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Abstract Industrial effluents containing persistent pollu-

tants play a significant role in environmental pollution.

Classical techniques such as chlorination, coagulation, ion

flotation, membrane process and sedimentation that have

been used to decontaminate polluted water are incapable of

efficient degradation due to the generation of secondary

pollutants. Photocatalysis, an advanced oxidation process

in which the photoreaction is accelerated by the irradiation

of catalyst, has shown efficient degradation of recalcitrant

in water system. Usage of nanoparticles as homogenous

photocatalyst has become prevalent due to their improved

properties such as large surface-to-volume ratio, controlled

uniform particle size and its composition which enhances

the degradation rate. The recombination of holes and

electron pair which is considered to be the limitation in

homogenous system can be overcome by nanocomposites

or heterogeneous photocatalysts. This system decreases the

rate of recombination, leading to effective degradation of

individual pollutants because of their enhanced physico-

chemical and structural properties. In recent years,

heterogeneous nanophotocatalytic processes employing

titanium dioxide (TiO2) and zinc oxide (ZnO) composites

have gained immense research interest as an effective

wastewater treatment method because of its efficacy in

decomposing and mineralizing the hazardous organic and

inorganic pollutants utilizing the UV and visible photons.

This paper reviews about the process, synthesis and

parameters influencing photocatalytic reaction and their

kinetics with much emphasize on types of nanoparticles

and nanocomposites and its application in wastewater

treatment.
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Introduction

Environmental pollution is one of the serious problems

faced by the living system due to the increase in popula-

tion, industrialization and urbanization. Numerous meth-

ods, such as Fenton’s method, activated carbon, hydrogen

peroxide (H2O2) and sodium hypochlorite (NaClO), have

been used to degrade the industrial pollutants, but most of

these physical and chemical methods are not much efficient

as they lead to secondary pollution. In recent years,

advanced oxidation processes (AOP) have been widely

employed for treatment of recalcitrant pollutants to more

biodegradable molecules by generation of reactive species

like hydroxyl radicals. These free radicals can attack most

of the organic molecules and degrade them through oxi-

dation process. Photolysis, photofenton process and pho-

tocatalysis are some advanced oxidation processes that use

light as a driving catalyst to generate hydroxyl radicals

which are utilized in the oxidation of pollutants present in

water. Among these, one of the most important processes is

photocatalysis. Photocatalysis has an extensive application

in wastewater treatment and has proved to be a promising

technique for the degradation of many organic and inor-

ganic pollutants such as oil spills, organic dyes, persistent
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organic pollutants and pesticides which are resistant to all

natural forms of degradation (Wang et al. 2008a). The

usage of nanomaterials in degradation of pollutants is

employed due to their high catalytic activity and high

sorption capacity. Nanoparticles can also be anchored to

solid matrices for enhanced activity. Nanophotocatalysis

(nanoparticles activated by photons) is an advanced

oxidation process, widely used for the removal of trace

pollutants present in water streams and air. Nanophoto-

catalysis is more effective than conventional methods as

they have a large surface area-to-volume ratio (Martı́nez

et al. 2011) and possess uniform and controlled particle

size, composition and structure (Pant et al. 2012). The

oxides of titanium, zinc and iron, sulfides of zinc and

nitrides of carbon have been attempted for the photocat-

alytic degradation of a wide variety of environmental

contaminants. TiO2 is stable in UV light and water. It is

considered very close to an ideal semiconductor for pho-

tocatalysis because of its strong oxidizing power, non-

toxicity and long-term photostability. These characteristics

make TiO2 as a preferable catalyst (Kwon et al. 2008). ZnO

nanoparticles have been extensively used in water treat-

ment (Eskizeybek et al. 2012) due to their high photocat-

alytic efficiency, low cost and environmental friendliness

(Fig. 1).

Free nanoparticles of titanium dioxide (TiO2) (anatase,

rutile and P25) and zinc oxide (ZnO) and composites of

TiO2 and ZnO have been widely used in the degradation of

contaminants in industrial effluents. Natural radiations

emitted by the sun in the visible range (400–700 nm), and

UV range (200–400 nm) can be used for the irradiation of

semiconducting nanomaterials. In the UV range, shorter

wavelength (UV-B: 290–320 nm) and longer wavelength

(UV-A: 320–400 nm) can be exploited through natural

radiation. The UV light of much shorter wavelength

(vacuum UV: 100–200 nm) gains much interest in devel-

oping advanced oxidation process like nanophotocatalysis.

But the efficiency of nanophotocatalytic degradation is

reduced by the recombination of electrons and holes gen-

erated by the action of photons on the catalytic surface. To

prevent the recombination of electron–hole pairs, com-

posites of semiconducting nanoparticles have been

employed as photocatalysts due to their improved opto-

electronic properties (Pant et al. 2012). They exhibit high

and stable photocatalytic activity due to the strong redox

ability of photogenerated electron–hole pairs (Eskizeybek

et al. 2012). They also aid in the removal of nanoparticles

from the system after degradation of pollutants making

them stable and reusable (Gad-Allah et al. 2008).

Figure 2 represents the publications on degradation of

water pollutants, employing the technique of nanophoto-

catalysis. The research on degradation of water pollutants

using free and nanocomposites started after 1995. The

effectiveness shown by nanoparticles in effluent degrada-

tion gained interest among the researchers. Thus, by the

beginning of twenty-first century the research publication

on this area increased. After 2005, the nanoparticles were

tested out for treating various categories of effluents by

several research groups across the globe. The publications

on the area almost tripled from that of the previous 5-year

span. After 2010 till 2015, the degradation of wastewater

using free nanoparticles and composite nanoparticles were

explored in multidimensional perspectives. Various novel

nanoparticles have been synthesized, and they were studied

for their efficacy in degrading various classes of dyes,

pesticides and metals. By summarizing the total publica-

tions on degradation of water pollutants using free and

composite nanoparticles, it is observed that 1.2 % were

published during the time period 1995–2000. It then

gradually rose to 5.5 % during 2000–2005 and to 24.7 % in

2005–2010; 68.6 % of the publications were during

2010–2015. There were 1.04 % of publications on replac-

ing free nanoparticles with composites to overcome the

constrains in the conventional method during 1995–2000,

which then gradually rose to 4.75 % during 2000–2005 and

to 18.88 % in 2005–2010. This technique has gained much

attention in recent years (2010–2015) as a potential solu-

tion in degrading water pollutants which is shown by the

rapid increase in number of publication (75.14 %) on

nanocomposites.

Hazardous effects of pollutants

Wastewaters released from various industries cause serious

problem to the health and general well-being of a man. The

presence of recalcitrant in effluents such as dyes, heavy

metals, pesticides and other pollutants are toxic to human,

aquatic life and microorganisms. Release of untreated

effluents into the environment is a source of non-esthetic

pollution and eutrophication. Water contaminated with

non-biodegradable heavy metals and pesticides is highly

toxic as it leads to bioaccumulation and biomagnification.

Such deleterious effect of recalcitrant on the environment

is a cause for serious concern which attracts many

researchers to develop zero discharge technology for the

treatment of industrial pollutants.

Process of nanophotocatalytic reactions

Nanophotocatalysis is a category of redox reactions uti-

lizing light of suitable wavelength to irradiate the semi-

conducting nanomaterials. Since nanoparticles have good

adsorbing property, prior to irradiation with a light source,

photocatalyst is mixed with water containing pollutants and
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the suspension is magnetically stirred in dark to reach a

complete adsorption–desorption equilibrium of pollutants

on the catalyst surface. The suspensions are then

illuminated using a suitable light source. On irradiation of

semiconductor with a light source, the electrons from the

valence band move into the conduction band. As a result,
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Fig. 1 Outline of nanoparticles and nanocomposites in effluent treatment by nanophotocatalysis and their future perspectives
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same number of holes are generated in valence band. The

photogenerated electrons and holes have been found to

degrade almost all types of organic, inorganic and micro-

bial contaminants (Martı́nez et al. 2011), owing to their

high redox potentials. They migrate to the surface and react

with adsorbed electron donors and electron acceptors to

form superoxide radical anions, hydrogen peroxides and

hydroxyl radicals (Gad-Allah et al. 2008). The generated

hydroxyl radicals can oxidize the organic compounds in

aqueous solution, generating non-toxic compounds. Under

appropriate reaction conditions, the organic contaminants

are completely oxidized to CO2, water and halide ions with

minimal generation of undesired by-products.

NP=NCþ hc ! e� þ hþ ðaÞ

hþ þ R ! Rþ
�������!Mineralization

CO2 ðbÞ

hþ þ H2O ! Hþ þ OH: ðcÞ
OH: þ R ! Oxidation products ðdÞ

e� þMnþ ! M n�1ð Þþ ðeÞ

e� þ hþ ! heat ðfÞ
e� þ O2 ! O�

2 ðgÞ

Equation (a) represents generation of photoinduced

electrons and holes from nanoparticles (NP). Equation (b)

represents the mineralization of recalcitrant pollutants

(R) by the holes generated in the system. These holes are

also involved in the generation of hydroxyl radicals from

water which is represented in Eqs. (c) and (d) which

represents the oxidation recalcitrant pollutants by hydroxyl

radicals. Equation (e) represents the reduction in heavy

metals (Mn?) by the photoinduced electrons present in the

system (Fig. 3).

However, in this process a large proportion of photo-

generated electron–hole pairs recombine before the pho-

tocatalysis takes place, dissipating the input solar energy

and lowering down the photocatalytic efficiency. Equa-

tion (f) represents the recombination of the generated

electrons and the holes generating heat, an unfavorable

reaction which can be prevented by the usage of compos-

ites of photocatalytic nanoparticles accounting to their

enhanced optoelectronic properties (Gad-Allah et al. 2008;

Wang et al. 2011). Equation (g) represents the reaction

between oxygen (electronegative atom) and photoinduced

electrons resulting in the generation of superoxides ðO�
2 Þ, a

powerful oxidizing agent. This reaction also prevents the

recombination of electrons and holes in the system.

Process parameters

pH plays an important role in controlling the efficiency of

nanophotocatalysis. Optimal condition is the pH at which

the positively charged nanoparticles and negatively

charged pollutant molecules readily attract each other. In

this situation, both combine together by hydrogen bonding

easily and thus elevate the amount of adsorption and

enhance the decomposition rate (Martı́nez et al. 2011; Xue

et al. 2015). Hence, it is essential to determine the point of

zero charge of the nanoparticle. Increase in the catalyst

dosage increases the total active surface area. Thus, more

active sites will be available on the catalyst surface for

adsorption and photocatalytic reaction. If the photocat-

alytic dosage is too high, turbidity will affect the adsorp-

tion efficiency. Hence, the photocatalytic dosage must be in

optimum quantity (Akpan and Hameed 2009). The photo-

catalytic degradation rate varies with molar concentration

and thus increases with increase in the concentration of
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pollutant by which recombination of holes can be reduced.

Increase in pollutant concentration causes increase in the

number of excited pollutant molecules. These molecules in

their triplet excited state degrade on reacting with photo-

generated OH. radicals. But on increasing the pollutant

concentration beyond the optimum level, the rate of

degradation decreases due to the fact that increase in pol-

lutant concentration decreases the intensity of incident light

reaching the surface of the photocatalyst (Mondal and

Sharma 2014). From the extensive literature, the key

parameters such as pH, concentration of pollutant and

concentration of nanophotocatalyst influence the efficiency

of the process to greater extent.

Synthesis of nanoparticles

Nanoparticles play a significant role in accelerating the

photocatalytic reactions due to their unique physical,

chemical and optical properties. Nanomaterials can be

synthesized based on two approaches: ‘‘bottom-up’’ and

‘‘top-down.’’ The methodology for developing nanomate-

rials of desired properties from basic building blocks rep-

resents the bottom-up approach. The top-down approach

involves resizing macroscale materials into materials of

nanosize, and the bottom-up approaches are well suited to

synthesize particles of desired and uniform size, shape and

structure. The methodologies of preparation of nanoparti-

cles can be categorized into physical, chemical and bio-

logical methods. The physical methods employed in the

synthesis are on the basis of the phase of nanoparticles such

as vapor (arc discharge, plasma, electro spray and laser

pyrolysis), liquid (precipitation using surfactants and in

micro-/miniemulsion, hydrothermal, sol–gel, sonochemi-

cal) and solid (mechanical ball milling). The nanomaterials

prepared by physical methods are of wide size ranges

whereas by chemical methods are of narrow size range

(Liz-Marzán and Kamat 2003; Tavakoli et al. 2007). The

chemical methods work on basis of reduction in materials

to atoms followed by aggregation of atoms. The usage of

reducing agents such as hydrogen, alcohol, NaBH4 and

citrate are used in synthesizing narrow range of nanosized

particles. The biological molecules produced from bacteria

and fungi, and plant extracts are highly efficient in reduc-

ing the particles to nanosize.

In the past two decades, novel methods of nanoparticle

synthesis for controlled and uniform size have been

developed based on the outcomes of numerous research

observations. Initially in the mid of twentieth century, the

solid-phase synthesis methods by using grinding or milling

(top-down approach) are employed in the synthesis of

metallic and ceramic nanoparticles. The major disadvan-

tages of these methods such as high energy consumption,

high production cost, broad spectrum size distribution,

formation of alloys, generation of amorphous particles and

impurities are overcome by the next-generation synthesis

methods in liquid-phase and gas-phase processes. In liquid-

phase synthesis methods, the nanoparticles are produced

through homogenous or heterogeneous nucleation in

supersaturated solutions. Most of the metallic (by the

addition of reducing agents to the acidic solution), metal

oxides and non-oxidic (appropriate reagents as H2S added

for metal sulfides) nanoparticles are synthesized through

precipitation and co-precipitation. The morphology and

particle reacting properties are controlled by the reaction

kinetics. The formation of agglomerates during this process

could be avoided by creating a microemulsions (by the

addition of biosurfactants which do not require high shear

conditions) (Voigt and Sundmacher 2007) where nucle-

ation and particle growth will occur. The development in

the precipitation method is the usage of miniemulsions

(Landfester 2001). The miniemulsions are produced by

introducing shearing into the mixture of two immiscible

liquids: a surfactant and an osmotic pressure agent.

Stable droplets of sizes between 50 and 500 nm are pro-

duced by suppressing the coalescence and ripening by the

surfactants and osmotic pressure agent. In the early twenty-

first century, the next-generation research works focused

on the vapor-phase reactions, where the properties of the

desired nanoparticles are achieved in the early phases of

the reaction by the fluid and particle dynamic interactions

(Heidenreich et al. 2003). The smaller particles are formed

by achieving supersaturation through higher cooling rate of

hot reaction gases used in the synthesis. Hot wall reactor is

used for the synthesis of TiO2 and coated nanoparticles

from premixed dopant (TiCl4 and AlCl4) because of its

well-defined flow and temperature regimes and controlled

product properties which helps in scaling up the synthesis

methods. Non-oxidic materials, materials with high melt-

ing points, could be produced in nanoscale by plasma

(Kong and Pfender 1997). The energy of plasma generated

by ionizing a gas and stripping electrons away from atoms

is used for synthesizing nanoparticles. The higher cooling

rates in the plasma reactor play a significant role in the

formation of metastable and nanoscaled particles at high

concentration. Through electrospray pyrolysis, ultrafine

droplets are generated by applying high voltage to the

liquid surface (Terada et al. 2012). Electrospray coupled

with thermal treatment has been used for the synthesis of

ceramic particles, ZnS, SiO2, TiO2 and ZrO2. Electrospray

pyrolysis can be used to produce dense or hollow, porous

or non-porous, coated or free, agglomerated or non-ag-
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glomerated particles by controlling the process conditions

and choice of reactants. The high-purity nanoparticles of

metals and its oxides with engineered properties can be

synthesized by flame spray pyrolysis. The solvent-con-

taining metal precursors and oxidizing gas are sprayed into

a flame; thereby, nanosized metals or its oxides are pro-

duced by combustion. The synthesis of nanoparticles using

microorganisms has gained considerable attention due to

their environment friendly nature, and this method has also

proved to overcome the cost of the production process in a

cost-effective manner. The functional properties of

nanoparticles depend mainly on morphology (size, shape

external and internal core structure) and its chemical

composition. The reaction kinetics need to be controlled

and optimized for appropriate applications (Choi et al.

2001). Nanoparticles synthesized by physical, chemical

and biological methods exhibit improved properties during

photocatalytic reactions in the degradation of organic and

inorganic pollutants, but it has some disadvantages such as

poor absorption of visible light radiation and rapid

recombination of photogenerated electron/hole pairs. These

disadvantages can be overcome by the nanocomposites

(Table 1).

Synthesis of nanocomposites

Nanocomposites are prepared by the combination of two or

more materials among which one of the materials is of

nanoscale. Nanocomposites can be classified into three

categories based on its core constituents: ceramic matrices

nanocomposites—CMNCs (Al2O3/SiO2, SiO2/Ni, Al2O3/

TiO2 and Al2O3/CNT), polymer matrices nanocompos-

ites—PMNCs (polyester/TiO2, polymer/CNT and polymer/

silicates) and metal matrices nanocomposites—MMNCs

(Ni/Al2O3, Co/Cr, Fe/MgO and Al/CNT). CMNCs are

prepared by polymer precursor process, powder process

and by sol–gel process. Sol–gel process is relatively simple

Table 1 Methods for the preparation of nanoparticles

Nanoparticle Method of synthesis/microorganisms Controlled size (nm) Morphology References

Synthesis of nanoparticles by physical and chemical methods

CuO Sonochemical synthesis 20(L), 2(W) Nanocrystalline Kumar et al. (2000)

Co3O4 Sonochemical synthesis 30 Nanocrystalline Kumar et al. (2000)

PbSe Sonochemical synthesis

Complexing agent—TSC

5–10 Spherical Zhu et al. (2002)

PbSe Sonochemical synthesis

Complexing agent—NTA

20 9 27 Rectangular Zhu et al. (2002)

TiO2 Hydrothermal 7–25 Thin film Chae et al. (2003)

Cu2O Solution-phase synthesis 200–450 Nanocubes Gou and Murphy (2003)

Au One-phase synthesis 3.5 Crystalline Kim et al. (2004)

YF3 Classical microemulsion 6–50 Amorphous spheres Lemyre and Ritcey (2005)

Cu Polyol method 1.5 Crystals Park et al. (2007)

Fe3O4 Co-precipitation 8 Fine powders Shen et al. (2009)

Zno One-step flame spray pyrolysis 8.8–47 Powder Mekasuwandumrong et al. (2010)

Ag Nucleation and growth 30 Spherical Garcı́a et al. (2012)

ZnS Microwave irradiation \7 Spherical Soltani et al. (2012)

CdS Microwave irradiation 6–16 Hexagonal Soltani et al. (2012)

CeO2 Chemical precipitation method 5 Spherical Li et al. (2012a)

Synthesis of nanoparticles by microorganisms

Ag Fusarium oxysporum 5–15 Hydrosol Ahmad et al. (2003)

P. brevicompactum WA 2315 58.35 ± 17.88 Crystalline Shaligram et al. (2009)

Brevebacterium casei 10–50 Spherical Kalishwaralal et al. (2010)

Rhodococcus sp. 10 Spherical Otari et al. (2012)

Au Rhodopseudomonas capsulate 10–20 Spherical He et al. (2007)

Pseudomonos aeruginosa 15–30 Spherical Phanikrishna Sharma et al. (2009)

Brevebacterium casei 10–50 Spherical Kalishwaralal et al. (2010)

Streptomyces griseus 50 Spherical Khadivi Derakhshan et al. (2012)
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and produces high-purity nanomaterials with high chemical

homogeneity. It is also applied for the synthesis of com-

posites with liquids or with viscous fluids. (Camargo et al.

2009). Among PMNCs, natural polymers such as chitosan,

cellulose fibers, arabic gum, gellan gum and guar gum are

used to prepare nanocomposites with metals because of its

adsorbing property which attracts the pollutants close to the

vicinity of reaction site. MMNCs prepared using nanosized

metals or oxides of silver nanoparticles (nano as sorbents),

ferric, manganese, titanium, copper and cerium, which

provides high surface area with specific affinity (Fabrega

et al. 2011; Feng et al. 2012; Gupta et al. 2011). These

composites are synthesized by spray pyrolysis, liquid

infiltration, rapid solidification method and ball milling.

From the existing literature, it was observed that MMNCs

have wide application in effluent treatment. Temperature

plays a major role during the synthesis of nanocomposites.

Crystalline size of the material and its structural properties

depends on the annealing temperature employed during the

synthesis of nanocomposite by spin coating technique.

Experimental studies show that crystalline phase of the

nanocomposite increases with increase in the annealing

temperature up to 550 �C at optimum preheating temper-

ature of 275 �C (Habibi and Sheibani 2010). Process

temperature not only affects the structural properties of the

nanocomposites, but also affects the dimensional stability

of the nanomaterial employed during the synthesis process.

Enhancement in the dimensional stability of the nanopar-

ticle results in improved electrochemical performance of

the synthesized nanocomposite (Ng et al. 2006). In

Table 2, synthesis, properties of MMNCs and their appli-

cation on degrading xenobiotics explored by researchers

were listed.

Novel nanostructures

Morphological properties of the nanomaterials play a vital

role in determining the photocatalytic efficiency as they

have a great influence on their optoelectronic properties.

Thus, the photodegradation efficiency of various nanos-

tructures has been discussed below (Fig. 4).

Carbon nanostructures (CNFs and CNTs)

Use of carbon nanostructures such as carbon nanofibers

(CNFs) and nanotubes (CNTs) in photocatalytic removal of

pollutants has gained great interest due to the adsorption

capacity of the carbonaceous materials (Pant et al. 2013).

In addition, CNFs efficiently capture and transport

Table 2 Methods for the preparation of Nanocomposites

Nanocomposites Method of synthesis Properties and process efficiency Application References

Synthesis of nanocomposites by physical and chemical methods

ZnO/SnO2 Co-precipitation method Photodegradation efficiency was twice than

that of individual nanoparticles due to

heterojunction effect

Degradation of

methyl orange

Zhang et al.

(2005)

TiO2/montmorillonite Heterocoagulation Significant increase in the photocatalytic

efficiency of TiO2 by intercalation in

montmorillonite support

Photooxidation of

phenol

Kun et al.

(2006)

Ag/TiO2 Vapor-thermal method Exhibits recyclable photocatalytic activity

and can be readily separated from the

treated solution by natural settlement

Degradation of

rhodamine B

Cheng et al.

(2010)

SnS2/TiO2 Solvothermal treatment Exhibits highest photocatalytic activity and

good photocatalytic stability

Reduction in Cr(VI) Li et al. (2012b)

TiO2/carbon Sol–gel method Enhanced photocatalytic activity the synergic

effect between TiO2 and carbon

Degradation of RB-

19 dye

da Costa et al.

(2012)

Graphene/TiO2/

Fe3O4

Chemical precipitation

method

Recollectable and stable photocatalyst and is

able to degrade dyes under sunlight

Degradation of

organic dyes

Lin et al. (2012)

Starch/polyaniline Chemical oxidative

polymerization of aniline

Acts as a effective adsorbent for the removal

of dyes from textile effluents

Removal of reactive

dyes

Janaki et al.

(2012)

ZnO/MgO Electrochemical method Consists of more defects and vacancies and

exhibits high photocatalytic degradation

Degradation of

eosin yellow

Lakshmi et al.

(2012)

ZnO/Al2O3 Precipitation method Acts as a good adsorbent and exhibits high

surface area with active surface charge

Removal of methyl

orange

Tajizadegan

et al. (2013)

BaTiO3/graphene One-pot hydrothermal

method

The photosensitization process induces

visible light photocatalytic activity by

transforming the band gap

Degradation of

methylene blue

Wang et al.

(2015)
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SEM Image of Nano Flowers
(Lui et al. 2013)

SEM Image of Nano flakes
(Ong et al. 2013)

SEM Image of Nano Cones 
(Sangari et al. 2015)

SEM Image of Carbon nanotubes
(Woan et al. 2009)

SEM Image of Nano Ribbons
(Cao et al. 2014)

SEM Image of Nano Spheres
(Qin et al. 2014)

Fig. 4 SEM images of novel

nanostructures from reported

literatures
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photogenerated electrons through highly conductive long

CNFs, thereby preventing recombination and enhancing

the photocatalytic activity (Kim and Park 2011). The

combined activity of the activated carbon and nanocom-

posites shows a synergistic effect on the efficient degra-

dation of pollutants due to the enhancement of pollutant

adsorption that is attributed to the increase in surface area

of the nanostructure (Pant et al. 2013). In general, these

carbon nanostructures are synthesized by electrospinning

method followed by calcination and hydrothermal

treatment.

Hierarchical porous materials

Hierarchically structured nanocomposites, as improved

catalysts, are nanocomposites having high surface area,

larger pore volume, tunable pore size and higher-temper-

ature stability (Ong et al. 2013). The photocatalytic effi-

ciency of nano- (or) mesoporous materials increases due to

the band alignment, multiple reflections and scattering of

incident (UV) light. In addition, the porous networks in

these hierarchical nanocomposites act as route for light

transfer as well as mass transfer. Among the existing

growth deposition techniques, the ‘‘chemical bath deposi-

tion’’ approach is preferred for the synthesis of second-

order branched structures on primary nanostructures due to

excellent control over the structure, morphology and

dimensions of the obtained branches. The formation of

hierarchical structure is generally considered to be a self-

assembly process. These self-assembled materials may be

of different morphological structures such as nanoflowers,

nanocones, nanoribbons and nanospheres.

Nanoflowers

The enhanced photocatalytic activity of nanoflowers results

from the larger content of oxygen vacancy on the surface of

the nanomaterials which acts as the active reaction centers

by capturing the photoinduced electrons, thereby prevent-

ing the recombination. Further composting of the

nanoflowers with suitable semiconductor nanomaterial will

promote the photocatalytic activity. One-pot approach is

employed for the synthesis of nanoflowers, and doping of

different nanomaterials on the surface of the as-synthesized

nanoflowers is done by hydrothermal techniques (Cao et al.

2008; Yuan et al. 2010). The morphology-dependent

enhancement in the properties of nanoflowers helps in

overcoming the limitation of recombination. Wang et al.

(2008b) studied the photocatalytic degradation of

4-chlorophenol (4-CP) in aqueous solution by ZnO

nanoflowers.

Nanoribbons

One-pot hydrothermal reaction followed by calcination

yields nanoribbons of length ranging from few nanome-

ters to several tens of micrometers. Acid washing process

of the precipitate obtained from hydrothermal reaction is

essential for the synthesis of nanoribbons. This controlled

synthesis generates nanoribbons of large surface area

with interiors rich in pores having enhanced optical

properties. Homogeneous distribution of other nanoparti-

cles on the surface of nanoribbbons not only increases

the optical adsorption efficiency but also facilitates the

separation of photogenerated charges. Cao and Xue

(2010) reported the enhanced photocatalytic degradation

of salicylic acid, rhodamine B and methyl orange by

TiO2 nanoribbons.

Nanocones

These nanocones can be synthesized by low-temperature

simple solution process (Chauhan et al. 2011), homogenous

precipitation (Ma et al. 2014) and surfactant-free

solvothermal method (Jia et al. 2009). The morphological

changes induced by the doping nanocones with other

nanoparticles exhibit higher photocatalytic activity when

compared to homogenous nanocones (Chauhan et al. 2011;

Ma et al. 2014). The enhanced photocatalytic activity of

nanocones is attributed to the increased light absorption

efficiency and creation of oxygen vacancies which

increases the concentration of �OH radicals. Sangari et al.

(2015) studied the photocatalytic activity of fluorine-doped

TiO2–carbon nanocones in the degradation of methyl

orange under UV irradiation (254 nm) and visible light

irradiation.

Nanospheres

The enhanced photocatalytic efficiency of nanospheres is

attributed to their increased pollutant absorption affinity,

optical absorption and efficient charge transfer. These

nanospheres can be synthesized by solvothermal methods

(Li et al. 2007), Stober and seed-mediated method (Hi-

rakawa and Kamat 2005) or by lyophilization technique

followed by thermal treatment (Zhang et al. 2013). Wrap-

ping of the nanospheres with materials such as graphene

(Zhang et al. 2013) and silver (Zhang et al. 2010) will

prevent the aggregation of nanospheres causing significant

enhancement in photodegradation. Qin et al. reported the

visible light-driven photocatalytic degradation of chro-

mium and organic dyes by Bi2O3 porous nanospheres (Qin

et al. 2014).
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Nanoflakes

Nanoflakes are a special class of nanomaterials that are

characterized to possess high photocatalytic activity under

visible light irradiation when compared to their pure form

nanoparticles due to the changes in optoelectronic proper-

ties (Tang et al. 2012; Zhang et al. 2011) These nanoflakes

can be prepared by alkaline or at low-temperature

hydrothermal techniques. Ong et al. (2013) reported the

photocatalytic degradation of methyl orange by metal-

loaded ZnO nanoflakes. Tang et al. (2012) reported the

improved photocatalytic degradation of methyl orange and

bisphenol by hierarchical TiO2 nanoflakes.

Application of nanocomposites in removal
of recalcitrant

Removal of heavy metals

Industrial effluents contain both organic and inorganic

pollutants. The major inorganic pollutants are toxic heavy

metals such as Cr(VI), Pb, Cd, Cu, Ni, Mn and Zn which

have become a serious threat to aquatic life due to their

non-biodegradable, toxic nature and detrimental to human

health via food chain. Major sources of heavy metals are

chrome plating, electronic, metallurgical, timber and lea-

ther tanning industries. The presence of such heavy metals

in water is a serious risk factor for the environment and

must be converted into their reduced form before dis-

charging directly into the sewer. Recent studies proved that

the use of nanoparticles for the reduction in heavy metals is

very effective and most promising technology (Aarthi and

Madras 2008; Banerjee et al. 2012). Reduction in Cr6? ion

increases with increase in photocatalyst dosage and

decreases in pH due to increased deposition of Cr(OH)3 on

the surface of TiO2(Naimi-Joubani et al. 2015; Shirzad

Siboni et al. 2012), anionic-type adsorption of Cr(VI) onto

the catalyst surface and increased potential difference

between the conduction band of TiO2 and Cr(VI)(Yang

et al. 2012). The degradation efficiency of Cr(VI) under

UV light using three different composites is compared.

TiO2/reduced graphene oxide composite degrades 91 % of

Cr6? ion into non-toxic form in 250 min (Liu et al. 2011).

When TiO2 is combined with diatomite, 100 % degrada-

tion of Cr(VI) is achieved within 150 min due to their

enhanced adsorption capacity (Sun et al. 2014). TiO2/ZnO

composite shows excellent photocatalytic performance in

the reduction in Cr(VI) than other two composites with

complete reduction in Cr(VI) in 60 min under UV irradi-

ation (Naimi-Joubani et al. 2015).

Degradation of textile dyes

Release of colored wastewaters in the environment is toxic

and carcinogenic and poses severe threats to microorgan-

isms, aquatic lives and human beings. About 1–20 % of

total world production of dyes is lost during dying process

and released into the environment. Reactive dyes bearing

azo group (–N=N–) as a chromophore are the widely used

synthetic colorants in textile industries which is well

known for their recalcitrant and acute toxicity. Nanopho-

tocatalysis is one of the most economical and ecofriendly

method for the remediation of toxic textile dyes. Degra-

dation of azo dyes using TiO2 and ZnO composites syn-

thesized via chemical methods is highly efficient than pure

TiO2 and ZnO nanoparticles (Sun et al. 2002; Zhang and

Zeng 2010). Rate of degradation of dyes is highly affected

by the type of composite used. ZnO/ZTO nanocomposite

shows 95 % degradation of methyl orange (MO) in 3 h

under UV light, and the degradation time is reduced to 2 h

when ZnO/ZnS composite is used as a photocatalyst

(Danwittayakul et al. 2013; Li et al. 2013). TiO2/diatomite

composite shows 90 % degradation of MO in 90 min under

UV light. If ZnO nanoparticle is combined with TiO2

instead of diatomite, 87.68 % degradation of MO is

achieved in 60 min under UV irradiation (Ge et al. 2009;

Xia et al. 2014). Among these four nanocomposites, ZnO/

TiO2 composite holds best for the degradation of methyl

orange.

Degradation of pesticides

Pesticides belong to the family of biocide and most com-

monly used in agricultural practices for pest control.

Migration of pesticides to ground water and surface water

is hazardous to aquatic and human lives and is considered

toxic, bioaccumulative and carcinogenic in nature. Various

conventional methods have been employed to destroy these

chemicals, but the pesticides are not degraded completely;

instead, these methods transform the phase of the pollutants

(Phanikrishna Sharma et al. 2010). Nanophotocatalysis

proved to be an efficient technology for the treatment of

water contaminated by pesticides. The usage of

nanocomposites instead of individual nanoparticles has

shown enhanced photocatalytic performance in the degra-

dation of pesticides (Xiaodan et al. 2006). Percentage of

degradation increases with increase in substrate concen-

tration (Jonidi-Jafari et al. 2015), and it also depends on

type of composite used. TiO2/ZnO nanocomposite proves

to be highly efficient and best for the degradation of MO

and Cr(VI), but when this composite is used for the

degradation of diazinon, the degradation efficiency in
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120 min is only 87.16 % under UV irradiation (Jonidi-Ja-

fari et al. 2015). The maximum degradation (96.3 %) of

diazinon is obtained by using LED-activated FeFNS/TiO2

composite at the reaction time of 100 min due to the pro-

duction of large number of free OH radicals during the time

of degradation (Hossaini et al. 2014) (Table 3).

Nanophotocatalytic reactors

In spite of extensive research on nanophotocatalytic

materials for the degradation of pollutants, transfer of

technology for real-time application in industries is very

less because of the lack of optimized steady-state

methodologies in scaling up the process. As reported in the

literature, photocatalytic reactors are mainly classified into

two types as slurry and immobilized photoreactor. In the

former, nanoparticles are suspended in the medium, and in

the later nanoparticles are fixed on the solid matrices.

Though the application of wastewater treatment is based on

slurry-type reactors, the release of nanoparticles into the

water streams makes immobilized reactors more suit-

able for the continuous process (Li et al. 2014). Many

research works have been reported in immobilizing the

nanoparticles onto solid matrices (Li et al. 2012c; Wang

et al. 2012; Zhang et al. 1994). Photon conversion effi-

ciency and mass transfer (Chan et al. 2003; Shankar et al.

2004) are the two important properties to be considered for

the reactor design. The complex physical and chemical

phenomena are involved in the interactions between the

photons, catalyst and reactants which make modeling dif-

ficult. The interpretation from kinetic parameters generated

using nanophotocatalytic reactions is difficult because they

are generated using reactors (reactions) of different

dimensions, different rheological properties and different

operating conditions (Grcic and Li Puma 2013). The

degradation of water contaminants in reactors can be

modeled through the development of simple mathematical

tools which concentrates much on transfer of photons and

reactor dimensions. Researchers have developed models

based on absorption scattering model of two-flux and six-

flux theories. Dual slant-placed electrodes thin-film PC

reactor (Xu et al. 2013), solar PC thin-film cascade reactor

(Chan et al. 2003), dual rotating disk PC reactor (Shankar

et al. 2004), thin-film photoelectrocatalytic reactor (Xu

et al. 2009) and spinning disk reactor (Boiarkina et al.

2013) have been developed in the recent years for the

degradation of industrial pollutants. Though the

Table 3 Removal of recalcitrant by nanocomposites

Catalyst Pollutant Substrate conc. Reaction

kinetics

Rate constant References

Removal of metals

Poly(acrylamide) modified

guar gum–silica

Cd2? 500 mg L-1 Pseudo-second

order

2.85 9 10-3 mg-1 min-1 Singh et al. (2009)

Poly(acrylamide) modified

guar gum–silica

Cd 2? 700 mg L-1 Pseudo-second

order

1.88 9 10-4 mg-1 min-1 Singh et al. (2009)

Fe3O4/cyclodextrin

polymer

Pb2? 3 9 105 mg L-1 Pseudo-second

order

0.003 g mg-1min-1 Badruddoza et al.

(2013)

Fe3O4/cyclodextrin

polymer

Ni2? 3 9 105 mg L-1 Pseudo-second

order

0.033 g mg-1 min-1

Degradation of textile dyes

TiO2–RGO Rhodamine B 2 9 10-5 M Pseudo-first

order

0.031 min-1 Sher Shah et al.

(2012)

PANI/ZnO Methylene Blue 10-5 M Pseudo-first

order

0.011 min-1 Eskizeybek et al.

(2012)

PANI/ZnO Malachite Green 10-6 M Pseudo-first

order

0.02200 min-1

Au–TiO2 Acid Red 88 5 9 10-5 M First order 3.8 9 10-4 s-1 Sathish Kumar et al.

(2008)

Degradation of pesticides

TiO2/PNS Isoproturon 5 g Pseudo-first

order

0.0788 min-1 Phanikrishna Sharma

et al. (2009)

NZNC Metaldehyde 28 g First order 0.0363 min-1 Doria et al. (2013)

TiO2/silica gel Organophosphate and

phosphoglycine

14 g First order 0.031 min-1 Echavia et al. (2009)
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development of reactors has been explored in various

dimensions, the mass transfer limitations are yet to

overcome.

Challenges and future perspectives

Novel reactors

The extensive research works in the usage of nanoparticles

as a catalyst in nanophotocatalysis have led to the devel-

opment in designing the reactors with the optimized

steady-state process parameters. The key challenges in the

process intensification are maximum utilization of photons

and mass transfer limitations. The usage of nanocomposites

in overcoming the problem of electron/hole pair recombi-

nation can be extended by incorporating nanocomposites

into the nanophotocatalytic reactor systems. The next-

generation reactors are microfluidic reactors which open a

wide platform for intense research aspects in both synthesis

and reaction phase. Microfluidic reactors are reactors

which handle reactants in a microvolume. The major

characteristics of microreactors are high surface-to-volume

ratio, increased effect of diffusion and advection causing

high mass transfer coefficient, stable hydrodynamics, low

Reynold’s flow and mixing, and easy controllability which

makes them an superior option over conventional reactors.

Recently, microfluidics reactors have been employed for

the synthesis of various nanoparticles including chitosan-

based nanoparticles (Majedi et al. 2012) and PLGA-based

nanoparticles (Song et al. 2008). Developing microfluidic

reactors with appropriate sensors for monitoring and con-

trolling the handling and synthesis of nanoparticles will be

a promising area of research. Hence, it is evident that there

is a wide scope in extending these microfluidic reactors for

the effective synthesis of nanocomposites and its applica-

tion in wastewater treatment.

Novel structures of nanocomposites

The preparation of novel structures (nanoflowers, nanor-

ods, nanocones, nanospheres and nanoflakes) with

improved structural and functional properties such as

optoelectronic, adsorptive forces and potential charge

transfer opened a wide area of research platform. The

various structures of nanoparticles with desired properties

could be synthesized by the controlled synthesis methods.

Composition of nanocomposites

The potential of nanocomposites prepared using TiO2, ZnO

and ZTO was explored well in the past three decades for

the removal of water pollutants to great extent. But the

composites prepared using ceramic and polymer matrices

are still in the primitive stage. This could be one of the

frontier areas in nanophotocatalysis as it could generate

novel composites with enhanced properties.

Conclusion

In this review, nanophotocatalysis an advanced oxidation

process (AOP) has been discussed. In nanophotocatalysis,

the photoreaction is accelerated by the irradiation of cata-

lyst. They have shown efficient degradation of recalcitrants

in water system. The review classifies and discusses about

the various methods of synthesis of nanoparticles which has

been used in the treatment of effluents. Nanoparticles have

improved properties such as large surface-to-volume ratio,

controlled uniform particle size and its composition which

enhances the degradation rate. But, nanoparticles cause

recombination of holes and electron pair which is a severe

drawback. This drawback of nanoparticles can be overcome

by combining two or more nanoparticles forming

nanocomposites. Nanocomposites are capable of decreasing

the rate of recombination, leading to effective degradation

of individual pollutants because of their enhanced opto-

electronic, functional and structural properties. From the

literature, it is observed that nanophotocatalytic process for

wastewater treatment has employed nanocomposites pos-

sessing titanium dioxide (TiO2) and zinc oxide (ZnO) as

their core component. This review discusses elaborately the

various methods for the synthesis of nanocomposites and

various structures obtained by them. The usage of

nanocomposites for degrading dyes, pesticides and metals

are increasing significantly day by day. The treatment of

dyes, pesticides and metals using nanocomposites has been

tabulated and discussed based on their degradation effi-

ciency and reaction kinetics. The review also provides an

insight about the various reactors used so far in treating

effluents using nanocomposites. After extensive review of

various research findings about nanocomposites for effluent

treatment, it was inferred that modified nanostructures, core

composition of nanocomposites, modified and novel reac-

tors have wide scope in future.
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