
Tanzania Journal of Health Research Doi: http://dx.doi.org/10.4314/thrb.v16i3.7
Volume 16, Number 3, July 2014

1

Integrating land cover and terrain characteristics to explain plague risks in Western
Usambara Mountains, Tanzania: a geospatial approach

PROCHES HIERONIMO1, JOEL MELIYO2, HUBERT GULINCK3, DIDAS N. KIMARO1*, LOTH S. MULUNGU4,
NGANGA I. KIHUPI1, BALTHAZAR M. MSANYA2, HERWIG LEIRS5 and JOZEF A. DECKERS3

1Department of Agricultural Engineering and Land Planning, Sokoine University of Agriculture, P.O. Box 3003,
Morogoro, Tanzania
2Department of Soil Science, Sokoine University of Agriculture, P.O. Box 3008, Morogoro, Tanzania
3Department of Earth and Environmental Sciences, University of Leuven, Celestijnenlaan 200E, Leuven, Belgium
4Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
5Evolutionary Ecology Group, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
_________________________________________________________________________________________
Abstract: Literature suggests that higher resolution remote sensing data integrated in Geographic
Information System (GIS) can provide greater possibility to refine the analysis of land cover and terrain
characteristics for explanation of abundance and distribution of plague hosts and vectors and hence of
health risk hazards to humans. These technologies are not widely used in East Africa for studies on diseases
including plague. The objective of this study was to refine the analysis of single and combined land cover
and terrain characteristics in order to gain an insight into localized plague infection risks in the West
Usambara Mountains in north-eastern Tanzania. The study used a geospatial approach to assess the
influence of land cover and terrain factors on the abundance and spatial distribution of plague hosts (small
mammals) and plague vectors (fleas). It considered different levels of scale and resolution. Boosted
Regression Tree (BRT) statistical method was used to clarify the relationships between land cover and
terrain variables with small mammals and fleas. Results indicate that elevation positively influenced the
presence of small mammals. The presence of fleas was clearly influenced by land management features
such as miraba. Medium to high resolution remotely sensed data integrated in a GIS have been found to be
quite useful in this type of analysis. These findings contribute to efforts on plague surveillance and
awareness creation among communities on the probable risks associated with various landscape factors
during epidemics.
________________________________________________________________________________________
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Introduction

Transmission of zoonotic vector-borne diseases forms complex systems in the landscape
(Vanwambeke et al., 2011). These systems are influenced by a broad spectrum of environmental
factors operating at diverse scales, including climate (Debien et al., 2009; Ben Ari et al., 2011), land
cover (Lambin et al., 2010), soil, landscape and land use (Patz et al., 2004; Neerinckx et al., 2010;
Vanwambeke et al., 2011; Ben Ari et al., 2011; Baumgardner et al., 2012; Chammartin et al., 2013). In
Tanzania, plague (caused by Yersinia pestis) has occurred in West Usambara Mountains and in the
Mbulu district since 1980 (Kilonzo & Mhina, 1982; Kilonzo et al., 1997, 2005; Makundi et al., 2003,
2007, 2008; Laudisoit et al., 2009a,b; Neerinckx et al., 2010). Most of the data and analytical
techniques in these studies concentrated on biological and microbiological factors for which,
unlike in the current study, little or no appeal was made to detailed terrain and land cover data
involving remote sensing and geographical information systems (GIS).

Coarse resolution remote sensing and GIS techniques have been widely applied to
understand the relation of regionally distributed environmental factors in relation to vector
borne diseases including malaria (Ceccato et al., 2005), dengue (Palaniyandi, 2012) and plague
(Eisen et al., 2011, 2012; MacMillan et al., 2011). Debien et al. (2009) used Tropical Rainfall
Measuring Mission (TRMM) at 0.25x0.25km resolution and MODIS monthly NDVI (1x1km) data to
reconstruct rainfall patterns at 1x1km resolution for predicting occurrence of plague in north-
eastern Tanzania. Neerinckx et al. (2010) used environmental dataset assembled from MODIS
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data at 250m resolution to predict potential risk areas of human plague in the Lushoto area of
Tanzania and in larger parts of East and Southern Africa. Eisen et al. (2010) and MacMillan et al.
(2011), attempted to identify elevated risk of human exposure to plague bacteria at sub-village
level, using SRTM DEM (90m), and Landsat ETM+ (30x30m). Eisen et al. (2012) used 2-km
resolution climate dataset derived from a suite of atmospheric simulations with the Weather
Research and Forecasting Model (WRF) (Monoghan et al., 2012) to compare host and flea
abundance and diversity along an elevation gradient performed specifically for the West Nile
region plague focus in Uganda.

Land cover is an important determinant of habitat suitability for disease vectors and
hosts (Linard et al., 2007) and hence of health risk hazards to humans. The abundance and spatial
distribution of small mammals and fleas vary along the different land cover types and between
landscape units (Vanwambeke et al., 2011). Higher resolution remote sensing data are of
increasing interest in disease studies (Ostfeld et al., 2005); especially when land cover and
landscape factors enter the picture. These factors also ask for spatial analytical tools and GIS.
However, some factors including cost, access to equipment or insufficient skills in remote sensing
and GIS have prohibited such approach (Le Sueur & Martin, 1996; Tanser & le Sueur, 2002; Ostfeld
et al., 2005; Zhang et al., 2013). The objective of this study was therefore to refine the analysis of
single and combined land cover and terrain characteristics in order to gain a better
understanding of localised plague infection risks in the West Usambara Mountains in north-east
Tanzania. It is expected to provide useful information for plague and other rodent borne disease
control programmes as well as information for further in-depth research on the complex ecology
of the plague system.

Materials and Methods

Study area
This study was carried out in the Western Usambara Mountains in Lushoto district of north-
eastern Tanzania. The study area is located between Universal Transverse Mercator (UTM)
coordinates 4000000 m E and 430000 m E and between 9480000 m N and 9500000 m N, Zone
37M, covering an area of about 34,000ha (Figure 1). The altitude ranges from 480 to 2,271m. In
the Western Usambara Mountains, two rainy seasons exist: short rains (vuli) from October to
December and long rains (masika) from March to May (Debien et al., 2009). The rainy seasons are
associated with the seasonal movement of the Intertropical Convergence Zone (ITCZ). Rainfall in
the study area is influenced by topography (Debien et al., 2009). The plains facing the rain
shadow sides receive about 600mm of rainfall annually while in the upland area annual rainfall
ranges from 1,400 to 1,800mm. The study area shows large differences in relief dissection and
intensity, vegetation and land use patterns, and human activities. Land use is dominated by
mixed rainfed farming, followed by irrigated agriculture, livestock keeping and off farm activities
including petty cash and carpentry (Msita et al., 2010). These land uses are bordered or
surrounded by natural forests, and plantation forest and utility woodlots.

Previous research on rodents, fleas and plague (Njunwa et al., 1989; Kilonzo et al., 1997;
Davis et al., 2006; Kamugisha et al., 2007; Laudisoit et al., 2007, 2009a, b; Neerinckx et al., 2010)
allowed defining the study area in such a way that it reflects a geographical gradient in the
frequency of plague incidence. These authors concur in distinguishing high, medium, and low
incidence zones. Within this gradient three representative landscapes were selected differing in
terms of (i) the incidence of plague, (ii) diversity in land use and associated human activities, (iii)
landform characteristics (relief intensity and level of dissection), and (iv) climatic conditions. The
selected landscapes are named Shume (high plague incidence), Lukozi (medium plague
incidence) and Mwangoi (low plague incidence) landscapes, after the name of their most
important settlement.
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Figure 1: Selected study landscapes in West Usambara Mountains, Tanzania

Data collection and analysis
This study included the generation of terrain attributes from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) with 30m resolution,
a land cover map from three-band SPOT 5 image (nominal spatial resolution 2.5m) and the
collection of small mammals and fleas. Boosted Regression Trees (BRT) was used to identify
terrain and land cover predictors of abundance of small mammals and fleas. Both categories of
organisms are seen as indicators of potential plague occurrence at landscape scale. The final
layers were saved in raster (geotiff) format. Land cover was also defined in vector (shapefile)
format. Data extraction and zonal statistics were carried out in ARCGIS 9.3 and QGIS respectively
to generate spatial and attribute data for each 100x100m quadrat in which small mammals and
fleas were collected. The developed spatial geodatabase associated with their attributes were
used as independent variables in BRT analysis. Small mammal and flea data were used as
dependent variables.

The developed geospatial database can be used in desktop GIS with ARCGIS, ARCVIEW,
QGIS and other related GIS software. The methodological flow chart (Figure 2) summarises the
steps followed in spatial geodata capturing, processing, integration, storage, and BRT modelling.
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Figure 2: Methodological flow chart summarising the steps followed for data collection and analysis

Mapping of terrain variables
Three topographical variables (elevation, slope gradient and slope aspect) were derived from the
ASTER DEM (30m) using ARCGIS 9.3 software. Elevation strongly determines climate in this area.
Slope gradient strongly influences the choice of land management types, and is correlated with
soil characteristics (Msita et al., 2010). Slope aspect, measured clockwise in degrees from 0
(north) to 360, has been reported to influence rainfall in the West Usambara Mountains
(Kajembe, 1994). Flat areas are given a slope aspect value of -1.

Generation of a land cover map
A cloud free three-band SPOT 5 image captured on 27 February 2007, nominal spatial resolution
2.5m, was used in this study. The image was orthorectified in ERDAS 2011 software. The initial
classification of land cover was based on 20 spectral classes generated using the unsupervised
ISODATA clustering technique in ERDAS2011. GPS supported field observation was conducted in
August to September 2011, April to June 2012 and in August to October 2012, and allowed to
define characteristic tone, texture and pattern of the land cover classes on the display of the
SPOT 5 colour composite image. Also aerial photographs and Google Earth provided essential
independent reference data to help in identifying land cover types within the SPOT 5 image.

The description of the different land cover categories was in the first instance based on
Anderson et al. (1976) and then refined to match the terminology of the FAO Guidelines for Soil
Description (FAO, 2006). Because of the occurrence of mixed pixels, similarity in spectral
signatures of some land cover types, and heterogeneous illumination conditions in this
undulating area, a hybrid image classification method was used (Wang et al., 2005; Horning,
2010a). This approach combines the advantages of the automated and manual methods to
produce land cover maps (Horning, 2010a). Expert information and visual interpretation allowed
refining and correcting the automated classification (Horning, 2010a). Also existing information,
for example on the location and extent of plantation forest, was directly inserted in the land
cover map, to avoid confusing recently harvested patches with bare land.
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Supervised classification was done using Random Forest (RF) algorithm (Breiman, 2001)
in R software (R Development Core Team, 2006). Random Forest is known to be one of the most
efficient classification methods (Akar & Gungor, 2012). A script written by Horning (2010b) was
used. The script requires that training areas are digitized as polygons and saved as an ESRI
shapefile. The training dataset is defined as multiple polygons for each class.

Post-processing of classified image included majority neighbourhood filter, clump and
eliminate. The classified map was later compared with the original image and reference data used
in this study. Classes which were not labelled correctly were spotted and edited. Five classes out
of twelve were successfully generated: Cropland (Rainfed maize and beans), Agroforestry,
Settlement, Woodlot and Shrub. Seven out of twelve classes were not sufficiently well classified
by this algorithm due to similarity in spectral signatures: Cropland (perennials and furrow
irrigated vegetables), Cropland (supplemental irrigated vegetables and potatoes), plantation
forest, natural forest, grassland with emergent trees, bushland and woodland. Their initial
classification was corrected through onscreen digitisation after visual interpretation of the SPOT
5 image. Software used during pre and post processing of the classified SPOT 5 image includes
Arc View 3.3, ARCGIS 9.3 and ERDAS 2011.

Collection of data on small mammals and fleas
Based on the land cover and terrain attributes generated above, a total of 72 quadrats of 100x100
m were established. Twenty four quadrats were established at random for each landscape. At
each observation site (quadrat) data on land cover, rodents and fleas from rodents were
collected. Data collection was conducted in the dry season (August to October) of 2012.

Small mammals were trapped using Sherman LFA live traps (7.5x9.0x23 cm; HB Sherman
Traps, Tallahassee, USA) baited with peanut butter and maize flower. A total of 49 Sherman live
traps spaced 10 m apart were set in a grid per observation site (quadrat) and per trapping
session. For the sites in natural forests, additionally two wire cages were used to capture
somewhat larger mammals like squirrels. Each trapping session lasted 3 nights. Each trap was
inspected every morning and traps with captured animals were replaced by empty traps (Zimba
et al., 2011). The captured animals were identified to genus level or species level where possible
(Eisen et al., 2012) and carefully combed for fleas. Trap success (in percent) was calculated as the
number of small mammals captured multiplied by 100 divided by the trap nights (i.e. number of
traps x number of days) per quadrat (Mulungu et al., 2008; Laudisoit et al., 2009a). Fleas
collected from each small mammal were counted. The flea index was calculated as the total
number of fleas per total number of captured mammals in each quadrat (Laudisoit et al., 2009a).
Trap success and flea index were used as predictor variables in the Boosted Regression Tree
(BRT) modelling (to be explained later).

Boosted Regression Tree modelling
Exploring plague disease infection risk patterns requires a statistical technique that effectively
addresses the complexity of the landscape systems and the disease ecology (Skolow et al., 2009;
Williams et al., 2010; Aertsen et al., 2012). The Boosted Regression Tree (BRT) model in R software
(R Development Core Team, 2006) was used in this case. Models were fitted using the gbm.step
function and a Gaussian response type, with most effective settings for learning rate (0.01–
0.00001) and bag fraction (0.5–0.75) as found by repeated trial-and-error (Elith et al., 2008). Tree
complexity was set to 3, according to recommendations by Elith et al. (2008) for small datasets.
BRT-models were calibrated with a 10-fold cross-validation (cv) procedure to sequentially remove
the least important predictors to define the most parsimonious final model (Elith et al., 2008). In
this type of evaluation, the data was divided into 10 subsets of equal size and the model was
trained 10 times, each time leaving out one subset. The measure of model performance was cv
deviance and standard error (Elith et al., 2008; Williams et al., 2010). The combination of learning
rate and bag fraction settings with the lowest cv deviance and standard error was the one
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selected to produce the final BRT model (Williams et al., 2010). Also during data exploration all
predictor variables were tested for ecologically acceptable level of collinearity (i.e. individual
variance inflation factor (VIF) of <5) between predictor variables (Zuur et al., 2010; Artsen et al.,
2012).

Ethical considerations
This study received approval from Directorate of Research and Post-Graduate Studies of Sokoine
University of Agriculture, Tanzania and Flemish Inter-University Council (VLIR-UOS) of Belgium.

Results

Land cover, terrain variables and small mammals
Figure 3A presents the land cover types of 2012 while in Table 1 their respective dominant
coverage for the three studied landscapes are given. Figures 3B, 4A and 4B present elevation
ranges, slope aspect and slope angle respectively, which are terrain attributes used as predictor
variables along with land cover types for prediction of small mammal and flea abundance and
spatial distribution. Table 2 provides the summary of the values for the terrain attributes
extracted from the ASTER DEM and small mammal and flea abundances.

A B

Figure 3 A: Land cover map covering the three studied landscapes (inside boxes); B: Elevation ranges used
as terrain predictor variable for small mammal and flea abundance
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Table 1: Land cover categories of the studied landscapes
Land cover (ha) Landscape

Mwangoi Lukozi Shume
Agroforest 277.1 (9.1%) 83.6 (3.6%) 35.9 (1.8%)
Cropland (Rainfed Maize and Beans) 1229.5 (40.3%) 1169.8 (50.9%) 445.5 (22.9%)
Cropland (Irrigated Vegetables and Potatoes) 207.9(6.8%) 122.6(5.3%) 59.9 (3.1%)
Natural forest 330.3 (10.8%) 509.4 (22.1%) 107.9 (5.6%)
Plantation forest 48.3 (1.6%) 233.3 (10.1%) 857.4 (44.2%)
Shrub 194.9 (6.4%) 3.2 (0.1%) 2.1 (0.1%)
Woodlot 684.2 (22.5%) 161.9 (7.0%) 32.7 (1.7%)
Settlement 74.8 (2.5%) 16.1 (0.7%) 4.4 (0.2%)
Woodland 30.6 (1.6%)
Cropland (Perennials and Furrow Irrigated
Vegetables)

185.8 (9.6%)

Grassland with emergent trees 171.5 (8.8%)
Bushland 7.4 (0.4%)
Total 3,047.1 2,300.0 1,941.1

A B

Figure 4 A: Slope aspects as terrain predictor variable; and B: Slope angle in degrees used as predictor
variable for small mammals and fleas abundance

Table 2: Summary of the terrain attributes values and small mammals and fleas
Landscape Attribute Attribute Mean Small mammals Fleas
Mwangoi Elevation (m) 1589 79 (14%) 137 (20%)

Slope angle (deg) 13.8
Slope aspect (deg) 163.3

Lukozi Elevation (m) 1855 232 (40%) 180 (27%)
Slope angle (deg) 12.7
Slope aspect (deg) 169

Shume Elevation (m) 1819 265 (46%) 358 (53%)
Slope angle (deg) 16.2
Slope aspect (deg) 192
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Boosted Regression Trees (BRT) model for explaining the relationship between land cover, terrain
attributes and small mammals
Four predictor variables were retained by the BRT model as being influential on the observed
spatial pattern of trap success (Figure 5). All four predictor variables had the ecologically
acceptable level of individual variance inflation factor i.e. VIF<5. Elevation was the most
important predictor with contribution of more than two thirds of the total (80.1%) and a strong
positive effect. The elevation of 1,700 m appeared to be the threshold for a sharp increase in trap
success. The second important predictor was slope aspect with contribution of 11.4% and a
moderate positive effect. The location on 150 degree aspect (south east facing slope) appeared
to be an important condition for increased trap success. The slope angle and land cover had weak
positive effect although with small contributions. The abundance of small mammals (trap
success) seemed to increase slightly on slopes of 10 degrees and above. The abundance also
gradually increased as the land cover types varied from natural forest (coded 1) to other land
cover types (coded from 2 to 7).

Figure 5: Partial dependence plots showing the effect of land cover & terrain variables on spatial pattern
of small mammals. The relative contribution of each predictor is given in brackets. Key= CV deviance=22.343,
standard error=3.612, number of trees=1250. Elevmean = Elevation, aspmean = Slope aspect, slopmean = Slope angle,
Landcover = Land cover)

BRT model for explaining the relationship between land cover, terrain attributes and fleas
Four predictor variables were identified by the BRT model as having influence on the observed
spatial pattern of flea index (Figure 6). All four predictor variables had the ecologically acceptable
level of individual variance inflation factor i.e. VIF<5. Slope angle was the most important
predictor with contribution of more than two thirds of the total (75.3%) and a strong positive
effect. The presence of a slope angle of at least 10 degrees appeared to be an important
condition for increased rodent flea abundance (flea index). The second important predictor was
elevation with contribution of 17.3% and a moderate positive effect. The elevation of 1800 m
appeared to be an important condition for increased flea index. Land cover and slope aspect had
smaller contributions and showed weak effect. Land cover showed a slight negative effect as
land cover types varied from that dominated by natural forest (coded 1) and plantation forest
(coded 2) to the rest of the land cover types (coded from 3 to 7) (Figure 6).

Figure 6: Partial dependence plots showing the effect of land cover and terrain variables on spatial
pattern of flea index. The relative contribution of each predictor is given in brackets. Key=CV deviance=1.764,
standard error=0.561, number of trees=1000. Elevmean = Elevation, aspmean = Slope aspect, slopmean = Slope angle,
Landcover = Land cover)
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Discussion

Small mammals trap success seems to be greatly influenced by altitude. This finding is contrary to
the observations by Mulungu et al. (2008) who found a decrease in small mammals trap success
with altitude along Mount Kilimanjaro in Tanzania. This could be attributed to the increased
resource availability (water and food) as one moves from low to high altitude in the studied
landscapes compared to Mount Kilimanjaro, where resources availability decreases with increase
in altitude. Furthermore, the results of our study clearly demonstrate that there is a positive
influence of slope aspect on the small mammals trap success in the range 112-157 degrees i.e.
south east facing slopes. This could be due to availability of water for small mammals as a result
of orographic effect. High rainfall in West Usambara Mountains occurs in areas located to the
east and south east which are the first to receive moisture-laden south-easterly trade winds from
the Indian Ocean (Kajembe, 1994). The findings of this study are consistent with earlier studies
which reported that food, water, rainfall and shelter are important factors for small mammals’
abundance (Mwanjabe, 1993; Makundi et al., 2007; Mulungu et al., 2011).

The current study shows that slope gradient has strong positive influence on flea index.
This relationship could be attributed to the different land management types and crops found on
different geographic locations across the studied landscapes. The valley bottom areas and foot
slopes characterized by flat or gentle slopes are mostly under irrigated vegetables. The
application of insecticides and pesticides may explain the very low flea indices. As slope increases
from lower parts to middle and upper slopes rainfed agriculture (i.e. the land cover type
described in the current study as cropland (rainfed maize and beans) becomes the dominant land
use. Also intensive land management practices including contour farming and indigenous land
management system with grassy hedges called miraba increase. According to another study in
the same area (Msita et al., 2011), the density of miraba (total length of miraba segments per unit
area) increases with slope gradient. Therefore, this strong positive influence of slope angle on
flea index could be attributed to land management practices and mainly miraba cultivation which
are associated with many rodent burrows (Kamugisha et al., 2007; Brabers, 2012).

It should be noted that rodent burrows are also likely to harbour adult ‘free flea
population’ which sometimes stay off host in the burrows (Eisen et al., 2012). According to Eisen
et al. (2012), it is possible that off host adult flea populations of some infected species are able to
survive for relatively long periods in burrows or nests, thus contributing to chances of plague
persistence. Since the miraba in the study area provide suitable habitats for rodents, the
possibility of rodents contacting high numbers of fleas inside burrows is most likely to be high
(Hubbart et al., 2011). The grasses grown along miraba can be a hiding place for pests like rats
(Kamugisha et al., 2007; Msita et al., 2011). Miraba planted with Guatemala and elephant grass are
frequently visited by humans during the dry season for fodder collection, a common practice for
farmers practising zero grazing, hence high chances of flea bites (Vanwambeke et al., 2011). Also
natural forests and shrubs on rocky slopes in the area mostly found on upper slopes and ridges
also favour rodents’ and fleas’ abundance. These observations support earlier suggestions of
potential plague infection risks being associated with land management and farming practices
during epizootic periods in the plague risk area (MacMillan et al., 2011; Zimba et al., 2011).

In this study, flea index also tended to decrease as land cover types varied from natural
forest and plantation forest to other classes. Results suggest that land cover dominated by
natural forest and plantation forest tended to favour more fleas than other land cover types,
though with weak effect. The effect of land cover type on flea abundance was reported in earlier
studies in the study area (Laudisoit et al., 2009a, b). In these studies shrubs which are also
present in forested zones, were reported to have the highest flea abundance levels when
compared to the other land cover types. Furthermore, elevation showed strong positive
influence on flea index especially above 1800m. These findings are in line with previous studies in
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the study area and elsewhere (Kilonzo et al., 1992, 2005; Pham et al., 2009; Winters et al., 2009;
Neerinckx et al., 2010).

The middle and upper slopes of the study area dominated by miraba land management
practices and contour farming favour the abundance of fleas. In addition, elevations above 1800
m have a strong positive influence on flea index. Furthermore, elevation has a strong positive
relation with small mammals trap success, which can be explained by an increase of food and
water availability with altitude. Land cover and terrain variables influence and predict the spatial
distribution of small mammals and fleas abundance across the West Usambara Mountain
landscapes.

The relationship between land cover and terrain attributes on one hand and small
mammals and fleas as potential hosts and vectors of plague, hence as indicators of plague risks,
on the other hand has been well elaborated by remote sensing and GIS integration of
geodatabase at different spatial scales and resolutions. This has revealed that a geomatic
approach using remote sensing data and GIS technologies is valuable in studying plague infection
risks.

The developed spatial geodatabase is structured for easy access and use on desktop
computer GIS. The framework developed by this study forms a useful tool for plague surveillance
and to inform communities on the probable risks associated with various landscape factors
during epidemics. The framework is also a powerful tool for land and pest management including
management of rodents which are dominantly crop pests. The geodataset derived from the
satellite data including land cover, and DEM derivatives integrated in the expert GIS engine
provide future potential analysis and understanding of the association of plague risk indicators
including climate and human behaviour variables. In addition the developed geodatabase is vital
information for district land use planning and rural development programmes in the study area.
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