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Histopathological effects of waterborne silver nanoparticles
and silver salt on the gills and liver of goldfish Carassius auratus
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Abstract This study aimed to compare histopathological

effect of waterborne silver nanoparticles and silver salt

(AgNO3) on the gills and liver of Carassius auratus.

Therefore, one hundred and five live specimens of goldfish

were obtained and treated in five aquariums with 0, 0.01,

0.025, 0.05, and 0.1 ppm of AgNO3 and 0, 0.1, 0.5, 1, and

5 ppm of Ag nanoparticles (mean particle size of 5 nm).

Fish were sampled after 14 days of exposure. Results

showed that the kinds of pathologies observed with Ag NPs

were broadly of the same type as AgNO3 including

hyperplasia, edema and lifting of the gill epithelium, and

lamellar fusion of the gills, and hemosiderosis, hemor-

rhage, hydropic swelling, and pyknotic nuclei of the liver.

Overall, the data showed that although Ag nanoparticles

and AgNO3 pathology were similar, but Ag nanoparticles

caused less injury than AgNO3 in the gills and liver of

goldfish. Therefore, it is more proper to use nanoform of

Ag in industrials.
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Introduction

Ecotoxicology is the study of the impact of environ-

mental contaminant on ecosystems. Understanding the

effect of toxicants on fish supports the larger ecotoxi-

cological goal of comprehending the action of ecotoxi-

cans on fish population (Bols et al. 2001). Ecotoxicans

are a diverse group of substrate that have two general

properties: they are depleted into the environment, and

they have the potential to impact on ecosystem and

animals at relatively low concentration (Connell et al.

1999). Heavy metals are the major chemical substrates

that contaminate the ecosystems (Bols et al. 2001). Sil-

ver, as ionic Ag?, is one of the most toxic metals known

to aquatic organisms in laboratory testing and is of

concern in various aquatic ecosystems because of the

severity of silver contamination in the water column,

sediments, and biota (Eisler 1996). Silver was used as

halide in the manufacture of photographic imaging

materials, jewelry, coins, indelible inks, eating utensils

and used as silver salt in caustics, germicides, antisep-

tics, and astringents (Klaassen et al. 1986). In addition,

relatively recently, a new form of Ag metal has been

engineered comprising of Ag nanoparticles (Ag NPs)

that can have novel and size-related physicochemical

properties differing significantly from those from larger

particles (Fabrega et al. 2011). Ag NPs are widely used

in medicine, cosmetics, environmental remediation or

electronic devices (Fabrega et al. 2011) and have dis-

tinctive physicochemical properties, including surface-

enhanced Raman scattering, high electrical and thermal

conductivity, chemical stability, catalytic activity, and

nonlinear optical behavior (Capek 2004; Frattini et al.

2005).
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Silver toxicity and the pathological effects of water-

borne silver are well known in freshwater fish species

(Janes and Playle 1995; Wood et al. 1996; Zhou et al.

2005). The gill is considered the main route for water-

borne Ag uptake and destruction of tissue by reaching

the branchial epithelial cells via the Na? channel and

coupling to the proton ATPase in the apical membrane

of the gills, and blocking the Na? K? ATPase which

affects ionoregulation of Na? Cl- ions across the gills

(Bury and Wood 1999). Ag can also cause tissue damage

and accumulate in the liver tissue affecting the ability of

fish to cope with low oxygen levels and inducing

oxidative stress (Bilberg et al. 2010a, b; Scown et al.

2010).

Many researchers studied the ecotoxicity of nano-

materials to aquatic ecosystems (Moore 2006; Handy

et al. 2008; Klaine et al. 2008; Kahru and Savolainen

2010; Handy et al. 2011, Khabbazi et al. 2014a, b);

however, the environmental impacts of Ag NPs are, as

yet, unknown (Fabrega et al. 2011), and data on inter-

nal organ pathologies from Ag NPs in Carassius au-

ratus (goldfish) are generally lacking. In addition, the

relative hazard of pathology from nanoforms of Ag

compared to traditional metal salts is unknown.

Therefore, the aim of this study was to determine the

effects of dissolved Ag and Ag NPs on the gills and

liver of goldfish following waterborne exposure to these

materials. Another goal of current study was to com-

pare and contrast the effects of Ag metal with Ag NPs,

to identify any nano-specific pathologies. This research

was done in Aquaculture laboratory of Gorgan

University of Agricultural Sciences and Natural

Resources in the autumn of 2013.

Materials and methods

One hundred and five live specimens of goldfish were

obtained. Samples weighted 56.33 ± 12.05 g. They were

acclimatized randomly in 100-L aquariums for 1 week. Ag

nanocolloid was prepared from Nonaka Company, Iran

(Antimicrobial Product 2 brand, 4000 ppm nanosilver

concentration, mean particle size of 5 nm). In addition,

silver nitrate (AgNO3) with 5000 ppm concentration was

purchased from Merck Company (Merck Company,

Frankfurter, Germany).

Five aquariums were treated with 0.01, 0.025, 0.05,

0.1 ppm of AgNO3 with one control group (no Ag NPs)

and 0, 0.1, 0.5, 1, 5 ppm of Ag NPs. No feeding

occurred during the test to avoid confounding the

exposure with potential food particles in the water.

There were no significant differences between aquariums

in water quality, and the following were constant: pH:

7.56 ± 0.45 (TS1); temperature: 19 ± 1 �C; hardness:

293 ± 2.35 ppm; and dissolved oxygen: 8.80 ± 0.06 mg

L-1 (DO-5510). 80 % of water was changed every 12 h

with re-dosing after each change, and the photoperiod

was 12-h light and 12-h dark.

Fish were sampled from each of the triplicate tanks

from each treatment after 14 days of exposure for

histopathological studies. Histological examinations were

performed as described in Bucke (1982). Fish were

anaesthetized with 200 ppm eugenol concentration in 5-L

tanks, and tissues were collected in the following order:

the second gill arch was taken from gills, and the hind part

of liver was taken by abdominal dissection. Collected

tissues were fixed in formalin solution 1–10, and dehy-

dration with ethanol 96 %, clearing with xylenol,

Table 1 C. auratus biometric results in AgNO3 test

Factors Control 0.1 ppm concentration 0.25 ppm concentration 0.5 ppm concentration 1 ppm concentration

Total length (cm) 16.33 ± 0.57a 15.00 ± 1.32a 14.67 ± 2.75a 13.83 ± 1.60a 14.83 ± 0.28a

Total weight (g) 61.66 ± 14.57b 54.33 ± 13.31b 44.67 ± 16.16b 45.33 ± 12.89b 41.00 ± 5.29b

Data were represented by mean ± standard deviation. Identical letters indicate no significant difference (ANOVA, P\ 0.05)

Table 2 C. auratus biometric results in nanosilver test

Factors Control 5 ppm concentration 10 ppm concentration 20 ppm concentration 30 ppm concentration

Total length (cm) 16.33 ± 0.57a 14.90 ± 1.93a 15.83 ± 0.76a 15.66 ± 0.28a 16.16 ± 0.76a

Total weight (g) 61.66 ± 14.57b 45.66 ± 14.15b 56 ± 14.73b 56.66 ± 10.01b 62.66 ± 3.51b

Data were represented by mean ± standard deviation. Identical letters indicate no significant difference (ANOVA, P\ 0.05)
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Fig. 1 Microphotographs of gill histopathological changes by AgNO3 or Ag NPs in C. auratus. A secondary lamellae shrinking (a), secondary

lamellae destruction (b), and lamellar fusion (c), B edema, C secondary lamellae Clubbing, D normal gill. All pictures are magnified 940

Table 3 Index and scores for the C. auratus gills exposed to Ag NPs and AgNO3 sublethal concentrations

Treatment Concentration Lesions Hyperplasia

Secondary lamellae shrinking Secondary lamellae destruction Lamellar fusion Epithelial lifting

AgNO3 0 - - - - -

0.01 - ? ? ? -

0.025 ? ?? ?? ??? ??

0.05 ?? ?? ??? ?? ????

0.1 ???? ???? ???? ??? ????

Ag NPs 0 - - - - -

0.1 ? ? - ?? -

0.5 - ? ?? ?? ??

1 ?? ?? ? ??? ????

5 ? ?? ?? ??? ???

(-) no observed lesions, (?) 1–3 observed lesions, (??) 3–5 observed lesions, (???) 5–11 observed lesions, (????) 11 and more observed

lesions
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impregnation with paraffin, embedding, sectioning,

mounting, and staining with H&E were performed,

respectively (Khabbazi et al. 2014b). All of these steps

were conducted by tissue processor under defined pro-

gram (Tissue processor, Triangle biomedical sciences

USA). Histopathological changes induced by treatments

in the tissues were photographed using Nikon photomi-

croscope. Quantitative histological measurements were

taken in several tissues of gills and livers.

Data were analyzed by using SPSS 20 one-way anal-

ysis of variance (ANOVA). The least squares difference

(LSD) post hoc test (P\ 0.05) was used to identify

Fig. 2 Microphotographs of liver histopathological changes by AgNO3 or Ag NPs in C. auratus. A Normal liver, B hydropic swelling,

C hemorrhage, D hemosiderin, E necrosis, and F pyknotic nuclei and hydropic swelling. All pictures are magnified 940
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treatment effects at the end of the experiment (day 14). To

illustrate the intensity of tissue damage by following the

procedure, scoring system was applied as described

analogously in Mitchell et al. (2012): (-) was used for no

observed injuries, (?) for 1–3, (??) for 3–5, (???) for

5–11, and (????) for 11 and more observed injuries in

samples.

Results and discussion

Tables 1 and 2 show mean total weight and length of fishes

in treatments after experiment dubitation. No significant

differences were observed in total length and weight of fish

in all treatments with control group (P[ 0.05).

Histological observation on the gill

Gill morphology of goldfish was normal in all the unex-

posed control groups. Exposure to waterborne Ag nitrate

and Ag NPs caused various gill injuries after 14 days.

Histological examination of gills showed areas of hyper-

plasia, edema and lifting of the gill epithelium, and

lamellar fusion (Fig. 1). Exposure to Ag NP treatment

produced similar gill pathologies to those observed with

AgNO3 (Fig. 1), but the extent of these injuries was less

severe in the fish exposed to Ag NPs in comparison with

AgNO3 (Table 3).

Histological observation on the liver

No injuries were observed in control group. Histopatho-

logical examination showed different types of lesions

such as hemosiderosis, hemorrhage, hydropic swelling,

and pyknotic nuclei (Fig. 2). Results showed that Ag NPs

caused similar injuries in comparison with AgNO3, but

the severities of injuries were less in Ag NP groups

(Table 4).

This study showed the effects of dissolved Ag compared

to Ag NPs on the liver and gills of goldfish. Overall, the

results indicated that dissolved Ag and Ag NPs cause

similar types of injuries in these two organs. After 14 days,

these injuries were greater with AgNO3 than Ag NPs.

Results showed that the AgNO3 concentration had greater

injuries than Ag NPs in goldfish gills and livers especially

in higher concentrations. Bioaccumulation is the major

factor in metal toxicities. There is some evidence that

waterborne exposure to metal NPs may result in particle

accumulation in or on the epithelial cells (e.g., Ti NPs,

Moger et al. 2008), but NP accumulation is less than metal

salt and the metal salt is more bioavailable and/or biore-

active than the nanoform (e.g., CuSO4, Al-Bairuty et al.

2013).

Gills are the first organ that encountered to toxicants.

Mallatt (1985) stated that gill lesions can be divided into

two groups, one that reflects the direct effect of toxicants

and another corresponding to defense responses of fishes.

Table 4 Index and scores for the C. auratus gills exposed to Ag NPs and AgNO3 sublethal concentrations

Treatment Concentration Lesions Liver cell destruction

Hydropic swelling Hemorrhage Hemosiderin Necrosis

AgNO3 0 - - - - -

0.01 ? ? - ? ?

0.025 ?? ? - ? ??

0.05 ?? ?? ? ??? ????

0.1 ??? ??? ?? ???? ????

Ag NPs 0 - - - - -

0.1 - ? - - -

0.5 - ? - ? ?

1 ? ???? - ?? ?

5 ? ?? - ??? ??

(-) no observed lesions, (?) 1–3 observed lesions, (??) 3–5 observed lesions, (???) 5–11 observed lesions, (????) 11 and more observed

lesions
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Several studies have been demonstrated on laboratory

experiments, to determine the toxicity of heavy metals,

organochlorine pesticides, and petroleum hydrocarbon

products to fish gill (Al-Attar 2007; Garcia-Santos et al.

2007; Patnaik et al. 2011; Santos et al. 2011; Hesni et al.

2011; Moitra et al. 2012; Ullah and Zorriehzahra 2015).

Hyperplasia and lamellar fusion known to be induced by

many gill tissue irritants; however, focal points of cel-

lular hypertrophy and necrosis followed by epithelial

rupture reflect the direct deleterious effects of heavy

metals in fish gills (Mazon et al. 2002). In addition,

similar gill injuries by titanium (TiO2) in Cyprinus

carpio (Hao et al. 2009) and Cu (Al-Bairuty et al. 2013)

were reported. Further, the types of gill injuries by silver

evaluated in this study also have been reported by other

researchers (Griffitt et al. 2009; Bilberg et al. 2010a, b).

Ag accumulates in large amounts in the kidney and

liver and acts as a very potent inducer of metallothionein

synthesis (Coleman and Cearlry 1974; Wood et al. 1999).

The rate of accumulation of heavy metals is positively

correlated to their concentrations (Portman 1972). Results

showed that level of injuries increased with Ag concen-

trations. This suggests that higher metal concentrations

increase the rate of accumulation of Ag in liver. The types

of injuries reported here (Fig. 2) for AgNO3 and Ag NPs

were coincided with other reports about histological

changes in the hepatic tissue of fish (Lee et al. 2007; Yeo

and Kang 2008; Mishra and Mohanty 2009). Some studies

also revealed a link between hepatic lesions and the

concentration of hemosiderin (Khan 1998 and 1999).

Hemosiderin was not observed in Ag NP treatment and

observed only in higher AgNO3 concentrations (Table 4).

This suggests that Ag NPs accumulate less than Ag salt in

liver.

Conclusion

In conclusion, this study has demonstrated that Ag NPs and

AgNO3 cause similar lesions in gills and liver of goldfish,

but the severity of Ag NPs is less than AgNO3. It is well

known that organ pathology is not necessary for deter-

mining the adverse effect of Ag, and accumulation in all of

the internal organs should be considered. For this purpose,

further studies should be focused on heavy metal accu-

mulation in fish organs.
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