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Progress in in vitro culture and gene editing of porcine

spermatogonial stem cells

Research on in vitro culture and gene editing of domestic
spermatogonial stem cells (SSCs) is of considerable interest
but remains a challenging issue in animal science. In recent
years, some progress on the isolation, purification, and
genetic manipulation of porcine SSCs has been reported.
Here, we summarize the characteristics of porcine SSCs as
well current advances in their in vitro culture, potential usage,
and genetic manipulation. Furthermore, we discuss the
current application of gene editing in pig cloning technology.
Collectively, this commentary aims to summarize the progress
made and obstacles encountered in porcine SSC research to
better serve animal husbandry, improve livestock fecundity,
and enhance potential clinical use.

Gene editing technology can not only improve livestock and
poultry reproduction and meat quality (Gonen et al., 2017), but
can also promote the study of gene function and therapy for
human disease models via precise fixed-point editing (Gori et
al., 2015; Zhao et al., 2019). Existing research suggests that
SSCs maintain stability through self-renewal and can
differentiate into sperm in order to produce offspring (Dym,
1994). However, the number of SSCs in mammalian testis is
limited, and enrichment of SSCs is usually required using in
vitro culture. In this context, constructing a suitable in vitro
culture system that facilitates stable passage and
maintenance of undifferentiated SSCs will help to reveal the
biological characteristics of SSCs. Furthermore, it will allow for
exploration of their potential usage and mechanisms of self-
renewal and differentiation, as well as their application in
transgenic manipulation and male infertility (Kubota & Brinster,
2006). For instance, a recent study established long-term
propagation of tree shrew SSCs, paving the way for genetic
modification of this animal for biomedical research (Li et al.,
2017).

Gene editing is a genomic manipulation process involving
base deletion, insertion, or mutation of a target gene
sequence by means of the cell's own DNA damage repair
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mechanism (Hwang et al., 2013; Ma et al., 2018). To date, the
protocols for the isolation, purification, in vitro culture, and
transplantation of murine SSCs have been established
successfully (Brinster & Avarbock, 1994; Kubota et al., 2003,
2011; Nagano et al.,, 1998; Shinohara et al., 1999, 2000a,
2000b), and are widely accepted and used within the field. In
contrast, the lack of a reliable protocol for the establishment of
porcine SSC (pSSC) lines remains challenging and a major
obstacle in genetic manipulation. However, many scientists
are attempting to overcome these difficulties, with particular
progress reported in recent years (Park et al., 2017b). Here,
we summarize the characteristics of pSSCs, difficulties in
establishment of pSSC lines, and recent advances in the field,
which we hope will provide a useful reference for researchers.

SSCs are a population of germline stem cells residing in the
testes of male animals. They are a type of unipotent stem cell
with capacities of self-renewal and differentiation, which is the
basis of spermatogenesis and male reproduction (de Rooij,
1998). Due to these abilities, SSCs can be permanently
maintained to continuously produce sperm over the lifetime of
a male, and thus allow the transmission of genetic information
to the next generation. Therefore, SSCs are a core factor of
male animal fertility.

Primordial germ cells (PGCs), the precursors of germ line
cells, undergo a series of changes to eventually develop into
SSCs. In the embryonic stages, the pre-spermatogonia are
arrested, and it is generally believed that they regain
proliferative activity within one week after birth in mice
(Huckins & Clermont, 1968; Sapsford, 1962). Postnatally,
SSCs are located on the basement membrane of the
seminiferous tubule of male testes and function as initiating
cells for spermatogenesis regulated by their
microenvironment. The signals in the niche microenvironment
affect the fate of SSCs, which can maintain their own
population through self-renewal or can be directed to
differentiate and eventually produce sperm (Chiarini-Garcia et
al., 2003). Glial cell line-derived neurotrophic factor (GDNF) is
essential for SSCs to maintain their reserves via constant self-
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renewal (Buageaw et al., 2005; Meng et al., 2000), with the
stable pool of SSCs forming the basis of continuous
spermatogenesis throughout life (Meachem et al., 2001). The
production of type A spermatogonia marks the beginning of
spermatogenesis (Takagi et al., 2001). According to the
hierarchy of differentiation, type A cells can be subdivided into
single (A,), paired (A,), and aligned (A,) spermatogonia,
which are also called undifferentiated spermatogonia (de
Rooij, 1998; de Rooij & Russell, 2000). Normally, about half of
the A, spermatogonial cell population divide into A,
spermatogonial cells, whereas the other half undergo self-
renewal and division to maintain the pool of stem cells. The A,,
spermatogonia then divide further to form 4, 8, or 16 A,
spermatogonial cell chains (Meachem et al., 2001). All of
these processes are under precise control.

Spermatogenesis is a complex process of sperm cell
development, including mitosis and meiosis, starting from
SSCs to derived differentiated germ cells. Although markers
for developing germ cells have been well studied in mice
(Encinas et al., 2012), developmental stage-specific markers
of germ cells in livestock have not yet been identified (Park et
al., 2017a). Existing studies suggest that PLZF, ID4, and E-
cadherin are markers of undifferentiated spermatogonia
(Abbasi et al., 2013; Borjigin et al., 2010; Costa et al., 2012;
Reding et al., 2010; Sun et al., 2015). In addition, c-kit is
thought to be a marker for differentiated spermatozoa in
porcine testis after puberty (Ran et al., 2018). These findings
may contribute to future research on pig spermatogenesis
(Ran et al., 2018). Moreover, the GDNF signaling pathway is
essential for maintaining SSC self-renewal and replication in
SSC culture systems. Excessive GDNF can lead to testicular
germ cell tumors, whereas insufficient GDNF expression
causes premature depletion of SSCs in testes (Ferranti et al.,
2012; Hofmann, 2008). Zheng et al. (2014) identified the
expression of thymus cell antigen 1 (THY1) in pig testicular
tissue and subsequently used THY1 to isolate and enrich
SSCs from testes of newborn piglets, showing that THY1 is a
surface marker of SSCs in pre-pubertal testes and can be
used for SSC identification and isolation in pigs. Moreover,
THY1 has been used for the purification of SSCs in bulls
(Reding et al., 2010) and goats (Abbasi et al., 2013). Notably,
previous study has also reported that SSCs from tree shrews,
a species closely related to primates, can be successfully
enriched using THY1, with the Wnt/B-catenin signaling
pathway also identified as pivotal for their maintenance (Li et
al., 2017). These observations indicate similarity in the
characteristics of SSCs from different species, and that the
experience gained from species with established SSC lines
may be valuable for pSSC study.

An effective culture system of primary pSSCs is a very
powerful tool for both research and animal husbandry and
provides a good platform for exploring spermatogenesis in
vitro. In addition, further establishment of a highly efficient in
vitro culture system for pSSCs would be conducive for studies
on biological characteristics, and also lay a foundation for the
application of SSCs in transgenic animals or in the treatment
of human infertility. However, pig spermatogonial stem cell
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establishment is a universal problem, with many large
obstacles that need to be overcome to realize the long-term
culture (Lin et al., 2016). The survival of SSCs requires a
specific microenvironment, called the SSC niche. Thus, SSCs
can only survive transiently or spontaneously differentiate
when they are detached from the microenvironment on which
they depend (Brinster & Zimmermann, 1994). Therefore, a
suitable culture system combining feeder cells and growth
factors is required to effectively expand SSCs and maintain
their undifferentiated state in vitro (Brinster & Zimmermann,
1994). Although rodent SSC lines have been successfully
established in vitro (de Rooij & van Beek, 2013), there are few
reports on the establishment of pSSCs. In addition to the
rareness of SSCs in the testis and the lack of reliable surface
markers, which hinder the isolation and purification of SSCs
from livestock, the lack of stable culture systems in vitro is
another challenging obstacle in this field. For rodent SSC
culture, finite growth factors and suitable cell feeders have
been identified (de Rooij & van Beek, 2013). GDNF is a well-
known factor for maintenance of SSCs both in vivo and in
vitro, and mammalian single-minded (SIM) mouse embryo-
derived thioguanine and ouabain resistant cells (STO) or
mouse embryonic fibroblasts (MEF) are feeder cells that
secrete essential factors for the proliferation of rodent SSCs
(Bellvé et al.,, 1977). However, the pSSC culture system is
imperfect, and the existing culture system for rodent SSCs
cannot be applied to fully realize the long-term culture of
pSSCs in vitro (Kuijk et al., 2009). In the established system
for rodent SSCs, neither the serum-containing nor serum-free
system appear to work well for pSSCs, and the feeders are
unsuitable for pPSSC maintenance. Therefore, optimizing the in
vitro culture system of pSSCs in necessary to lay the
foundation for exploring their biological characteristics
(Schlatt, 2002). Typically, SSCs should be stably passaged
under an undifferentiated state.

Based on the efforts of many scientific teams, we have
learned that in vitro culture of pSSCs requires efficient
enrichment of SSCs, identification of key growth factors,
component finite medium, and appropriate feeder cells. Zhang
et al. (2017b) optimized in vitro culture conditions for
undifferentiated pig spermatogonia, in which germ cells were
isolated and enriched from 7-d-old pig testes by optimized
differential plating. They tested the effects of several different
growth factors and feeder layers to maintain spermatogonia
for at least two months in vitro without losing stem cell
characteristics (Zhang et al., 2017b). Moreover, they found
PLD6 to be a surface marker of undifferentiated
spermatogonia in pre-adolescent boar testes, which could be
used to enrich undifferentiated spermatogonia in an
unprecedented way (Zhang et al., 2017a). Liu et al. (2017)
identified SETDB1 as a novel epigenetic regulator of male
porcine germ cells, which helps maintaining germ cell survival
under regulation of H3K27me3. These findings provide a
sufficient theoretical basis for the future epigenetic regulation
of spermatogenesis (Liu et al., 2017). Zhao et al. (2018)
attempted to establish a culture system for spermatogenesis
of Bama mini-pig SSCs. They co-cultured dissociated



testicular cells from  30-d-old pigs to simulate
spermatogenesis, confirming that SSCs can differentiate in «-
MEM-supplemented knockout serum replacement medium
and develop to the post-meiosis stage (Zhao et al., 2018).
Park et al. (2017b) developed a 3D culture microenvironment
to promote the self-renewal of pig SSCs. In brief, pSSCs were
cultured in agarose-based 3D hydrogels and 2D culture
plates, followed by analysis of cell colony formation,
morphology, alkaline phosphatase activity, transcription and
translational regulation of self-renewal related genes, cell
viability, etc. Proliferation was determined by the effect of 3D
culture on the maintenance of undifferentiated SSCs, with the
final results indicating that self-renewal of pSSCs was more
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Figure 1 Schematic of pSSC isolation and culture

effectively maintained in the 3D than in the 2D culture
microenvironment (Park et al., 2017b). These findings will play
an important role in the future development of new SSC
culture systems for different species, and thus help in
advancing SSC research (Park et al., 2017b). The
aforementioned studies indicate a step forward for the
maintenance of pSSCs in vitro. Accordingly, we constructed a
summary schematic to briefly delineate the establishment of
porcine SSCs in Figure 1. Although the current system for
pSSC isolation and in vitro culture remains imperfect, we
believe that continued progress will play an important role in
the future development of new culture systems for SSCs from
different species.
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Testes harvested from male porcine were enzymatically digested and sorted, and the purified pSSCs were plated on feeders or maintained with 3D

matrix gel for in vitro culture.

Traditional selective breeding methods in animals are
limited by the low efficiency of species source and cell
screening. The birth and development of gene editing
technologies have broken this technical barrier, and allowed
for improvements in livestock and poultry production, including
growth and development, meat quality, and disease resistance
(Hampton, 2017). Typically, gene editing technology can
greatly shorten the time required to construct modern pig
breeding and disease models, which should increase the
relevance of porcine models in agricultural science and
biomedical research (Whitworth & Prather, 2017). Recently
developed DNA targeting endonuclease technologies,
including ZFN (Zinc-finger nucleases), TALEN (transcription
activator-like effector nucleases), and CRISPR (clustered
regularly interspaced short palindromic repeats)-Cas9, have
enabled researchers to specifically edit any chromosomal
sequence for genetic operation. For the above three gene
editing approaches, the cell initiates an endogenous
mechanism to repair the site cleaved by nucleases or Cas9,
with a mutation, deletion, or insertion introduced during the
repair process; furthermore, a homologous recombination
mechanism can be induced in the presence of a homologous
sequence in the cell to obtain a specific fixed point for

mutation, deletion, or insertion (Polejaeva et al., 2000). In
recent years, these technologies have been widely used in
gene function research and genetically modified breeding (Li
et al., 2016; Luo et al., 2014; Proudfoot et al., 2015), disease
resistance breeding (Wu et al., 2015), biological disease
model establishment (Whitworth et al.,, 2014), and other
biological research. For example, Zhao et al. (2016) applied
TALEN and CRISPR-Cas9 technology to humanize pig insulin
by replacing the nucleotides that encode the one amino acid
that differs between porcine and human insulin. As such, they
successfully obtained gene-edited cloned pigs that expressed
human insulin using somatic cell nuclear transfer (SCNT),
thus providing the basis for the mass production of human
insulin and treatment of diabetes. In addition, Park et al.
(2017c) used CRISPR/Cas9 technology combined with SCNT
technology to prepare Nanos2 mutant large white pigs, which
may serve as a potential model for pSSC transplantation.
Thus, genetically modified breeding has opened up a whole
new field. With the development of gene editing technology, its
application in livestock breeding such as that of pigs, cattle,
and sheep is increasing, especially to improve the traits of
species with no stem cell lines currently available (Park et al.,
2017c). A recent study reported that knockout of the MSTN
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(myostatin) gene in pigs using ZFN technology can
significantly increase skeletal muscle fibers and lean meat
mass (Zou et al., 2015). Polyunsaturated fatty acids (such as
n-3 PUFAs), which are important nutritionally, can also exhibit
anti-inflammatory and anti-coagulation activity as well as
alleviate cardio-cerebral vascular diseases and influence
immune regulation to improve atherosclerosis status (Belluzzi,
2004; Weber et al., 2006). However, under natural conditions,
PUFAs are only found in a few plants and seafood, with very
low yield. The cbr-fat-1 gene derived from Caenorhabditis
elegans encodes n-3 PUFAs and catalyzes the formation of n-
3 PUFAs from n-6 PUFAs. Based on this principle, Zhou et al.
(2014a) constructed a transgenic pig that highly expressed
cbr-fat-1, thus laying the foundation for the production of pork
rich in n-3 PUFAs. In short, the application of gene editing
technology has greatly shortened the breeding period and
increased the potential of pigs and other livestock in
agricultural production.

In addition to gene editing methods based on SCNT or
embryonic operation, germline transmission is an alternative
strategy. Production of genetically modified spermatozoa
could enhance the efficiency of transgenic pig production,
although technical obstacles continue to impede the
application of pSSC transplantation in animal cloning.
Recently, however, some remarkable achievements have
been made. Increased efficiency of gene delivery in pSSCs
may eliminate one of barricades to livestock transgenic
operation, which has hampered the development of animal
cloning for many years (Kim et al., 2019; Park et al., 2019).
Success in cryopreservation of pSSCs has also facilitated the
application of porcine cloning using pSSCs (Lee et al., 2014).
Genetically edited pSSCs with a purity higher than 90% have
been obtained recently using TALEN (Tang et al.,, 2018).
Furthermore, the busulfan-induced SSC recipient model has
been established in porcine (Lin et al., 2017). Such progress
indicates that the essential conditions for pSSC editing and
transplantation are ready, and we believe that gene-edited
pigs derived from pSSCs will be generated soon.

Continued advances in pSSC research will be reported in
the next decade as the considerable advantages of pSSCs
are recognized by researchers. We look forward to the
development of a rapid and stable protocol for the
establishment of pSSCs and their application in transgenic
operation. We believe this achievement will benefit many
fields, including biomedical research, regenerative
medicine, and agricultural research and production, in the
near future.
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