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ABSTRACT 

 

Artemisinin resistance in Plasmodium falciparum 
threatens the remarkable efficacy of artemisinin-
based combination therapies worldwide. Thus, 
greater insight into the resistance mechanism using 
monitoring tools is essential. The ring-stage survival 
assay , is used for phenotyping artemisinin-
resistance or decreased artemisinin sensitivity. Here, 
we review the progress of this measurement assay 
and explore its limitations and potential applications. 
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INTRODUCTION 

 

Malaria, which is mainly caused by Plasmodium falciparum, is a 

long-term worldwide public health problem. An estimated 216 

million new cases occurred globally in 2016, resulting in 445 000 

deaths (WHO, 2017). Despite significant progress in reducing 

morbidity and mortality rates in many areas of endemicity, drug 

resistance has become a challenging issue. Since P. falciparum 

developed resistance to chloroquine and sulfadoxine-

pyrimethamine, malaria has spread rampantly throughout Asia 

and Africa over the last several decades (Snow et al., 2001; 

Trape et al., 1998), posing serious difficulties for its control and 

elimination. 

Originally discovered in China, artemisinin (ART) and its 

derivatives, including dihydroartemisinin (DHA), artemether, and 

artesunate, demonstrate high performance, low toxicity, and 

limited cross-resistance with other antimalarial drugs (Li et al., 

1979; Miller & Su, 2011). ART is at the frontline for the 

treatment and possible cure of malaria (Fairhurst, 2015); 

however, along with its global application, resistance to ART 

has developed and increased in many regions. Since its first 

detection in 2008 (Noedl et al., 2008) and 2009 (Dondorp et al., 

2009) in western Cambodia, ART resistance has appeared 

successively in other countries of the Greater Mekong 

Subregion, manifesting with a reduced parasite clearance rate 

or prolonged in vivo parasite clearance time following treatment 

with ART-based combination therapies (ACTs) (Amaratunga et 

al., 2012; Ashley et al., 2014; Hien et al., 2012; Huang et al., 

2015; Kyaw et al., 2013; Phyo et al., 2012). For many decades, 

Southeast Asia (SEA) has been an epicenter for the evolution 

of drug-resistant falciparum malaria, and the emergence of ART 

resistance in SEA is of great concern for the global control of 

falciparum malaria (Fairhurst, 2015). 

 

RING-STAGE SURVIVAL ASSAY1 

Hidden within ART-resistant parasites is the ability to remain 

dormant in the ring stage after exposure to ART, as well as 

recovery at a rapid rate, resulting in numerous parasites 

enduring DHA-exposed dormancy (Codd et al., 2011; Teuscher 

et al., 2010). Due to these special characteristics, despite 

substantial reductions in the clinical response to ART observed 

in falciparum malaria, in vitro concentrations resulting in 50% 

growth inhibition in a conventional 48-h exposure assay were 

relatively low and did not contribute to slow parasite clearance 

or ACT failure (Dondorp et al., 2009; Saralamba et al., 2011; 

Woodrow & White, 2017). It is, therefore, necessary to 

implement rapid and exact monitoring to halt the further spread 

of ART-resistance. 

Hence, the ring-stage survival assay (RSA) was recently 

established as a new protocol in the surveillance of ART 
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resistance, and can distinguish culture-adapted isolates with 

fast clearance or slow-clearing rates that can survive 

pharmacologically relevant doses of ART (Dondorp et al., 2009; 

Witkowski et al., 2013a). Previous therapeutic efficacy studies 

have demonstrated a clear correlation between RSA in vitro and 

day 3 parasitemia positivity as well as mutations in the Kelch 

domain gene (K13) associated with resistance (Woodrow & 

White, 2017; Ariey et al., 2014; Wang et al., 2015; Zhang et al., 

2016). Current data have shown RSA to be an important assay 

for ART resistance in vitro. 

In RSA, young ring-stage parasite cultures (0–3 h), tightly 

synchronized by 5% sorbitol, are exposed to 700 nmol/L DHA 

or 0.1% dimethyl sulfoxide (DMSO) as controls for 6 h, then 

cultivated for 66 h after twice or thrice drug washing. At the end 

of the assay, survival rates of these isolates are calculated as 

the ratio under the microscope of viable parasites surviving 

DHA-induced incubation relative to initial conditions 

(http://www.wwarn.org/tools-resources/procedures/ring-stage-

survival-assays-rsa-evaluate-vitro-and-ex-vivo-susceptibility). In 

general, a ≥1% survival rate is defined as an ART-resistant 

strain (Fig. 1). 

 

Figure 1  Schematic representation of the ring-stage survival assay 

in vitro 

 

This method can decrease interference caused by the 

internal variables of the host, such as organism immunity level, 

allosteric effects of hemoglobin, and capability to metabolize 

drugs (Amaratunga et al., 2012; Witkowski et al., 2013a). RSA 

in vitro is proposed to give phenotypic information, thus enabling 

screening for reduced susceptibility to ART in prolonged 

clearance parasites (Witkowski et al., 2013b). 

 

IMPROVED METHODS FOR RSA 

While feasible and efficient for the surveillance of ART resistance, 

the RSA tool has several limitations, including sophisticated 

Percoll gradient centrifugation, biased assessment of the degree 

of sorbitol synchronization treatment, and exacting requirements 

for counting viable parasites (Witkowski et al., 2013a). In 

Whitney A. Kite’s laboratory, two alternative RSA methods have 

been developed; that is, filtration ring-stage survival assay and 

sorbitol-only ring-stage survival assay. The first is essentially a 

filtration process in which the 0–3 h fresh post-invasion rings 

are obtained after filtering out the merozoites from mature forms. 

The latter assay performs a repeated step of high synchronization 

prior to measurement, with the remaining late-stage schizonts 

typically removed, except for the early rings. Compared with the 

standard RSA protocol, these modifications have shown a 

marked increase in phase-specificity as well as less time in 

culture, fewer lab resources, and lower volume of isolates (Kite 

et al., 2016). In addition, to limit the inherent variability of 

microscopic examination, Amaratunga et al. (2014) developed a 

quick and simple bi-color flow cytometric assay – RSA-2FACS 

and MitoTracker deep red FM (MTDR) – to accurately quantify 

observations of viable parasites applied to the RSA. In their 

study, mitochondrial DNA is readily dyed using the Mito Tracker 

deep red FM method, allowing for the selection of viable 

parasites from pyknotic strains (Amaratunga et al., 2014). In 

addition, Dogovski et al. (2015) suggested direct assessment of 

the drug-induced growth effects in western Cambodian parasites. 

For this, the RNA-binding dye SYTO-61, which can distinguish 

isolates in different stages, was used as a fluorescent marker to 

determine whether parasites that survived DHA exposure 

exhibited growth retardation. By comparison with no-drug 

controls, the decreased SYTO-61 signal in the drug-treated 

samples exhibited an absolute increase in the number of viable 

parasites (Dogovski et al., 2015).  

 

PROSPECT AND APPLICATION OF RSA 

The traditional RSA approach was first carried out by Witkowski 

and colleagues based on sensitivity to DHA exposure at 

different stages. Their results demonstrated that median ring-

stage survival of laboratory lines collected in western Cambodia 

with slow-clearing infection was 47-fold higher than those with 

normal ART sensitivity in RSA0-3h (0.23 and 10.88%, respectively), 

whereas no significant differences were observed in RSA9-12h or 

trophozoite-stage survival assay (TSA18-21h) rates (Witkowski et 

al., 2013a). In contrast, Cui et al. (2012) demonstrated that the 

ART resistance phenotype was associated with the dormancy 

mechanism not only at the development of the ring stage, but 

also in trophozoites and schizonts (Cui et al., 2012). Thus, the 

different consequences involved in the characteristics of this 

phenotype require additional empirical evidence. Cooper et al. 

(2015) documented that DHA susceptibility using the standard 
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RSA based on the IC50 value for ART failed to clarify resistance 

in P. falciparum parasites from Kampala, Uganda, with the 

parasitemia of almost all isolates dropping to a much lower level 

(≤0.025%) after the 72-h assay, revealing no sign of ART 

resistance. Susceptibility to ART in Cameroonian isolates was 

also identified using ex-vivo RSA, with the DHA-treated cultures 

showing almost no healthy-appearing parasites (median survival 

rate=0.49%, IQR=0% to 1.3%) (Menard et al., 2016). However, 

reduced ART drug in-vitro sensitivity of parasites from the 

China-Myanmar border was reported after assessment of early 

ring-stage survival by comparing 34 clinical isolates with the 

3D7 reference standard strain (Zhang et al., 2016). 

The RSA0-3h assay was recently developed to test ART 

resistance for P. falciparum isolates. This assay has been 

subsequently improved in terms of simplicity and practicality. 

Thus, the growing availability of RSA will increase the convenience 

and ease of investigating ART responses in laboratory testing. 
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