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Abstract Thirlmere Lakes is a group of five freshwater

wetlands in the southwest fringe of Sydney, Australia, that

is subject to cyclic wetting and drying. The lakes are sur-

rounded by activities that have led to increasing pressure

on the local surface and groundwater supply including

farming and mining. The mine has been operating for more

than 30 years, and in recent times, there has been specu-

lation that the surface subsidence and underground pump-

ing may have some impact on surface water and

groundwater hydrology. A study was undertaken using

satellite imagery to examine the relation between water

area changes and rainfall variability. The study utilised

Landsat time-series data during the period 1982–2014 to

calculate changes in the lake water area (LA), through the

normalised difference water index (NDWI) threshold. High

classification accuracy was achieved using NDWI against

high-resolution data that are available for the years 2008

(88.4 %), 2010 (92.8 %), and 2013 (96.9 %). The LA

measurement was correlated against 11 historic observa-

tions that occurred in 2009, 2010, and 2011 during drier

wetland conditions. Correlation analysis of the LA with the

residual rainfall mass spread across the past 30 years has

found that rainfall variability is a major dominant factor

associated with the wetland changes. The underground

mining operations, if verified by independent investiga-

tions, probably play a minor or negligible contributor to

variations in total wetland area during the study period.

This study has demonstrated that remote sensing is a

technique that can be used to augment limited historic data.

Keywords Wetland monitoring � Remote sensing �
Long-term monitoring � Time-series analysis � Landsat

Introduction

Wetlands are an important part of water systems and have

often been considered as one of the most fragile type of

ecosystems (Shanbhag and Borges 2008). Changes in

wetland ecosystems are often unpredictable, and chal-

lenging to map and quantify. Relatively small disturbances

to ecosystems have the potential to significantly affect

natural wetland functions. Variability of the wetland water

area depends on rainfall (Conway et al. 2005) though this

relationship may vary from one site to another (Kebede

et al. 2006). The Thirlmere Lakes in New South Wales of

Australia (Fig. 1) includes sensitive wetlands where the

water level has been reported to have fluctuated signifi-

cantly over the years (Riley et al. 2012; Schädler 2014).

The Thirlmere Lakes is situated within the Southern

Coalfield, where an adjacent underground longwall mine

has been operating since 1979 (Kay et al. 2006). Jenkins

and Frazier (2010) have claimed that underground longwall

mining can be a potential threat to wetland environments.

Surface subsidence, which is often associated with the

extraction of the longwall panels, could potentially change

the landscape overlying the extraction panels (Booth 2006;

Guo et al. 2008). Changing surface slopes and fracturing of

the ground may alter rainfall runoff pattern, soil moisture,

seepage losses, and groundwater recharge (Booth 2006;

Jenkins and Frazier 2010). Murray et al. (2003) claimed

that mining can induce changes in soil, water, and
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groundwater, which may also impact ecosystems within

and adjacent to the lakes. With recent drying of the

Thirlmere Lakes, TCPL (2012) examined the possibility

that mining operations may have changed groundwater

storage and flow, and contributed to decreased water levels.

However, evaluations of surface water and groundwater

hydrology have not been able to form a direct link between

mining activity and its impact on adjoining wetlands (Riley

et al. 2012). Significant gaps in baseline data and in

understanding of possible processes have contributed to

considerable uncertainty (BMCS 2012; Pells 2011). The

sensitivity of the lakes has led to a call for continuous

monitoring to help define and understand changing condi-

tions within the wetland ecosystems (Mooney et al. 2005).

This study is unique in that it has been able to consider

the long-term changes in the Thirlmere Lakes water area

(TLWA) over a 28-year period based on the remote sensing

technique. A series of 162 Landsat observations acquired

between 1987 and 2014 inclusive were used to calculate

changes in TLWA for comparison against rainfall data.

This equates to, on average, six determinations of the lake

area each year. In this study, TLWA is used synonymously

to refer to wetlands and surface water area of the lake. The

normalised difference water index (NDWI) threshold was

used to compute lake water area (LA) of the wetland from

the imagery. The accuracy of the classification was

assessed against high-resolution remote sensing data—

Airborne Digital Sensor (ADS-40), WorldView-2 (WV-

2)—and images from Google Earth. The TLWA calcula-

tion for a dry period (2010–2011) was validated with 11

historical observations. Changes in the wetland area and

local rainfall data were then statistically analysed.

Current status of wetlands

The international Ramsar wetland conservation treaty

defines wetlands as ‘‘areas of marsh, fern, peatland or

water, whether natural or artificial, permanent or tempo-

rary, with water that is static or flowing, fresh, brackish or

salt, including areas of marine water the depth of which at

low tide does not exceed 6 m’’ (Wang and Weng 2013).

Although the definition of a wetland can vary between the

different authorities, essentially wetlands are large tracts of

land that is saturated with water, reflecting an intersection

of land and water ecosystems (Wang and Weng 2013).

Wetlands are considered to be relatively productive

units of the surrounding ecosystem. Wetlands are important

for water purification, as part of the carbon cycle, and for

climate regulation, flood control, shoreline stability,

recreational opportunities, and tourism. In addition, wet-

lands provide shelter to a wide range of fauna such as fish,

amphibians, reptiles, mammals, monotremes, insects, and

Fig. 1 a Location of the study area. b Satellite view of the Thirlmere Lakes and surrounding vegetation (sensor: Worldview-2) (date of

acquisition: 01/04/2010)
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invertebrates (Barbier et al. 1994; Daily 1997; Wang and

Weng 2013). Accurate global assessment of wetland area

has always been a challenge, mainly due to lack of precise

mapping tools and protocols. Millennium Ecosystem

Assessment (Mooney et al. 2005) conservatively reported

there is about 12.8 million square kilometres of wetlands

on the earth’s surface. The importance of wetland systems

are often neglected compared with development needs

(Ghatak 2010). Human disturbances and encroachment by

human activity including industrialisation, over-grazing,

mining, unplanned artificial drainage, and unsustainable

water usage have induced ecological stress to wetland

systems (Mooney et al. 2005; Ramsar Convention Secre-

tariat 2011, 2013). Water scarcity, threatened species,

disruption of breeding grounds, sediment load imbalance,

and improper nutrient filtration are some of the common

induced stresses (Mitsch and Gosselink 1994; Mooney

et al. 2005). A trend of reduced wetland areas in many parts

of the world (Mooney et al. 2005) indicates the stresses

imposed on wetland ecosystems.

Mining operations have the potential to be a threat to

fragile wetland ecosystems if leading practices are not

adopted during the design, operation, and closure stages of

a mine. Jenkins and Frazier (2010) have documented

threats to swamp environments in the Western and

Southern Coalfields regions of the Sydney Basin associated

with underground longwall mining. Mining-introduced

heavy metal contaminations also impose ecological risk in

wetlands (Vaezi et al. 2015). Concern has been raised

regarding subsidence effects on wetlands, slope changes,

contamination of groundwater, and soil moisture fluctua-

tions (Booth 2006; Jenkins and Frazier 2010). Contami-

nation of swamps could gradually reduce the net primary

productivity of wetland ecosystems (Eamus and Froend

2006). Changes in hydrological regimes can lead to irre-

versible environmental degradation. The UN Millennium

Ecosystem Assessment identifies environmental degrada-

tion to be most pronounced in wetlands compared with

other aquatic or terrestrial ecosystems. Accurate and

updated wetland inventories are essential to protect wet-

lands from degradation and to prevent damage (Ozesmi

and Bauer 2002). Wetland environments, therefore, require

frequent monitoring and mapping to underpin sustainable

management.

Remote sensing for wetland monitoring

Conventionally, wetland mapping has focused on the

determination of the extent of vegetation and identification

of species (Moser et al. 1996) and has been conducted

through field surveys and site inspections (Rundquist et al.

2001). Although these traditional techniques can provide

detailed data, they were constrained by several limitations.

Field survey-based methods are not possible in inaccessible

areas and elsewhere are often time-consuming and expen-

sive (Harvey and Hill 2001; Rundquist et al. 2001).

Remote sensing techniques have the potential to provide

synoptic coverage of wetlands, including those difficult to

access, at a reduced cost (Rundquist et al. 2001). Moreover,

information related to temporal changes that potentially

affect the hydrological regime and water balance of the

wetlands can be acquired using satellite images (Ozesmi

and Bauer 2002). Importantly, satellite imagery can go

back years and in some instances several decades. Different

types of remotely sensed data have been used for wetland

classification and monitoring over the past decade or so,

including optical (Harvey and Hill 2001; Jenkins and

Frazier 2010), radar (Baghdadi et al. 2001), and LiDAR

(Jenkins and Frazier 2010).

The use of Landsat data for monitoring wetlands is the

most prominent. Work and Gilmer (1976) pioneered the

use of Landsat MSS data in 1976 to estimate the amount of

surface water in a prairie pothole region of North Dakota.

Landsat Thematic Mapper (TM) band 3 (0.63–0.69 lm), 4

(0.76–0.90 lm), 5 (1.55–1.75 lm), and 7 (0.8–1.1 lm) are

usually reported to be the best band combinations for

wetland detection. Jensen et al. (1984) utilised Landsat TM

imagery to detect changes in water levels in a coastal

region of South Carolina. Sader et al. (1995) used Landsat

TM data to map forested wetland with 82 % accuracy.

Dobson and co-workers found that simple band ratios such

as B5/B2 and (B5 9 B7)/(B5 ? B7) are effective to sep-

arate urban areas from waterbodies (Dobson et al. 1995).

Johnston and Barson (1993) were able to classify 95 %

wetlands and 50 % of freshwater meadows through simple

techniques such as density slicing on Landsat TM for

Australian wetlands in the Skipton area.

Bortels and co-workers used Landsat TM and Enhanced

Thematic Mapper Plus (ETM?) data acquired between

1989 and 2004 together with Advanced Spaceborne Ther-

mal Emission and Reflection Radiometer (ASTER) images

and visible and near-infrared (VNIR) images to perform a

study over the Amvrakikos Gulf on the west coast of

Greece (Bortels et al. 2011). The study indicated possi-

bilities of tracing small wetland patches of around 0.5

hectare by performing an unsupervised iterative self-or-

ganising data analysis (ISODATA) classification. Kayastha

and co-workers used a threshold for Chi-square distribution

of z-scores upon NDVI values extracted from Landsat

time-series data to map interannual changes from 1985 to

2009 in the wetland ecosystems in northern Virginia, with

89 % accuracy in detecting the change (Kayastha et al.

2012). Tulbure and Broich (2013) used Landsat TM and

ETM? datasets from 1999 to 2011 to monitor spatio-

temporal dynamics of wetlands along south-western

coastline of Australia, with 96 % overall classification
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accuracy. Shubho and co-workers employed an improved

semi-automatic segmentation approach with Landsat TM

images to map land cover (vegetation, wetland, and built-

up area) changes in Dhaka, Bangladesh (Shubho et al.

2014). Their analysis showed a decreasing trend of wetland

area, with 57.9 % of area lost between 1989 and 2010.

More recently, Na and co-workers studied the signifi-

cance of land use and land cover dynamics on the Zhalong

wetland, China (Na et al. 2015). The multitemporal land

use/land cover analysis was performed using Landsat MSS

and TM datasets. In addition, the study also derived land-

scape matrices from Landsat MSS and TM datasets. The

temporal variation of different landscape parameters was

analysed against different land use/land cover classes. The

study reported major impacts from anthropogenic sources

(i.e. construction, agriculture, and industrial and human

waste) in wetland spatial extent, landscape pattern, and

water quality.

There is a need to investigate changes in water surface

area of a wetland vis-à-vis variability of rainfall by

applying remote sensing methods. Such investigations are

particularly important to further investigate the causes of

the changes and their linkage to human activities, such as

underground mining and agriculture. The present study is

the first attempt to evaluate long-term changes in surface

water in Thirlmere Lakes wetland. This evaluation will

help future studies to investigate and quantify the effect of

anthropogenic factors including underground mining on the

wetland.

Study area

The Thirlmere Lakes system is situated 90 km south-west

of Sydney, Australia (34812050.9800–34814008.6700S,
150832002.7200–150832054.29E) and comprises a group of

five interconnected lakes and wetlands, namely Gandan-

garra, Werri Berri, Couridjah, Baraba, and Nerrigorang.

The landscape is 15 million years old and has been des-

ignated as Thirlmere Lake National Park under the Greater

Blue Mountains World Heritage Area (Riley et al. 2012).

The 50 hectares of the lakes area is listed in the Directory

of Important Wetlands in Australia (Riley et al. 2012).

The TLWA is surrounded with dense grass-like vege-

tation, followed by moderately thick forest cover, with

eucalyptus trees unevenly clustered around various places.

Topographic relief in the TLWA area varies by about 50 m

within the catchment (TCPL 2012). Outcrops of Hawkes-

bury sandstone dominate the landscape of the valley sides,

along with some outcrops of Wianamatta shale (Pells

2011). A thin, sandy, soil mantel and alluvium of up to

approximately 30 m depth make up the upper valley sides

and the lake bottom, respectively (Pells 2011).

In addition to climate variability, the Thirlmere Lakes

has been subjected to various stresses including bushfire

and weed effects on native vegetation, recreational boating

and bank erosion (Timms 1992), nutrient and metal con-

centrations, water extraction for various purposes including

local orchards, and possible dewatering and subsidence

associated with underground mining of coal (Riley et al.

2012). Tahmoor colliery has been extracting coal from the

Bulli coal seam at a depth of approximately 300 m below

ground by longwall methods since 1981. The mining

operations were approximately 660 m east of Lake

Couridjah during the period 1996–2002 (TCPL 2012).

Lake water levels decreased significantly during the past

decade, leading to speculation that underground mining-

induced surface subsidence was a contributing factor (Ri-

ley et al. 2012). The Thirlmere Lakes Inquiry was com-

missioned in 2012 by the NSW Government to examine the

reasons for the low levels of Thirlmere Lakes (Riley et al.

2012). This inquiry was inconclusive in distinguishing

various factors contributing to long-term declines in the

lake water levels such as evaporation, changes in catch-

ment area, groundwater pumping from the shallow aquifer

by multiple local users, and the possibility of groundwater

losses associated with mining. The inquiry noted that the

Bald Hill claystone, at a depth of 100 m below the lake

bed, limited the vertical rate of groundwater seepage. No

evidence was found to link mining-induced surface defor-

mation to the possibility of increased seepage losses from

the TLWA. A further investigation to explicitly account for

uncertainty in analyses and modelling was recommended

(Riley et al. 2012).

Long-term changes in lake level identified from a

compilation of historic data were attributed by Schädler

(2014) primarily to anthropogenic factors including

extraction of lake water for steam engines and for Picton

Tuberculosis Village up to year 1910, and in more recent

years to an exponential increase in the number of

groundwater bores in the region, and to the proximity of

longwall mining. The volume of groundwater extracted in

the area is unknown. Statistical analysis identified change

points due to declining water levels at the three lakes: Lake

Werri Berri in 2004, Lake Couridjah in 2000, and Lake

Nerrigorang in 1998. However, the change-point statistical

analysis was based on data to 2012 and did not evaluate

subsequent increases in lake levels after a decade-long

drought.

Work by Pells (2011) and TCPL (2012) had reported the

development of models for surface water and groundwater

in the TLWA. The NSW Office of Water (NOW) reported

that water levels in the Thirlmere Lakes had been low in

the past for example during the Federation drought

(1895–1903), the World War 2 drought (1937–1945), and

the Millennium drought (Riley et al. 2012; van Dijk et al.
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2013). The Millennium drought (2001–2009) was particu-

larly severe in south-eastern Australia (Tulbure and Broich

2013). One of the strongest climate drivers in south-eastern

Australia is the El Nino Southern Oscillation (ENSO),

related partly to temperature cycles in the Pacific Ocean,

and linked to relatively dry (El Nino) and wet (La Nina)

conditions (BOM 2015). The frequency, duration, and

severity of droughts in the Thirlmere area are affected by

El Nino cycles, although the Thirlmere Lakes Inquiry did

not take El Nino cycles into account (NSW Government,

Thirlmere Lakes Inquiry 2013).

Historic aerial photographs and records have been useful

in understanding the long-term context of lake variability,

despite their limitations. For example, aerial photographs

show a high water level in 1955 when lakes Gandangarra,

Werri Berri, and Couridjah were interconnected. However,

a predictive hydrological model (TCPL 2012) developed in

the past for the lake surface area and water levels was not

reliable due to the limited number of historical monitoring

data. This current study is the first to evaluate multidecadal

Landsat imagery to quantify changes in TLWA. Further-

more, the onset of wetter climatic conditions during 2012

after a long drought has provided an ideal opportunity to

re-evaluate the reasons for changes in lake area. A corre-

lation analysis was also performed between TLWA and the

rainfall to understand its relative influence in changes

compared with other factors such as underground mining.

Materials and methods

Figure 2 outlines the methodology involved in this study.

Data

The study required use of Landsat time-series satellite data

of Thirlmere Lake for detection of lake water surface area

changes over time. The Landsat programme began on 23

July 1972 with the launch of Landsat MSS, the earth

resource-monitoring satellite sensor. Since then, the United

States Geological Survey (USGS) launched many other

satellite sensors and has maintained a time-continuous

archive of the acquired satellite images. The Landsat

mission maintains an orbital revisit period of 16 days and

provides almost complete spatial coverage of the global

land cover (Irish 2000). Several studies on wetland moni-

toring were produced following the granting of free public

access to Landsat data by the USGS (Bortels et al. 2011;

Kayastha et al. 2012; Tulbure and Broich 2013). This study

utilised Landsat data from TM, ETM? and OLI sensors.

Data from WV2 satellite’s multispectral sensor, as well as

airborne ADS-40 sensor, were utilised for the accuracy

assessment.

A total of 1528 Landsat TM, ETM? and OLI terrain-

corrected datasets (L1T) acquired between July 1987 and

October 2014 were examined, and finally 162 images with

less than 20 % cloud coverage were selected for further

analysis. Landsat ETM? datasets after the scan line col-

lector (SLC) failure on 31 May 2003 (Storey et al. 2005)

are also excluded to avoid inaccuracies in surface water

computation due to unavailability of every sixth spatial

detector.

Daily rainfall data used in this study were acquired from

the Bureau of Meteorology’s Thirlmere Lake monitoring

station (BOM 2014), located at latitude 33�3003600 S, lon-
gitude 115�3802400 E, and altitude 20 m above mean sea

level. The station has been continuously monitoring rainfall

since 1964.

Pre-processing

Raw data (tarfile) were extracted using Python codes and

standard library modules. All the extracted datasets were

then stacked and spatially reduced to create sub-images

covering the TLWA.

A graphical spatial model was customised and batch-

processed to convert the raw digital number (DN) values of

Landsat TM and ETM? into radiance and then into top of

atmosphere (ToA) reflectance using Eq. 1 (YCEO 2013).

Lk ¼
LMAXk � LMINk

QCALMAXk � QCALMINk

� �

� QCALk � QCALMINkð Þ þ LMINk

qk ¼
p � Lk � d2

ESUNk � cos hs

ð1Þ

where Lk is radiance, QCALMINk is minimum quantized

calibrated pixel value, QCALMAXk is maximum quan-

tized calibrated pixel value, LMAXk is spectral radiance

scales to QCALMINk, LMINk is spectral radiance scales to

QCALMAXk, QCALk is the digital DN value, qk is ToA

reflectance, d is Earth–Sun distance in astronomical units,

ESUNk is mean solar exoatmospheric irradiance, and hs is
solar zenith angle; all values are at respective wavelengths

(k).
Similarly, for Landsat OLI, Eq. 2 was used to convert

raw DN to ToA reflectance (USGS 2013).

Lk ¼ Mk � QCALk þ Ak

qk ¼
Lk

cos hs

ð2Þ

where Mk is band-specific multiplicative rescaling factor,

Ak is band-specific additive rescaling factor, and other

symbols have their usual meaning.

Dataset-dependent variables such as solar zenith angle

(hs) and date of acquisition (Julian day) were directly
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read from the metafile for corresponding use. Also,

Earth–Sun distance (d) and mean solar exoatmospheric

irradiances (ESUNk) were easily imported from saved

tables into the calculation. The technique was performed

over all individual optical bands of Landsat TM,

ETM? and OLI datasets using the ERDAS batch-pro-

cessing module. This eliminated the need to manually

select, provide dataset-dependent values, and process

each dataset individually. The Landsat ETM? and OLI

datasets were further pan-sharpened using Euler’s

method utilising the batch-processing feature to bring the

resolution down to 15 m. This was deemed to further

increase the accuracy in computation of lake water area

(LA).

Normalised water index (NDWI)

The processing involved utilisation of NDWI to measure

surface water over the Thirlmere Lakes. NDWI is com-

puted as per the Eq. 3.

NDWI ¼ Green band� NIR band

Green bandþ NIR band
ð3Þ

The robustness of the NDWI technique to only detect the

LA was enhanced by selecting a buffer area mask of 50 m

around the widest possible lake boundary (shown in dotted

red in Fig. 1). Level thresholding of NDWI to detect

multiple classes such as water, trees, grass, and soil often

leads to a classification ambiguity; however, the technique

Fig. 2 Outline of the workflow
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was found suitable to detect only the LA (one-class prob-

lem) as required in this study. A threshold of -0.15 was

found experimentally to accurately (Table 1) separate the

surface water area from the surrounding landscape. The

number of classified water pixels was counted and multi-

plied with the respective spatial resolution to compute the

LA. The accuracy resulting from this classification tech-

nique is discussed in the results and analysis section.

Lake water area and rainfall residual correlation

Computed LA was used to generate a moving average

curve with a window size of 365 days considering the

limited number of observations posed by cloud cover. For

the discontinuous measurements in LA, the first element of

the moving average of LA was calculated taking the

average of the available initial data points within the fixed

window (365 days) of the series. The window is subse-

quently shifted forward along the series. Noisy fluctuation

in the moving average curve was further filtered using a

low-pass filter.

The average monthly lake water area (LAMA) was

computed from LA. The units of LAMA and LA were

expressed in hectares.

Firstly, residual rainfall mass (RR) was calculated for a

month by subtracting monthly average rainfall (RMA) from

the monthly rainfall sum (RS). Then, a cumulative residual

rainfall mass (RRM) was derived.

RR ¼ RS � RMA

RRM ¼ cumulative RRð Þ
ð4Þ

The units of daily rainfall (RD) and monthly rainfall and

averages were expressed in mm. RRM is a common and

useful method to plot a time series of above- and below-

average rainfall periods for comparison with other data. A

decreasing or increasing slope of RRM indicates relatively

dry or wet periods, respectively. The starting point, and

thus the absolute value of RRM, may vary, but the trends

and timing of peaks or changes in slope may be significant

in a hydrological context.

Results and discussion

A total of 162 Landsat TM, ETM? and OLI datasets were

used over a period of 28 years to detect surface water using

NDWI. In the absence of available historic ground surveys,

the accuracy of the classification was assessed through

percentage of correctly classified points out of a total

number of randomly generated ground truth points on the

high-resolution reference images (ADS-40, WV-2 and

Google Earth). Table 1 shows the classification accuracy of

LA measurements that was achieved from the Landsat data

compared to the high-resolution data.

The accuracy of the overall LA measurements derived

from the Landsat data was further compared against the

historical observation published records (Pells 2011) as

well as unpublished record of the lake level measurements

communicated by Peter Pells of Pells Consulting on 15

February 2016 (Pells 2016) as shown in Table 2. The

lowest water level observed in individual lake by Pells was

utilised to assume dry status for all the five lakes for this

study. The derived LA time-series was found to be con-

sistent with the observations in 2009, 2010, and 2011,

where the TLWA was reported dry and the calculated

maximum LA was found to be approximately zero.

A time-series plot of LA was highly variable; however,

a linear decreasing trend was evident during the period of

study from 1987 to 2014 (Fig. 3). The maximum and

minimum LA also follow the overall decreasing trend,

except near the end of the period in 2014, when a relatively

high LA was measured. It is significant that the lakes

appeared to be almost dry in 2009 for the first time in the

past 30 years. These observations are consistent with a

wetter climate in the late 1950s and 1960s, followed by a

drier climate and long droughts during the period of this

study.

Figure 4 indicated the time-series plot of LA, with a

moving average of lake area added, along with a rainfall

residual mass showing relatively dry and wet periods. The

residual mass rainfall during the period 1987–2014 is

clearly influenced by the following climatic features: the

Table 1 Accuracy of the classified Landsat images compared with high-resolution reference images

High-resolution reference image Classified image Accuracy (%) Kappa coefficient

Source Date of acquisition Source sensor Date of acquisition

ADS-40 04/03/2008 Landsat TM 03/03/2008 88.4 0.76

WV-2 01/04/2010 Landsat TM 25/03/2010 92.8 0.85

Google Earth 13/08/2013 Landsat OLI 17/08/2013 96.9 0.93
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late 1980s and early 1990s period was relatively stable;

2010–2012 increasing with a strong La Nina event (BOM

2015); 1998–2000 increasing with a moderate La Nina

event; 2000–2009 decreasing during the Millennium

drought and 2009–2010 decreasing associated with a weak

El Nino.

The moving average calculation of lake area (shown in

red in Fig. 4) has a similar shape, but is not identical to the

residual mass rainfall curve (shown in green in Fig. 4). The

timings of maxima (e.g. 1990) and minima (e.g. 2010) lake

areas were coincidental with maxima and minima residual

rainfall readings (indicated by the vertical dashed lines in

Fig. 4). An important change in the slope of residual

rainfall mass occurred in August, 2012. The change from

drier to wetter climatic conditions at this time was asso-

ciated with significantly higher lake area. The increasing

moving average of lake area calculated through NDWI is

apparent in a partial recovery of lake area, and at least one

point (29 March 2014) when the lakes were full or close to

full.

The dominant factor influencing the total lake area

during the study period was evidently rainfall. A possible

influence of longwall mining and/or groundwater extrac-

tion across the area was not able to be identified in this

dataset. On the other hand, drier conditions aligned with

the occurrence of the Millennium drought, which could

have been extended for several years. It is possible, if

mining effects occurred, that hydrological effects lagged

the completion of mining the closest longwall panels, and

the minor or negligible effects were specific to each lake,

rather than evident in average long-term data on total lake

area. However, further analysis of lake area calculated

from Landsat images with other factors (e.g. rainfall,

evaporation, and flow data) was not possible due to a lack

of historical hydrological data. Additional work could also

Table 2 Validation of Landsat images with historical observations

Historical observation Classified image results

Source of the observation Date of the

observation

Observation Source

sensor

Date of

acquisition

Lake area: measured

specific LA out of

maximum LA (in ha)

Caroline graham photographs

(Pells 2011)

06/09/2010 Lake Baraba dry Landsat TM 10/09/2010 0 out of 3.78

Water level (Pells 2016) 01/10/2011 Lake Couridjah dry Landsat TM 15/10/2011 0.0015 out of 4.92

Water level (Pells 2016) 01/04/2010 Lake Werri Berri dry Landsat TM 25/03/2010 0 out of 12.55

Caroline graham photographs

(Pells 2011)

06/09/2010 Lake Werri Berri dry Landsat TM 10/09/2010 1.8 out of 12.55

Water level (Pells 2016) 10/02/2011 Lake Werri Berri dry Landsat TM 01/02/2011 0 out of 12.55

Water level (Pells 2016) 01/10/2011 Lake Werri Berri dry Landsat TM 15/10/2011 0 out of 12.55

Water level (Pells 2016) 31/10/2009 Lake Nerrigorang dry Landsat TM 16/10/2009 0 out of 4.32

Water level (Pells 2016) 15/11/2010 Lake Nerrigorang dry Landsat TM 20/11/2010 0 out of 4.32

NPWS photographs (Pells 2011) 17/11/2010 Lake Nerrigorang dry Landsat TM 20/11/2010 0 out of 4.32

Water level (Pells 2016) 10/02/2011 Lake Nerrigorang dry Landsat TM 01/02/2011 0 out of 4.32

NPWS photographs (Pells 2011) 11/04/2011 Lake Nerrigorang dry Landsat TM 13/04/2011 0.2 out of 4.32
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Fig. 3 Plot showing a decreasing linear trend of LA between 1987

and October 2014
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(shown in red) between 1987 and October 2014

1788 Int. J. Environ. Sci. Technol. (2016) 13:1781–1792

123



be undertaken to determine the relative patterns of wetting

and drying for individual lakes, particularly for cyclical

(e.g. El Nino-La Nina) and non-cyclical (e.g. global

warming) variations in climate.

The variation of LAMA and RMA (Fig. 5) indicates a

seasonal relationship with minimum for both in summer

(December to February) and maximum during winter (June

to August).

Regression analysis between LAMA and RMA over

28 years produced a first order polynomial dependence

with R-square of 0.8442 as shown in Fig. 6, with increas-

ing scatter for low lake area. Based on this strong rela-

tionship, average monthly rainfall could be a good

predictor of average monthly lake area. However, the

months of smaller lake area in Fig. 6 also attribute to early

summer season, when hydrological processes other than

rainfall (e.g. evaporation, seepage) are dominant to reduce

the lake area.

The irregular intervals between suitable Landsat images

have introduced some uncertainty into this analysis. A

large lake area derived from an image on a specific date

may actually be related to a large rainfall event that

occurred weeks earlier minus evaporation and seepage

losses that have occurred during the intervening time per-

iod. For example, Fig. 7 shows antecedent rainfall for the

100 days prior to the date of a Landsat image on the 15th

July 1995 when the calculated lake area was relatively

high.

Depending on any time delay for inflow to the lakes,

determined by hydrological monitoring and modelling, it is

probable that the actual date of maximum lake area

occurred on an unknown date during June rather than in

July and that there is a variable but systematic error in the

timing and magnitude of lake areas derived from remote

sensing images that are not available more frequently.

Table 3 provides further examples, with the time lag

between the date of high-intensity rainfall and satellite

observation varying from 52 to 72 days. The calculated

lake areas would tend to be underestimated and lagging the

date of actual maximum compared to continuous moni-

toring, if it was available during this period.
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Fig. 5 Monthly variation of LAMA (in blue) and RMA (in green)

between 1987 and October 2014
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Fig. 7 Example of antecedent rainfall RD for the 100 days prior to

date of Landsat image in July, 1995

Table 3 Comparison of time lag between high-intensity rainfall

event and satellite observation for selected images

Date of high-intensity rain

(rainfall in mm that day)

Date of satellite-

based

observation

Days between high

rain and observation

30-04-1988 (93 mm) 26-06-1988 57

01-04-1989 (79.8 mm) 12-06-1989 72

05-12-1992 (66 mm) 06-02-1993 63

18-05-1995 (75 mm) 15-07-1995 59
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These results highlight the potential benefits of remote

sensing to augment a lack of historical information on lake

area. There is a potential for further image and data anal-

ysis. For example, it would be possible to derive a time

series of lake levels for each individual lake through high-

resolution images for comparison with modelling results.

The commencement of automated water level monitoring

as part of a new hydrological monitoring programme will

provide the opportunity to verify an extended remote

sensing dataset, setting measured water levels against

derived lake areas. Real-time data from five lake moni-

toring stations are now available, having commenced

progressively from December 2013 (NSW Government,

2015). The findings of this first reported application of

remote sensing in the TLWA are consistent with the most

recent inquiry (NSW Government. 2013), which reported

that: ‘‘While it is possible that mining could have had a

marginal effect on groundwater levels beneath the lakes,

there is no definitive evidence that this has occurred. On

the other hand, there is clear evidence for the drying of the

lakes being coincident with a severe drought.’’

Conclusion

This study highlights the potential benefits of using satel-

lite-based continuous multidecadal observations for

hydrological monitoring of a wetland system in assessing

the relative importance of environmental (including rainfall

events and climatic trends), geological, and anthropogenic

factors. Multidecadal Landsat images have been evaluated

for the first time in the complex environment at Thirlmere

Lakes to quantify the relationship between wetland area

and rainfall. Within the 28-year period that was studied, it

was evident that rainfall was the dominant factor in TLWA

variability between 1987 and 2014, despite the otherwise

limited historical information and baseline hydrological

data. A significant advantage of remote sensing methods is

to quantify the sources of error and uncertainty at key steps

in the evaluation process, in tandem with field-based

monitoring and modelling.

Importantly, this analysis has extended previous studies

into a recent wetter period (from 2012 to October 2014),

after a near-decade-long drought. Verified Landsat imagery

analysis has provided early indications of an apparent

recovery, or partial recovery, of TLWA from very low

levels. It was found that if mining near the lakes has

influenced TLWA, then its effects are likely to be minor

compared to other factors such as rainfall. The results of

this study are consistent with the findings of an earlier

inquiry by Riley et al. (2012) in that rainfall is a dominant

factor in TLWA variations. It is recommended that remote

sensing analysis of TLWA compared with rainfall residual

is extended in the future, with measured lake level–area

relationships (e.g. derived from LiDAR survey). This study

has demonstrated the utility of remote sensing for long-

term monitoring of average changes over time for the total

TLWA. However, the sensitivity and utility of remote

sensing techniques could be further improved by applica-

tion to each individual lake to evaluate variable hydro-

logical responses across the area, specifically the lakes that

may be more or less sensitive to possible anthropogenic

effects. The extensive library of available satellite imagery

going back decades combined with continual improve-

ments in terms of resolution and sensors will further

enhance the attractiveness of this technique to monitor

temporal changes in wetlands and other habitats. Addi-

tional remote sensing studies should be combined with

detailed investigations and hydrological monitoring of the

lakes to further quantify the influence of human activities

across the area, including groundwater extraction bores and

mining operations.

Recent advancements in remote sensors, as well as

platforms such as drones, now provide further opportuni-

ties for automated monitoring of key components of the

hydrological balance, lake and swamp vegetation area and

the health of swamp vegetation. Any differences in

responses to wet and dry periods (e.g. the rate of drying)

could be quantified with high-frequency temporal data,

correlated with variations in groundwater extraction across

the area and mining operations, and used to verify

numerical models.
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