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Preliminary study on fine structures of subcortical
nuclei in rhesus monkeys by ex vivo 9.4 T MRI

DEAR EDITOR,

Changes in fine structures of the brain over a life span can
have robust effects on neural activity and brain function, which
both play crucial roles in neurodegenerative diseases.
Clinically, however, low-resolution MRI only provides limited
information about fine brain structures. Here, using high-
resolution 9.4 T MRI, we established a set of structural images
and explored the fine structures of the claustrum,
hippocampus, amygdala complex, and subregions of the
amygdala complex (BLA, including lateral, basal, and
accessory basal subnuclei) in rhesus macaque (Macaca
mulatta) brains. Based on these high-resolution images, we
were able to discriminate the subregional boundaries
accurately and, at the same time, obtain the volume of each
brain nuclei. Thus, advanced high-resolution 9.4 T MRI not
only provides a new strategy for early diagnosis of
neurodegenerative diseases, but also provides the ability to
observe fine structural changes in the brain across a life span.

The basolateral complex of the amygdala (BLA), including
the lateral, basal, and accessory basal subnuclei, is an
important region receiving information from the cortex and
subcortical nuclei, including the hippocampus, and transferring
information to other parts of the amygdala (Huang et al., 2013;
Pikkarainen et al., 1999; Sah et al., 2003; Saunders et al,,
1988). Neuroimaging studies have significantly expanded our
knowledge of brain structure and function during postnatal
development and aging, as well as the progression of
neurological and psychological disorders (Knickmeyer et al.,
2010; Shaw et al., 2008; Sowell et al., 2002a, 2002b). The
introduction of 9.4 T MRI technology has greatly facilitated
subcortical classification of brain regions with fine dimensions
(Kwan et al., 2017). With its high resolution, we can accurately
discriminate subregional boundaries and obtain the volume of
each brain nucleus. As an advanced imaging device, 9.4 T MRI
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provides a new strategy for the early diagnosis of
neurodegenerative diseases and can further clarify fine
structural changes in the central nervous system over a life
span.

Three female rhesus monkeys aged from 12 to 20 years old
were used in this study. Postmortem brains of the monkeys
were provided by the Kunming Primate Research Center
(KPRC) of the Chinese Academy of Sciences (CAS). Details
on age and brain volume are provided in Table 1. The brains
were acquired following approved protocols from the Kunming
Institute of Zoology (KIZ), CAS. Briefly, the monkeys were
deeply anesthetized with an overdose of sodium pentobarbital
(50 mg/kg i.m.) and perfused transcardially with 0.9% saline
followed by 10% buffered formalin. The brains were removed
from the skulls and submerged in a 500 mL solution of 4%
paraformaldehyde (PFA). Each brain was positioned in an
oval-shaped container filled with FOMBLIN®
perfluoropolyether (Solvay Specialty Polymers, lItaly). The
container was generated by 3D printing and was adapted to
the outer surface of the brain so that the brain tissue was held
steady during scanning. Brains immersed in
perfluoropolyether were vacuumed for at least 3 d under 0.1
atmospheric pressure to remove all air bubbles in the sample
before the MRI scans. One half of each brain was selected
and cut into 50 ym sections through the amygdala along the
horizontal plane. Sections were stained with Cresyl violet. All
animal care and experimental procedures were carried out in
strict accordance with the guidelines for the National Care and
Use of Animals approved by the National Animal Research
Authority (China) and the Institutional Animal Care and Use
Committee (IACUC) of KlIZ, CAS, and were approved by the
Ethics Committee of KIZ and KPRC, KiIZ, CAS (AAALAC
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Table 1 Specimen information

Brai Cerebell Lateral Basal Accessory
) rain erebellum )
;SDpeClmen ,(Afe ) volume  volume Hippocampus Amygdala nucleus (L) nucleus (B) ?:;?l nucleus Claustrum
ears 3

(mt)  (em’) Left Right Left Right Left Right Left Right Left Right Left Right
05076 12 73 8.02 482.868 477.4 192.81 196.56 54.34 61.74 36.71 4248 59.2 60.68 170.345 176.97
00006 18 93 8.57 528.901 539.1 193.62 204.06 50.46 58.59 46.22 44.61 61.72 60.67 200.424 182.19
98374 20.3 93 8.22 528.901 560.6 253.79 262.58 63.51 70.98 38.82 38.45 66.24 67.37 172.501 186.77

accredited).

MRI was performed on a 9.4 Tesla 40 cm MRI system (a
superconducting magnet of 9.4 T/400 PS, Agilent Inc., USA,
equipped with Avance HD BioSpec console, Bruker BioSpin
MRI GmbH, Germany) with a patented transceiver coil. To
acquire high-quality MRI images, a newly patented conformal
radiofrequency (RF) coil (Chinese Patent application
201710191106.8) based on the standard quadrature RF
excitation/receive configuration was used. To achieve high
sensitivity, the coil was designed with half open brain-
conformal surface mode and composed of 16 distributed
resonant elements with quadrature ports. Therefore, only one
"H channel was used but with sufficient sensitivity for high-
resolution imaging. The maximal inner diameter of the coil was
95 mm, which is appropriate to hold the container and produce
RF-illuminating volume for the entire brain.

For each macaque brain, T,* weighted images of FLASH
(Fast Low Angle Shot) 2D and 3D sequences were acquired.
The 2D images were acquired with the following settings:
TR/TE=2900 ms/14 ms, flip angle=80°, resolution=208
pmx182 um, slice thickness=0.5 mm, matrix size=384x384,
104 slices, acquisition time=18 m 30 s, band kHz. The FLASH
2D images were acquired eight times separately and
averaged to achieve high-resolution images with a better
signal-to-noise ratio (SNR). For the 3D images, the following
settings were applied: TR/TE=45 ms/13 ms, flip angle=10°,
voxel size=155 ymx155 umx155 ym, matrix size=515x420x
354, acquisition time=1 h 51 m 30 s, band kHz.

Currently, there is no precedent for subfield segmentation of
the amygdala. In addition, standard analysis software cannot
perform automatic segmentation of the amygdala subfields at
the above resolution. Manual segmentation of 9.4 T images
can be achieved with reference to an atlas (Saleem &
Logothetis, 2012) using the ITK-SNAP package. Here, MRI
segmentation of the hippocampus, amygdala, basolateral
complex in the amygdala (BLA, including the lateral, basal,
and accessory basal nuclei), and claustrum were manually
performed with reference to the atlas “A Combined MRI and
Histology Atlas of the Rhesus Monkey Brain in Stereotaxic
Coordinates” (Saleem & Logothetis, 2012). The atlas, which
also contains histological sections and images, clearly shows
the boundaries of each nucleus for segmentation. The
segmented regions were only regions of interest (ROI) and did
not exactly match specific histological nuclei. The subregions
of interest in the amygdala (sROI) were close to the BLA
(ROIs of lateral nucleus, basal nucleus, and accessory basal
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nucleus, briefly denoted as L, B, AB, and claustrum).

To segment the fine structures on MRI images correctly,
both MRI resolution and contrast are crucial parameters.
Compared to histological sections before (Figure 1B, middle
panel) and after staining (Figure 1B, right panel), the shapes
of the subfields in the amygdala on MRIs closely matched
those of the subfields in the corresponding histological
staining section. This finding laid the foundation for our
segmentation of MRI images. After 9.4 T MRI segmentation,
we obtained a more accurate nucleus volume than that
achieved using 3 T MRI, which was limited by voxel-like
reconstruction (voxel size=310 umx310 pmx300 um)
(Figure 1A). Image intensity was corrected to remove bias
before quantitative image segmentation. Image contrast
between the amygdala, hippocampus, and claustrum
(Figure 1A) was sufficient to identify the landmarks of their
structures; however, it was difficult to distinguish the
boundaries of each subfield in the BLA and claustrum from the
3 T MRI images (UMR 790 United Imaging Inc., China). The
3D T2 sequences at 3 T were acquired with the following
settings: TR=2500ms, TE=440.8 ms, flip angle=58°,
averages=2, time=30 min, echo chain length=120, matrix
size=512x512x300, FOV=80 mmx80 mm, voxel size:
800 umx800 umx800 um. At the same time, by comparing the
histological sections with the MRI images, we found that the
MRI images exhibited strong similarity with images from low
magnification microscopy. With 3 T MRI images, this could be
helpful for locating the boundaries of deep brain nuclei due to
the large volume of brain tissue in non-human primates.
However, in order to explore the spatial location of deep nuclei
in the brain, high-resolution MRl is also necessary.

To discriminate the fine structures of the subcortical nuclei,
the ROIs of the hippocampus, amygdala, and BLA were
segmented and depicted (Figure 1C). The boundaries of the
sROIs were manually delineated for each image in the
horizontal plane. The volumes of the sROIs were then
obtained in ITK-SNAP after completing segmentation. As the
sample brains were formalin-fixed and firmly attached in the
device during the MRI scans, there were no respiratory
disturbances, as are found in live monkeys, so averaging the
multiple scans significantly improved the SNR. Thus, the
volumes of the hippocampus, amygdala, claustrum, and
amygdala subfields were more precise using the 9.4 T MRI
images due to the higher resolution and smaller error of the
ultra-high magnetic field strength.

In this study, using ultra-high-resolution 9.4 T MRI, we
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Figure 1 Comparison of 3 T and 9.4 T MRI images of rhesus monkey brains

A: MRI images of coronal (top row), sagittal (middle row), and horizontal (bottom row) planes acquired at 3 T 3D FLASH (left column) and 9.4 T 3D
FLASH (right column). Red arrows indicate location of amygdala. Amygdala subfields are more easily identified on 9.4 T MRI images thanon 3 T
MRI images. Region (reconstruction voxel size: 310 ymx310 pmx300 pum, yellow arrow) of claustrum is obscured in 3 T MRI slice, especially right
side of brain. In contrast, 9.4 T MRI images (voxel size: 155 umx155 ymx155 pym, red arrow) easily show boundary of claustrum. B: Representative
images of 9.4 T 2D FLASH MR, bright field (black background), and crystal violet staining of right amygdala at each age stage. One monkey brain
from each age group was selected for section staining. Each row represents right-side of amygdala of sample brain, which was cut and
photographed. Left column shows horizontal MRI images close to position of sections in middle column. Middle column shows sections before
staining. Staining of ROIs in red frame is shown in right column. Subnuclei in amygdala can be seen clearly on MRI images and sections before and
after crystal violet staining (amygdala subfield: L: Lateral nuclei, B: Basal nuclei, AB: Accessory basal nuclei). Scale bars: 1 mm. C: Manual
segmentation of amygdala and hippocampus. With high-resolution, 9.4 T MRI images show clear boundaries of each amygdala subregion. 3D
models show exact positions of bilateral amygdala and hippocampus in monkey brains.

observed the fine structures in the amygdala, hippocampus,
and BLA in the rhesus macaque brain. In contrast, the fine
structures were not sufficiently clear for segmentation when
using 3 T MRI. Clinically, psychological disturbances related to
emotion and memory usually involve the amygdala,
hippocampus, and their association (Sharp 2017; Yang &
Wang, 2017). The BLA is the information entrance to the

amygdala from the cortex and subcortical regions, such as the
hippocampus. The lateral nucleus in the BLA is responsible for
receiving extrinsic sensory information from the sensory
thalamus and sensory cortices, and for output to other
amygdala nuclei, including the basal and accessory basal
nuclei (Janak & Tye, 2015; Pitkanen & Amaral, 1998). The
BLA has reciprocal connections with the cortex and
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hippocampus, and thus information from the BLA can have a
broad influence throughout the cortex (Saunders et al., 1988).
Thus, by segmentation of all deep nuclei within fine brain
structures, we can accurately obtain their volumes.

The current study was based on high-resolution 9.4 T MRI
scans of ex-vivo rhesus macaque brains. The next step will be
to undertake anatomical research of rhesus macaque brains
in-vivo and to obtain high-resolution MRI images over their
entire lifespan. Such research can supplement histological
studies, which can lose information on fine structural changes
over long periods of time. In addition, because of the large
volume of brain tissue in rhesus monkeys, tissue removal by
optical techniques is not ideal for understanding the spatial
structures of deep brain nuclei. Therefore, high-resolution MRI
images are essential for studying the fine structures of the
brain, especially deep nuclei.

In conclusion, our findings suggest that the use of ultra-
high-resolution MRI images to display the microstructures of
the brain is an essential technique. In the future, it would be
interesting to identify the connections among subcortical
nuclei in the brains of live macaques following behavioral
training and testing using simultaneous fMRI.
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