be found for results of other performance prediction, i.e., R2,

VAF,MAE. The results show that the developed GEPmodel

can provide higher performance prediction for estimating

PPV compared to NLMR.

In order to have a better comparison, the measured and

predicted PPVs using GEP and NLMR models are plotted

for testing datasets as shown in Fig. 6. This figure demon-

strates that obtained results by GEP model are closer to

measured PPVs compared to obtained results by NLMR

predictive model. It should be mentioned that the direct use

of the developed models to predict PPV for other condi-

tions is not recommended.

Sensitivity analysis

Sensitivity analysis was carried out to recognize the rela-

tive influence of the each parameter in the network system

by the cosine amplitude method (Yang and Zang 1997).

This method is used to obtain similarity relations between

the involved parameters. To apply this method, all of the

data pairs were expressed in common X-space. To under-

take this technique, all data pairs should be utilized to build

a data array X as follows:

X ¼ x1; x2; x3; . . .; xi; . . .; xnf g ð13Þ

Each of the elements, xi, in the data array X is a vector

of lengths of m, that is:

xi ¼ xi1; xi2; xi3; . . .; ximf g ð14Þ

The strength of the relation between the dataset, xi and

xj, is presented as follows:

rij ¼
Pm

k¼1 xikxjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x

2
ik

Pm
k¼1 x

2
ik

p ð15Þ

The rij values were obtained as 0.891, 0.925, 0.819, 0.917,

0.972 and 0.932 for BS, HD, ST, PF, MC and D,

Fig. 6 Comparison between measured and predicted PPVs by GEP and NLMR models for testing datasets
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respectively. These results show that among all inputs, MC

and D are the most influential parameters on PPV.

Conclusion

Ground vibration is one of the undesirable side effects of

blasting operation. Therefore, an accurate evaluation/pre-

diction of ground vibration is essential to minimize/reduce

the potential risk of damage. An attempt has been done to

estimate PPV values induced by blasting developing both

GEP and NLMR models. In the analyses of GEP and

NLMR models, burden-to-spacing ratio, stemming length,

powder factor, the maximum charge per delay, hole depth,

and distance from the blast face were set as model inputs.

After developing the predictive models for PPV prediction,

several performance prediction, e.g., R2, RMSE, VAF, and

MAE were computed to evaluate the proposed models. The

obtained results indicate that the developed GEP equation

is practically able to predict PPV with higher performance

prediction as compared to obtained results of NLMR

model. R2 equal to 0.874 for testing datasets recommends

the superiority of the GEP model in predicting PPV, while

for NLMR, this value is obtained as 0.790. It is important

to note that the proposed models of this study are appli-

cable only in the studied quarry site and in the mentioned

ranges of the used data. The obtained strength of the

relations indicates that maximum charge per delay and

distance from the blast face are the most effective param-

eters on PPV.
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