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ABSTRACT 

 
Targeted genome editing technology has been 
widely used in biomedical studies. The CRISPR-
associated RNA-guided endonuclease Cas9 has 
become a versatile genome editing tool. The 
CRISPR/Cas9 system is useful for studying gene 
function through efficient knock-out, knock-in or 
chromatin modification of the targeted gene loci in 
various cell types and organisms. It can be applied 
in a number of fields, such as genetic breeding, 
disease treatment and gene functional investigation. 
In this review, we introduce the most recent 
developments and applications, the challenges, 
and future directions of Cas9 in generating disease 
animal model. Derived from the CRISPR adaptive 
immune system of bacteria, the development trend 
of Cas9 will inevitably fuel the vital applications 
from basic research to biotechnology and bio-
medicine. 
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INTRODUCTION 

 
With more and more patient genomes have been sequenced, a 
large number of mutations were identified. It has been a primary 
task to determine the relationship between these mutations and 
diseases. Genome editing refers to the manipulation of the 
specific gene loci to gain genome modifications, such as 
insertions, deletions or point mutations (Cong et al., 2013; Gaj 
et al., 2013). The appearance of the DNA recombination 
technology opened the door of molecule biology in the 1970s. 
Biologists can, for the first time, directly manipulate the DNA 
molecules and perform some simple genome editing. These 
molecule biology tools are essential for elucidating the function 
of targeted genes and regulatory factors. Precise genome 

editing can help us to generate disease-associated animal 
models (Dow, 2015). What’s more, genome editing technology 
is sparking a new revolution on drug development and gene 
therapy (Gori et al., 2015). 1 

Recent advances in genome editing technologies based on 
programmable nucleases are fruitful, especially the birth of the 
clustered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated enzyme 9 (Cas9) system. Just a 
few years ago, meganucleases (Thermes et al., 2002), zinc 
fingers nucleases (ZFN)( Geurts et al., 2009) and transcription 
activator-like effector nucleases (TALEN) (Cermak et al., 2011) 
play leading roles in genome editing. Although ZFN and TALEN 
were demonstrated to be successful gene editing techniques, 
many drawbacks including time-consuming, low efficiency and 
specificity significantly restrict their application (Gaj et al., 2013). 
As a new genome editing technique, CRISPR/Cas9, derived 
from bacteria or archaea adaptive immune system, can edit 
genome much more efficiently and specifically (Garneau et al., 
2010; Jansen et al., 2002; Jinek et al., 2012). CRISPR/Cas9 
has proven to be a powerful and versatile tool for genome 
engineering in multiple cell types and organisms. Up to now, 
CRISPR/Cas9 has been successfully applied in bacteria 
(Bikard et al., 2013; Selle et al., 2015), yeast (DiCarlo et al., 
2015; Lee et al., 2015; Mans et al., 2015; Tsai et al., 2015), C. 
elegans (Chen et al., 2014, 2015c), Drosophila (Bassett et al., 
2013; Gratz et al., 2013), rice (Xu et al., 2014, 2015b; Zhang et 
al., 2014), zebrafish ( Varshney et al., 2015), mouse (Shen et 
al., 2013), monkey (Niu et al., 2014) and human beings (Mali et 
al., 2013).  
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In this review, we first introduce the latest developments 
and applications of CRISPR/Cas9 in the past several years. 
Following that, the origin, formation and functional 
mechanism of CRISPR/Cas9 are summarized. Next, we 
focus on the applications of this technique in generating 
disease animal models. Finally, challenges and future 
directions are discussed.  

 
The history of CRISPR/Cas system 
The history of CRISPR/Cas9 system development is short and 
rapid (Figure 1). Ishino et al. (1987) first discovered a group of 29-
nucleotide repeats divided by non-repetitive short sequences in E. 
coli, which is now known as spacers. The following researches 

found that the similar interspaced repeats widely exist in the 
genomes of bacteria and the archaea (Mojica et al., 2000). 
Jansent et al. (2002) further studied the short repetitive DNA 
sequences in prokaryotes. The authors named the family as the 
clustered regularly interspaced short palindromic repeats 
(CRISPR). Meanwhile, they identified four CRISPR-associated 
(Cas) genes, suggesting that CRISPR/Cas system might play an 
important role in biological processes. In 2005, three groups 
linked this kind of element to the immune system of defending 
against invading DNA (Bolotin et al., 2005; Mojica et al., 2005; 
Pourcel et al., 2005). Marakova et al. (2006) predicted that 
CRISPR might function as immunity defenders through the 
mechanism analogous to eukaryotic RNA interference (RNAi).  

 

Figure 1  Time line of the CRISPR/Cas system development 

Important scientific events happened in the history of CRISPR/Cas9 over the past 30 years. 

 
A key turning point came in 2007, Barrangou et al. (2007) first 

determined that CRISPR-induced immunity was used to protect 
bacteria from phage. Marraffini & Sontheimer (2008) did an 
experiment on S. epidermidis CRISPRs and found that the 
bacteria CRISPR system could prevent the transfer of 
exogenous plasmid. Because of these important findings, 
biologists opened the door of elucidating the function 
mechanism of CRISPR/Cas system. The development of 
CRISPR/Cas has been dramatically accelerated. Garneau et al. 
(2010) reveled that spacer sequences guided Cas9 to cleave 
target DNA. Deltcheva et al. (2011) found that a duplex 
structure was formed by tracrRNA and crRNA and associated 
with Cas9. Jinek et al. (2012) demonstrated that Cas9 was an 
RNA guided endonuclease. Cong et al. (2013) first used 
CRISPR/Cas9 in eukaryotic cells and successfully achieved 
efficient and specific genome editing. Nishimasu et al. (2014) 
addressed the crystal structure of Cas9 and characterized the 

interactions between Cas9 and gRNA and target DNA. Then 
Wang et al. (2014) developed gRNA libraries and combined 
with Cas9 for genome-wide screening. The true value of 
technology is application, in early 2015, Ousterout et al. (2015) 
used multiplex CRISPR/Cas9 to cure Duchenne muscular 
dystrophy in mouse model. Meanwhile, Ran et al. (2015) from 
MIT identified a smaller Cas9, saCas9, which was proved to be 
more efficient and specific in mammal genome editing. 

Recently, Zetsche et al. (2015) found a new gene editing 
system, CRISPR/Cpf1. The researchers compared Cpf1 from 
16 different bacterial enzymes and found two Cpf1 to shear 
human DNA. They demonstrated that Cpf1 mediates robust 
DNA interference with features distinct from Cas9. Cpf1 is a 
single RNA-guided endonuclease lacking tracrRNA and utilizes 
a T-rich protospacer-adjacent motif. Moreover, Cpf1 cleaves 
DNA via a staggered DNA double-strand break (DSB). All these 
features broaden our understanding of CRISPR/Cas systems 
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and extend their genome editing applications. With further 
investigation, more specific and efficient genome editing system 
may be found to substitute the traditional CRISPR/Cas9.  

 
Structure of CRISPR/Cas9 
To date, three types (1-3) of CRISPR systems have been 
identified in a wide range of bacteria and archaea (Chylinski et 
al., 2014; Garneau et al., 2010; Makarova et al., 2011). They 
share three similar construction elements: a group of CRISPR-
associated (Cas) genes, CRISPR RNA (crRNA) and trans-
activating CRISPR RNA (tracrRNA) (Bolotin et al., 2005; 
Garneau et al., 2010; Ran et al., 2013a). CRISPR/Cas9 
belongs to the type 2 CRISPR system and has been widely 
used in genome editing of cells and organisms. In type 2 
CRISPR system, Cas9 is a critical component, which is an 
RNA-guided DNA endounuclease enzyme associated with the 
CRISPR adaptive immunity system in Streptococcus pyogenes 
and other bacteria (Jinek et al., 2012; Chylinski et al., 2014). 
SpCas9, the most common used Cas9, was acquired from S. 
pyogenes. In the host, it is produced to degrade the invading 
plasmids or virus with the guidance of crRNA and tracrRNA 
(Garneau et al., 2010; Jinek et al., 2012).  

From the structure of CRISPR-Cas9, scientists uncovered 
that the Cas9 protein had two functional domains: RuvC and 
HNH (Figure 2), each nicks one strand of the target DNA and 

generates a DSB together (Gasiunas et al., 2012). Specificity 
of cleavage is determined by the matured crRNA, which 
targets complementary DNA, flanked by a short protospacer 
adjacent motif (PAM). Additionally, tracrRNA is essential to 
recognize and cleavage target genes when forms loop with 
crRNA (Jinek et al., 2012; Upadhyay et al., 2013). Structurally, 
the native crRNA and tracrRNA duplex can be fused together 
to create an engineered chimeric, single guide RNA (sgRNA). 
Typical sgRNA consists of a 20-nt sequence determining the 
target DNA recognition according to Watson-Crick base 
pairing (Jinek et al., 2012). CRISPR/Cas9 can be guided to 
any target sequence adjacent PAM by changing the sgRNA 
sequence. A key feature of Cas9 recognition and cleavage is 
based on the PAM near the 3' terminal of the target sequence 
(Jinek et al., 2012; Sternberg et al., 2014). Different Cas9 
orthologs have different PAM sequences. For example, the 
widely used spCas9 has a common 5'-NGG-3', or at a low 
frequency of 5'-NAG-3' PAM. To determine the function of 
Cas9 nuclease, researchers analyzed the crystal structure of 
Cas9 protein in detail by X-ray crystallography (Nishimasu et 
al., 2014) and determined that the core structure of Cas9 was 
consist of two major lobes, a Cas9 recognition (REC) domain 
and a nuclease (NUC) lobe (Figure 2), both of this lobes are 
essential for site-specific gene editing (Anders et al., 2014; 
Jinek et al., 2014).  

 

Figure 2  Schematic of the structure of the RNA-guided Cas9 nuclease 

CRISPR/Cas9 contains two functional lobes, REC (red) and NUC (black). REC lobe is the Cas9 recognition domain interacting with the sgRNA (green), 

while the NUC lobe consisting of two nuclease domains (RUVC and HNH) drives the interaction with the PAM and target sequence, leading to a DSB 

after each nick one DNA-strand. 

 
The mechanism of Cas9-mediated genome editing  
The CRISPR/Cas9 system in nature is used to protect bacteria 
or archaea from invading genetic elements by recognizing and 
degrading them (Bikard et al., 2013; Garneau et al., 2010). 
Scientists utilize this feature and reconstruct some programmable 
engineered Cas9 nucleases from bacteria or archaea. As an 
example, human codon-optimized Cas9 and the requisite 
sgRNA are widely used in genome editing of animal cells and 
organisms. The mechanism of Cas9-mediated genome editing 
can simply divided into three steps. 

 
Recognition 
Accurate recognition of target sequence is critical for precision 
cleavage. The REC domain of Cas9 played an important role in 
the interactions between sgRNA and Cas9 (Jinek et al., 2014). 
After sgRNA-Cas9 complex formation, the Cas9 nuclease 
recognizes and binds to the target sequence (Anders et al., 
2014). spCas9 could be directed to any target of interest 
upstream of a requisite 5'-NGG PAM through RNA-DNA base 
pairing (Cong et al., 2013). PAM is very important for sgRNA-
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Cas9 binding to right locus of target gene. When Cas9 
recognizes PAM, sgRNA-Cas9 utilize complementary base 
pairing reactions to read out and capture the DNA of interest, 
gain site-specific binding and avoid unexpected self-
mutilation (Sternberg et al., 2014). Anders et al. ( 2014) 
reveled that target DNA unwinding and recognition by Cas9 
are PAM-dependent. The CRISPR-Cas9 nuclease 
selectively bonds a target DNA containing a canonical 5'-
NGG-3' PAM and unzips DNA complementary to the seed 
sequence of sgRNA to generate a sgRNA-target DNA 
heterodupex and trigger R-loop formation. 

 
Cleavage 
CRISPR/Cas9-mediated genome editing depends on the 

generation of DSB and subsequent cellular DNA repair process 
(Figure 3). Once the target sequence is recognized and created 
a RNA-DNA heteroduplex, the target dsDNA destabilized at the 
PAM motif. These actions catalytically activate the two 
functional nickase domains (HNH and RuvC) of Cas9. The 
double-stranded endonuclease activity of Cas9 also requires 
PAM motif. In fact, even fully complementary sequence are 
ignored by Cas9-sgRNA in the absence of PAM sequence 
(Anders et al., 2014; Nishimasu et al., 2014; Sternberg et al., 
2014). During the cleavage of target DNA, Cas9 functions like a 
scissor, with the HNH nuclease domain nicking the DNA strand 
complementary to the guide RNA, the RuvC domain cutting the 
displaced strand, yielding a site-specific DSB (Gasiunas et al., 
2012; Jinek et al., 2012 ).    

 
Figure 3  The mechanism of CRISPR/Cas9-mediated genome editing 

When Cas9 induces DSB, two repair approaches, NHEJ and HDR can be activated. The error-prone NHEJ pathway can result in random deletions or 

insertions at the site of junction, while HDR pathway can be used within a repair template, leading to precise genome editing. 

 
Repair 
The presence of nuclease-induced DSBs in the DNA activates 
two mainly repair machineries, including non-homologous end 
joining (NHEJ) pathway and homology-directed repair pathway. 
In the NHEJ-mediated error-prone DNA repair process, both 
ends of a DSB are processed by endogenous DNA repair 
machinery and rejoined, which can generate random indel 
(insertion and deletion) mutations at target sites. If indel 
mutations occur within the coding region of a gene, it may result 
in frame shifts and the generation of a premature stop codon, 
leading to gene disruption or knockout. In addition, DSB can 
also initiate HDR-mediated DNA repair, which requires a 
homology-containing donor dsDNA sequence or ssDNA as a 
repair template. The HDR pathway allows high fidelity and 
precise editing. What is more, single-base substitution mutation 
or long target sequence insertion can be easily achieved 
through HDR (Anders et al., 2015; Chen et al., 2015f; Chu et al., 
2015; Cong et al., 2013). 
 

The strategy to generate CRISPR/Cas9 system for genome 
editing 
As a new promising genome editing technology, RNA-guided 
CRISPR/Cas9 technique was rapidly developed. Based on 
the principle of the RNA-guided CRISPR/Cas9 system, the 
two essential components, Cas9 and sgRNA expression 
cassettes, are designed (Figure 4). Typically, the Cas9 gene 
has been codon optimized for expression in a variety of cell 
types and organisms and tagged with a nuclear localization 
signal. To date, over 300 kinds of Cas9 plasmids have been 
deposited to the Addgene database. Among these plasmids, 
most of them belong to spCas9, which has been extensively 
studied.  

Biologists initially utilized Cas9 and sgRNA expression 
vectors separately (Cong et al., 2013; Gilbert et al., 2014). 
Some began to use simple all-in-one expression system 
(Sakuma et al., 2014). In fact, both strategies have been 
successfully applied in many cell types and organisms. The  
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Figure 4  The overview of CRISP/Cas9 generation and application 

A: Target sequence slection and sgRNA design. Based on the PAM site, 20-nt target sequences can be easily choosed on on-line softwares, and this 

method can also evaluate and minimize off-target effects; B: sgRNA and Cas9 expression. Left: The Cas9 expression plasmid and a U6-driver sgRNA 

expression cassette are separately delivered. Right: sgRNA and Cas9 are expressed in the same vector; C: Deliver to cells or organisms. Viral and no-

viral approaches are widely used to facilitate the delivery of CRISPR/Cas9 system; D: Application of CRISPR/Cas9. This system has successfully 

applied in many cell types and organisms, whatever in vivo or invitro, Cas9-mediated genome editing greatly promotes the development of basic 

science to clinical research. 

 
all-in-one expression plasmids of Cas9 and sgRNA can be 
purchased from many biological companies. Users just need to 
design appropriate sgRNA according to the position of PAM 
sequence. Several groups developed and provided online 
CRISPR design tools, such as the ZiFiT Targeter software 
(Sander et al., 2007) and the CRISPR DesignTool (http: // 
crispr.mit.edu/) (Hsu et al., 2013). 

The promoter used to initiate the sgRNA expression can 
affect the Cas9-mediated genome editing. It’s worth noting 
that the widely used U6 promoter prefers a guanine (G) 

nucleotide as the first base of its transcript, an extra G is 
appended at the 5' of the sgRNA when the 20-nt guide 
sequence does not begin with G (Ran et al., 2013a). More 
than two sgRNAs for a target locus should be designed 
simultaneously. 

 
Minimization of off-target activity 
Cas9 nucleases have been widely adopted for simple and 
robust targeted genome editing but also have the potential to 
induce high frequency off-target mutations (Fu et al., 2013). It is 
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well understood that sgRNA can tolerate certain mismatches to 
the DNA targets and thereby promote undesired off-target 
mutagenesis (Cong & Zhang, 2015). To minimize the off-target 
effects, the following standards should be kept when designing 
sgRNAs (Hsu et al., 2013): (1) Minimization of pairing bases 
between sgRNA and the predicted off-target site sequence; (2) 
At least two bases can not match between sgRNA and the 
predicted off-target site adjacent to PAM; (3) Avoid four 
continuous or interspaced base pairing between sgRNA and off-
target sequence.  

Over the last few years, engineered Cas9 nucleases and 
optimized guide RNA have been greatly improve the off-target 
activity of CRISPR/Cas9. The D10A mutant Cas9 nickase 
(Cas9n) significantly increases the specificity of genome editing 
(Ran et al., 2013b). Combination Cas9n and certain truncated 
sgRNAs could further reduce the off-target effects (Ren et al., 
2014). Cas9 can also be transformed into a catalytically inactive, 
“dead” Cas9 (dCas9) and fused to the catalytic domain of the 
FokI nuclease (Guilinger et al., 2014). FokI-dCas9 can generate 
DSBs at the target site after dimmerization (Wyvekens et al., 
2015). Although these methods significantly improved Cas9 
cleavage specificity, there are various drawbacks, such as a 
decreased number of potential target sites, the need of multiple 
guides delivery, and increasing the nuclease protein size. 

 
Increase of targeting efficiency 
Identification of novel Cas9 orthologs, or chemical modification 
of the sgRNA may further improve this cutting edge technology. 
In early 2015, a small Cas9 from S. aureus subsp. was 
identified through a metagenomic screen of Cas9 orthologs. 
Comparing to spCas9, aureus Cas9 (saCas9) cleaves 
mammalian endogenous DNA with higher efficiency. Because 
of smaller protein size, saCas9 can be easily packaged into 
adeno-associated virus for expression (Ran et al., 2015). 
Recently, Zhang F and his colleagues created an “enhanced 
specificity” SpCas9, called eSpCas9, showing robust on-target 
cleavage (Slaymaker et al., 2016). 

 
The function and application of the engineered CRISPR/ 
Cas9 system 
In 2013, Zhang F et al. first successfully applied the CRISPR/ 
Cas9 system in mammalian genome editing (Cong et al., 2013). 
The CRISPR/Cas9 system could be used for gene functional 
identification, generation of animal models and gene therapy 
(Figure 4). 
 
Gene functional identification 
Gene knockout is a fundamental strategy for investigating 
physiological and pathological functions of a defined gene. 
Functional genomic screening has been extensively used to 
identify functional genes. The mostly used RNAi has been 
mainly applied for large-scale genome screening (Kamath & 
Ahringer, 2003; Yu et al., 2015). However, RNAi has severe off-
target effects (Jackson & Linsley, 2010). In addition, RNAi could 
not completely silence the target gene. Partial suppression of 
gene expression is often insufficient to generate remarkable 
changes in phenotype, which leads to high false-positive and 

false-negative rates (Echeverri et al., 2006; Vu et al., 2015). 
The CRISPR/Cas9 system has been rapidly developed into a 
large-scale function-based screening in 2014 (Gilbert et al., 
2014; Shalem et al., 2014; Wang et al., 2014). It has been 
successfully used in various genome-scale loss-of-function 
screening.  

Wang et al. (2014) used a lentiviral sgRNA library targeting 
approximately 7 000 human genes to perform a positive 
selection screening based on cell viability resistance to 6-
thioguanine. All expected genes related to the DNA mismatch 
repair pathway have been identified. Similarly, Shalem et al. 
developed a genome-scale CRISPR/ Cas9 knockout library and 
successfully used it to screen genes associated with the 
resistance to vemurafenib, a cancer therapeutic agent for late-
state melanoma (Shalem et al., 2014).  

In addition, CRISPR-mediated repression (CRISPRi) and 
activation (CRISPRa) have been demonstrated as robust tools 
for functional genome screening in gene expression modulation. 
Rather than inactivating genes by the introduction of indels after 
DSBs, CRISPRi, consisting of a catalytically inactive Cas9 
(dCas9) and a guide RNA, has been show to specifically and 
efficiently inhibit the transcription of target genes in E. coli and 
mammalian cells when the dCas9 is recruited to a 
transcriptional inhibitory domain (Gilbert et al., 2013), whereas 
a dCas9 tethered to a transcriptional activation domain has 
been used to activate the expression of target endogenous 
genes (Gilbert et al., 2014; Kampmann et al., 2015 ). Genome-
scale CRISPRi/a libraries has been successfully used to identify 
mediators for cellular sensitivity to a cholera-diptheria fusion 
toxin, as well as essential genes for proliferation, differentiation, 
tumor suppression and so on. What’s more, CRISPRa offers 
the ability for gain-of-function, which provides a good way to 
study a novel gene. It has been shown that the dCas9 
activation complexes, with a sgRNA library, can activate 
multiple genes simultaneously, upregulate long non-coding RNA 
transcripts and identify genes conferring resistance to a BRAF 
inhibitor in melanoma (Konermann et al., 2015). These results 
indicate that the CRISPR/Cas9 technology is a versatile 
functional genomic screening tool for discovering crucial genes 
in various biological processes. 

 
Generation of animal models 
Animal models are potent tools for understanding human 
disease pathogenesis and developing novel therapeutics 
(Ohtori et al., 2015; Stewart & Kalueff, 2015). Traditional gene 
targeting strategy depends on homologous recombination of 
embryonic stem cells. However, low efficiency severely limits its 
application. The CRISPR/Cas9 technology greatly improves the 
efficiency of generating gene targeting animal model (Gaj et al., 
2013). CRISPR has been used to generate genetically modified 
mouse models such as KO/KI models, somatic genome editing 
models (Dow, 2015; Flynn et al., 2015; Mou et al., 2015). 
Moreover, Fujii et al. (2013) successfully generated large-scale 
genome-modified mice using the CRISPR/Cas9 system. Both 
KI and KO mouse models could be effectively gained with the 
added benefit of reduced levels of off-target effects by 
application of mutated Cas9n nucleases. One advantage of this 
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technology is to target multiple genes at the same time, which 
greatly promotes the study of multiple gene interactions. For 
example, Wang et al. (2013) simultaneously targeted five genes 
in mES cells using this technology. 

Rapid progress of CRISPR/Cas9-mediated genome engineering 
enables rapid functional identification of putative human 
disease genes in different models via somatic genome editing 
in vivo (Table 1). Xue et al. (2014) used hydrodynamic injection 
to deliver a CRISPR plasmid DNA expressing Cas9 and 
sgRNAs to liver, and CRISPR-mediated pTEN mutation alone 
or in combination with p53 mutation phenocopies the effects of 
pTEN and p53 knockout using Cre-LoxP technology. 
Furthermore, they delivered an activated mutant β-catenin gene 
into hepatocytes through co-injection of Cas9 plasmids 
expressing sgRNAs targeting β-catenin and a single-stranded 
DNA olignucleotide donor carrying activating point mutations 
(Xue et al., 2014). This study demonstrates that CRISPR/Cas9 
can be used, feasibly and directly, to modify tumor suppressor 
genes and oncogenes in somatic tissues, providing a new 
approach for rapid development of disease models. 

Furthermore, Sá nchez-Rivera et al. (2014) developed pSECC, 
a lentiviral-based delivery system that delivers both CRISPR 
system and Cre recombinase selectively to lung and other 
tissues. Using this system, they demonstrated that CRISPR-
induced genome editing of tumor suppressor genes combined 
with Cre-dependent somatic activation of oncogenic KrasG12D 
lead to lung adenocarcinomas. This rapid somatic genome 
engineering approach further expands the application of 
CRISPR/Cas9 in generation of animal models. Using Cas9 KI 
mice, Platt et al. (2014) easily create lung adnocarcinomas 
models by simultaneously delivering a single AAV vector 
carrying mutations in p53, Lkb1 and KrasG12D in the lung. 

Cas9-mediated target genome editing could be used for 
rapidly generating genome modification in various organisms 
beside mouse. Other traditional animal models with heritable 
germline modification, high-efficiency of specific mutations, and 
transgenic, tissue-specific, inducible editing have been 
efficiently and rapidly produced with this next generation 
genome editing technology, including C. elegans (Long et al., 
2015), D. melanogaster (Lin et al., 2015) and Danio rerio (Li et  

 

Table 1  CRISPR/Cas9-mediated generation of animal models and application in human health 

Organism  Disease type and application Strategy  References 

Zebrafish  Pfeiffer Syndrome  HDR induces Pro252Arg gain of function Tomaszewski et al., 2015 

Xenopus Albinism NHEJ-induced simultaneous disruption of two X. 

laevis tyrosinase homeologs  

Wang et al., 2015b 

Liver and lung carcinoma p53, pTEN, KRAS and β-catenin  Xue et al., 2014; Sánchez-Rivera 

et al., 2014; Platt et al., 2014 

Pancreatic cancer Lkb1 deletion and Kras modification Chiou et al., 2015 

Medulloblastoma and glioblastoma  Somatic gene modification of Ptch1 or multiple 

genes (p53, pTEN, Nf1) 

Zuckermann et al., 2015 

Genome-wide screening for tumor genes Knock-in mice with gRNA are used to screen oncogenes Chen et al., 2015b 

Rett syndrome Generation of MeCP2-dificient mice  Tsuchiya et al., 2015 

Cataracts HDR-induced correction of mutant Crygc gene Wu et al., 2013 

Acute myeloid leukemia Lentivirus-delivered sgRNA: Cas9 is used to modify 

several cancer driver genes together 

Heckl et al., 2014 

HBV Cleave HBV DNA  Ramanan, et al., 2015; Lin et 

al., 2014 

Mouse  

Alveolar Rhabdomyosarcoma Pax3-Foxo1 chromosome translocation Lagutina et al., 2015 

Rat  Duchenne muscular dystrophy (DMD) Edit two exons in the rat Dmd gene Nakamura et al., 2014 

Rabbit  Tyrosinase disorders Zygote direct injection of Cas9 and sgRNA to 

tyrosinase gene  

Honda et al., 2015 

Gene-modified pigs  One-stage-embryo injection of Cas9/sgRNA Wang et al., 2015c Pig 

Generation of B Cell-Deficient Pigs IgM-targeting Cas9 delivery to produce B cell-

deficient mutant pigs by somatic cell nuclear transfer 

(SCNT) technology 

Chen et al., 2015a 

Gene-modified cynomolgus monkey  Coinjection of one-cell embryos with Cas9 mRNA 

and sgRNAs 

Niu et al., 2014 

Human AHC-HH Dax1-null mutations Kang et al., 2015 

Monkey  

Duchenne muscular dystrophy (DMD)  Monkey dystrophin gene disruption  Chen et al., 2015e 
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al., 2015b). CRISPR/Cas9-mediated multi-gene targeting and 
conditional allele modifications have been successfully applied 
in generation of new transgenic rat models (Nakamura et al., 
2014). Furthermore, the CRISPR/Cas9 technology has been 
proved to be effective in large mammalian animal models, such 
as pigs and non-human primates. Wang et al. (2015c) 
demonstrated that co-injection Cas9 mRNA and target gene 
sgRNA into one-cell stage embryos is an efficient and reliable 
approach for generation of gene-modified pigs. Recently Yang 
L’s work caused great attention because she successfully 
knockout all copies of the PERV pol gene in pigs and trigger a 
1000-fold reduction of PERV infectivity of human cells, which 
made pigs almost perfect animal for generating transplantation 
organs for human beings (Yang et al., 2015). Non-human 
primates are the best animal model for studying human 
neurodegenerative diseases. In 2014, Chen Y. et al. first 
achieved precise gene targeting in cynomolgus monkeys by co-
injection of Cas9 mRNA and sgRNAs into one-cell-stage 
embryos (Chen et al., 2015d). Tree shrew has been proved to 
be a suitable animal model for breast cancer (Ge et al., 2016; 
Xia et al., 2014; Xu et al., 2013), it is worth to use the 
CRISPR/Cas9 system to generate breast cancer tree shrew 
models in the future. 
 
CRISPR–Cas9 based therapeutics 
CRISPR/Cas9-mediated genome editing provides a promising 
strategy for gene therapy of human diseases through correcting 
disease-causing mutations or inserting new protective genes. In 
2013, Wu et al. (2013) first corrected a dominant Crygc gene 
mutation in a cataracts mouse model by co-injection of Cas9 
mRNA and sgRNA targeting the mutant Crygc allele into 
zygotes, together with a HDR template. A study in 2014 showed 
that CRISPR/Cas9-based gene modification can be used to 
correct the dystrophin gene (Dmd) mutation in the germline of 
mdx mice, a model for Duchenne muscular dystrophy (DMD), 
providing a promising approach for correction of disease-
causing mutations in the muscle tissue of patients (Long et al., 
2014).  

Considering that the CRISPR/Cas9 system was initially 
discovered as an adaptive immune system against virus and 
phages in bacteria and archaea, it is a natural idea to use the 
system as an anti-viral therapeutic for treating infectious 
diseases by eliminating pathogen genomes from infected 
individuals, such as HBV and HIV. Although current 
technologies can inhibit the covalently closed circular viral DNA 
template (cccDNA) of HBV, it is still difficult to destroy the virus. 
Nevertheless, Ramanan et al. (2015) found that sustained 
expression of Cas9 and sgRNA targeting the cccDNA in cell 
culture can dramatically reduce the cccDNA and other 
parameters of viral gene expression and replication by directly 
cleavage of cccDNA, demonstrating that directly targeting viral 
episomal DNA is a novel anti-viral therapy approach for 
completely eradicating infectious diseases. In addition, HIV-1 
remains to be cured in spite of application of antiretroviral 
therapy (ART). In fact, the persistence of HIV reservoirs can be 
controlled but not be completely cleared by current ART (Archin 
et al., 2012). CRISPR/Cas9-based gene therapy offered a new 

tool to modify the targeted intervention points, such as CD4+ 
receptor and the CCR5 (Ebina et al., 2013; Li et al., 2015a). Hu 
et al. (2014) showed that CRISPR/Cas9 can be used to disrupt 
latent HIV infection and also block new HIV infection. Similarly, 
Liao et al. (2015) recently demonstrated that engineered human 
IPS stably expressing Cas9 and HIV-targeted sgRNA was able 
to be efficiently differentiated into HIV reservoir cell types and 
keep their resistance to HIV-1 challenge, providing long-term 
adaptive defense against new viral infection, expression and 
replication in human cells. All these results reveal that the 
CRISPR/Cas9 system is a new effective therapeutic strategy 
against viral infections and holds the great promise of 
eradicating infectious diseases. 

 
CHANLLENGES AND PROSPECTS  
 
CRISPR/Cas9, as the robust, specific and efficient genome 
editing tool, has greatly enhanced the development of biology. 
CRISPR/Cas9 opens the door from basic research to clinical 
applications. The rapid progress of development and 
application of the CRISPR/Cas9 technology has been boosted 
now. In spite of the enormous potential of CRISPR/Cas9 in 
genome editing from basic biology to translational medicine, the 
challenges still exist and need to be addressed.  
 
The development of CRISPR/Cas9 technology  
In the future, efforts should be made to increase the specificity, 
reduce the off-target effects and develop efficient delivery 
methods of CRISPR/Cas9.  

Although Cas9 from S. pyogenes is the enzyme most 
extensively used, there are some limitations because the 
spCas9 gene size is quite large (>4 000 bp) and is difficult to 
be efficiently packaged into many virus vectors. In addition, 
spCas9-dependent PAM is just NGG or NAG, which highly 
restricts the selective cleavage sites of target. It is a 
challenge to explore more efficient Cas9 enzymes from 
native bacteria or archaea, as well as recombinant Cas9. 
Besides Cas9D10A and dCas9 of spCas9, saCas9 has been 
identified as a more efficient enzyme (Nishimasu et al., 2015; 
Ran et al., 2015). SaCa9 holds a great promise to expand 
this technology in genome editing and in vivo therapy. It is 
possible that thousands of spCas9 orthologs could be 
identified from other species. Some innovative 
improvements, such as photoactivatable CRISPR/Cas9 and 
CRISPR/Cpf1 (Nihongaki et al., 2015; Zetsche et al., 2015), 
has been developed. The former makes it possible for 
optogenetic control of targeted genome editing, which 
facilitates better understanding of complex gene networks 
and could precisely control genome modification in 
biomedical applications. The latter is a new genome editing 
system in which Cpf1 orthologs exhibit robust nuclease 
activity in human cells. Recently more exciting achievement 
of CRISPR/Cas9, named self-cloning CRISPR/Cas9 
(scCRISPR), was developed to more economic and time 
saving in specific and efficient target genome editing (Arbab 
et al., 2015). 

Although more suitable Cas9 enzymes are coming into 
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being, the off-target effects remain a big problem. Other 
than modified Cas9, highly specific sgRNA design is 
crucial for minimization of off-target effects. Specific PAM 
sequence directs sgRNA design (Hsu et al., 2013). Based 
on the features of CRISPR/Cas9 recognition and cleavage, 
it’s necessary to design sgRNA targeting a highly unique 
genomic region (Hsu et al., 2013). To efficiently and quickly 
design high specific sgRNAs, in silico prediction tools are 
commonly used, such as CRISPR Design (Hsu et al., 
2013), CRISPRdirect (Naito et al., 2015), ZiFit Targeter 
(Sander et al., 2007), Cas9 designer (Park et al., 2015), E-
CRISP (Heigwer et al., 2014), CHOPCHOP (Montague et 
al., 2014), sgRNACas9 (Xie et al., 2014) and Protospacer 
Workbench (MacPherson & Scherf, 2015). These online or 
off-line software has their unique characteristics. It’s still a 
big challenge to develop better approaches to design high 
specific and efficient sgRNA for targeting genome 
modification. 

Additionally, the methods for delivery of Cas9 and sgRNA 
need to be optimized for application in diverse cell types or 
organisms, especially for human gene therapy. Transient 
expression of Cas9-mediated genome editing permits 
consideration of a range of delivery choices for therapeutic 
application. Viral delivery methods, including self-inactivating 
lentivirus, adenovirus, and AAV, provide an efficient 
Cas9/sgRNA delivery approach for somatic genome editing 
(Chiou et al., 2015; Sánchez-Rivera et al., 2014). However, 
delivery of plasmid DNA, Cas9 mRNA, in vitro synthesized or 
transcribed sgRNA, Cas9/sgRNA complexes and donor nucleic 
acid templates can be achieved through other approaches, 
including electroporation (Hashimoto & Takemoto, 2015), lipid-
based transfection (Hendriks et al., 2007), hydrodynamic 
delivery (Wang et al., 2015a) and induced osmocytosis (Liu et 
al., 2015). Recently, a novel and simple microinjection-
independent technique, called genome-editing via Oviductal 
Nucleic Acids Delivery, was established to effectively deliver 
Cas9 mRNA/sgRNAs to pre-implantation embryos within the 
intact mouse oviduct (Takahashi et al., 2015).  All these 
methods have been broadly used both in vitro and in vivo for 
genome editing. Nevertheless, it still remains a big 
challenge to efficiently and specifically deliver Cas9/sgRNA 
into cells or tissues with minimizing side-effects. More 
attentions should be paid to develop novel robust delivery 
methods for CRISPR/Cas9. 
 
The ethical problems and safety  
CRISPR/Cas9 has been triggering revolution in biomedicine. It 
shows great potential in application for human genetic diseases, 
including drug target validation (Housden et al., 2015; Shi et al., 
2015) and gene therapy (Lu et al., 2015; Xu et al., 2015a). As 
described above, CRISPR/Cas9 can be used to cure genetic 
diseases, including brain genetic disorders, immune diseases, 
cancers and some infectious diseases in animal models, 
providing promising platform for developing efficient and 
specific therapies for human diseases. However, it is still a long 
way to apply CRISPR/Cas9 in clinic. In April 2015, geneticists 
from Guangzhou, China firstly published the use of CRISPR/ 

Cas9 in human embryos attempting to eradicate the disease 
causing gene of HBB (Human β-globin) directly from the germ 
line (Liang et al., 2015). As the study was first manipulated in 
human zygotes, which shows great promise in generation of 
hereditable human genome editing. However, This study also 
raised a debate concerning the ethical considerations and 
application safety in human diseases. Whether we have the 
right to produce desired babies should be seriously considered. 
As a matter of fact, we almost can not completely avoid off-
target effects at present.  

Additionally, whether we should delete a disease gene should 
be seriously considered. Recently, Rossi et al. (2015) found that 
deleterious mutations but not gene knockdowns can induce 
genetic compensation when they compared CRISPR-mediated 
egfl7 mutants with egfl7 knockdown of zebrafish. We should 
think twice before we decide to delete or block deleterious 
genes when using genetic engineering technologies. 

Although CRISPR/Cas9 has been proved to be an efficient 
and site-specific approach for gene therapy, it is still a long way 
to apply this technology in patients. We must ensure the high-
specificity of CRISPR/Cas9 for target sites and avoid possible 
off-target effects by choosing effective therapeutic targets, 
designing high-specific sgRNAs and using delivery system with 
high efficiency and low toxicity. With the development of this 
cutting edge technology, we believe that CRISPR/Cas9 opens 
up exciting possibilities for applications across basic science, 
biotechnology, and medicine. 
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