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ABSTRACT

Exosomes are small vesicles secreted by all cell
types in the brain and play a role in cell-cell
communication through the transfer of cargo or
encapsulation. Exosomes in the brain have
considerable impact on neuronal development,
activation, and regeneration. In addition, exosomes
are reported to be involved in the onset and
propagation of various neurodegenerative diseases.
In this review, we discuss the content of exosomes
derived from major cell types in the brain, and their

function under physiological and pathological
conditions.
Keywords: Exosomes; Brain; Neurodegenerative

diseases; Cell-cell communication

INTRODUCTION

Brain function is critically dependent on proper intercellular
communication. Cells interact with the extracellular
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environment and other cells in various ways. Extracellular
vesicles (EVs) are emerging as a novel form of substance
exchange within the nervous system (Caruso Bavisotto et al.,
2019). EVs are lipid bilayer structures formed and released by
budding from cell’'s plasma membrane, with diverse sizes
ranging from 100 nm to 1 pm in diameter (Tkach & Théry,
2016). EVs commonly bear surface molecules that allow them
to induce signaling transduction via ligand-receptor binding.
Exosome content, such as proteins, lipids, and nuclear acids,
can be internalized into target cells via endocytosis and/or
phagocytosis, even by direct fusion of exosomes with the
plasma membrane, thereby modifying the physiological state
of recipient cells (Abels & Breakefield, 2016). Exosomes are a
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type of small vesicle (<150 nm in diameter) and are enriched
in endosome-derived components (Colombo et al., 2014). In
this review, we highlight and discuss the most recent studies
on exosomes and their regulatory roles in the brain.

EXOSOME BIOGENESIS AND CONTENT

Exosomes are produced from the in-budding of endosomes,
which later form multivesicular bodies (MVBs) that contain
intraluminal vesicles (ILVs). MVBs can either follow a
degradation pathway by fusing with lysosomes, where their
contents are degraded and recycled within the cell, or
alternatively proceed to the cytoplasmic side of the plasma
membrane, where they fuse with the cell membrane and ILVs
are released as exosomes into the extracellular space by an
exocytic step (Cocucci & Meldolesi, 2015). Exosomes are
produced by all cell types in the brain, including neurons
(Fauré et al., 2006; Lachenal et al., 2011), astrocytes (Bianco
et al.,, 2009; Taylor et al., 2007), oligodendrocytes (Bakhti et
al.,, 2011; Kramer-Albers et al., 2007), as well as microglia
(Potolicchio et al., 2005). Exosomes derived from various
central nervous system (CNS) cell types have emerged as an
important form of intercellular communication.

Exosome content is determined at the budding endosome
compartment and endosomal sorting complex (ESCRT) is
required to package cargo. Particularly, exosomes contain
lipids, such as cholesterol and sphingomyelin, and proteins
related to their biogenesis, such as Alix (ALGA2 interacting
protein X) and Tsg101 (tumor susceptibility gene 101), which
commonly serve as marker proteins of exosomes. Exosomes
also contain distinct cytosolic proteins, such as heat-shock
proteins, and certain membrane proteins, such as tetraspanins
and integrins. In addition, exosomes also carry nucleic acids,
such as DNA, mtDNA, and coding and non-coding RNA
(Théry, 2011; Théry et al., 2002). This horizontal transfer of
genetic information has gained increasing attention recently as
it provides a way in which to regulate gene expression in both
recipient and donor cells. Of note, exosome number and
content change dynamically in response to physiological and
environmental conditions (Zappulli et al., 2016).

Neuron-derived exosomes

Neurons, as the basic unit of the CNS, rapidly receive and
transmit impulses via chemical or electrical synapses.
Neuronal exosomes are primarily localized to soma and
dendrites, as indicated in cell-type-specific exosome reporter
mice (Men et al., 2019). Exosome release is induced by
neuronal activation (Fauré et al., 2006; Lachenal et al., 2011),
commonly from post-synaptic soma or dendrites (Men et al.,
2019). However, other studies have reported that exosomes
are also secreted from pre-synaptic cells, which control
postsynaptic retrograde signaling (Korkut et al., 2013).
Neuron-derived exosomes contain synaptic proteins, such as
L1 cell adhesion molecule (L1CAM),
glycosylphosphatidylinositol (GPI)-anchored prion protein, and
glutamate receptor subunit GIuR2/3 (Fauré et al., 2006),
suggesting a regulatory role of exosomes at synapses. In
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addition to synaptic proteins, exosomes also carry Wnt1, a
Wnt signaling pathway ligand, and therefore induce Wnt
signaling in target cells (Korkut et al., 2009; Gross et al.,
2012). These neuron-secreted exosomes are not only taken
up by neighboring neurons, but also by other cell types, such
as glia (Chivet et al., 2014; Men et al., 2019). On the one
hand, neurons can exploit the exosomal pathway to maintain
homeostasis based on a lysosome-independent mechanism
(Fauré et al.,, 2006). On the other hand, neuron-derived
exosomes can be captured by neighboring cells and elicit a
series of downstream events (Korkut et al., 2009).

The protected RNase-free environment of exosomes
provides an advantage for RNA transport. Neuron-secreted
exosomes contain a variety of miRNAs, a class of noncoding
RNAs 22 nucleotides in length, that typically suppress gene
expression at the post-transcriptional level. Of note, the
miRNA profile of secreted exosomes is distinct from that of
neurons (Men et al.,, 2019). This is because the neurite-
restricted decrease in mIRNA expression is typically
accompanied by an increase in secreted exosome expression
(Goldie et al., 2014), thus suggesting that a subset of miRNA
is selectively packed into exosomes and released upon
depolarization. Exosomal miRNAs can be internalized into
target cells directly by exosome uptake, thereby influencing
gene expression in recipient neurons in an activity-dependent
manner (Pastuzyn et al, 2018). In addition, exosome-
mediated transfer of miRNA can increase levels of glutamate
transporter (GLT1) in target cultured astrocytes as well as
glutamate uptake in the brain (Morel et al., 2013). In addition
to miRNAs, exosomes also carry mRNAs such as Arc to target
cells, where Arc mRNA undergoes activity-dependent
translation (Pastuzyn et al., 2018).

Treatment of exosomes isolated from human-induced
pluripotent stem cell (hiPSC)-derived neurons onto cultured
neurons can lead to an increase in neurogenesis in cultured
neurons by promoting cell proliferation and neuronal
differentiation (Sharma et al., 2019). Specifically, MECP2, a
protein carried in exosomes, is responsible for these changes,
suggesting that secreted exosomes influence cell fate in
developing neural circuits (Sharma et al., 2019). Synaptic
pruning can change synaptic connections dynamically in
response to the environment (Bahrini et al., 2015). Neuronal
exosomes can facilitate synaptic pruning via microglia-
mediated phagocytosis (Bahrini et al., 2015). Ephrin-Eph
signaling is deeply involved in axon guidance (Klein & Kania,
2014). Specifically, both ligand ephrin and receptor Eph can
be secreted by primary neurons in exosomes, which are then
subsequently taken up by neighboring cells and induce
neuronal growth cone collapse. This suggests that in addition
to canonical cell-cell contact, ephrin-Eph can signal at a
distance via secreted exosomes (Gong et al., 2016).

Astrocyte-derived exosomes

Astrocytes communicate with neurons and other glial cells
through the release of neuroactive substances, including
neurotransmitters and other metabolic and trophic factors



(Verkhratsky et al., 2016). Secretory vesicles, particularly
exosomes, are implicated in glia-neuron communication
(Fruhbeis et al., 2013b). Astrocyte-derived exosomes are
secreted in response to stress, resulting in an increase in the
release of exosomes containing neuroprotective factors, such
as synapsin | (a synaptic vesicle-associated protein implicated
in neural development), heat shock protein 70 (HSP70), and
apolipoprotein D (ApoD), eventually promoting neurite
outgrowth and neuronal survival (Pascua-Maestro et al., 2018;
Taylor et al., 2007; Wang et al., 2011).

Importantly, astrocyte-derived exosomes can also carry
miRNAs. Treatment of IL-1B or TNFa in astrocytes can lead to
the release of exosomes enriched with miRNAs that target
neurotrophic signaling in neurons (Chaudhuri et al., 2018).
Increased exosomal miR-34a under lipopolysaccharide (LPS)-
induced stress improves the vulnerability of neurons against
toxins (Mao et al., 2015). Exposure of astrocytes to morphine
and HIV protein Tat can result in an increase in the release of
miR-29 in astroglia-derived exosomes, leading to direct
repression of trophic factor platelet-derived growth factor B
(PDGF-B) at the post-transcriptional level in target neurons
(Hu et al., 2012).

Oligodendrocyte-derived exosomes

Mature oligodendrocytes ensheath axons with an insulating
myelin sheath, facilitating electric impulse propagation in the
brain. Release of exosomes from oligodendrocytes is
triggered by glutamate, a neurotransmitter released by
electrically active neurons (Fruhbeis et al., 2013a). Exposure
of neurons to oligodendrocyte-derived exosomes not only
increases their action potential firing rate, but also has a
beneficial effect on neurons under stress conditions (Fréhlich
et al., 2014; Frihbeis et al., 2013b). Oligodendrocyte-secreted
exosomes have the potential to influence neuronal physiology
across a broad spectrum, as demonstrated by extensive
neuronal gene expression changes (Frohlich et al., 2014).
Oligodendrocyte-derived exosomes can also be transferred to
microglia and internalized by a subpopulation of unstimulated
cells via a micropinocytosis mechanism (Fitzner et al., 2011).
Microglia, therefore, participate in the macropinocytotic
clearance process to degrade oligodendroglial membranes.

Microglia-derived exosomes

Microglia are innate immune cells in the brain and largely rely
on vesicles to propagate cytokine-mediated inflammatory
responses. Microglia-derived exosomes improve synaptic
transmission by increasing the production of ceramide and
sphingosine in neurons (Antonucci et al., 2012). These
exosomes also inhibit presynaptic transmission in target
GABAergic neurons via enclosed endocannabinoids (Gabrielli
et al., 2015). Stimulation with LPS can significantly increase
exosome release in microglia, which are enriched in
proinflammatory cytokines, such as IL-1B, and ultimately
induce  inflammation  propagation and  progressive
neuroinflammatory response (Kumar et al., 2017). Microglial
exosomes also contain miRNAs, as increased miR-124-3p in

microglial exosomes after traumatic brain injury (TBI) inhibits
neuronal inflammation and promotes neurite outgrowth
(Huang et al., 2018). Microglia are activated upon treatment
with a-synuclein, resulting in the release of high levels of
exosomes containing TNF-a and ultimately an increase in
apoptosis (Chang et al., 2013). A schematic of exosome-
mediated cell-cell communication is illustrated in Figure 1.

EXOSOME AND NEURODEGENERATIVE DISEASES

Alzheimer’s disease (AD)
AD is a neurodegenerative disease and the most common
type of dementia. AD is characterized by severe impairment of
cognitive function and other mental disorders. Accumulation of
amyloid B (AB) peptides and over-phosphorylation of tau
protein can lead to AR plaque and neurofibrillary tangles
(NFT), which are both pathological markers of AD (Cummings,
2004). Exosome signaling may facilitate the spread of
pathogenic  protein aggregates in neurodegenerative
conditions. For example, exosomes have been proposed to
transfer pathogens, such as amyloid precursor protein (APP),
leading to amyloid deposition in the brain (Vella et al., 2008;
Vingtdeux et al., 2007). AB and phosphorylated tau, key
pathological proteins of AD, are secreted via an exosome-
dependent mechanism (Rajendran et al., 2006; Saman et al.,
2012). In support of this, exosomal marker proteins
accumulate in amyloid plaque in AD brains (Rajendran et al.,
2006). When exosome secretion is inhibited by GW4869, a
chemical targeting the key regulatory enzyme (neutral
sphingomyelinase 2, nSMase2) in exosome production, AD
model mice (5xFAD) exhibit reduced AB42 accumulation in
the brain (Dinkins et al., 2014). Similar observations have
been obtained in nSMase2-deficient 5XFAD mice, which also
show reduced tau phosphorylation and glial activation and,
more importantly, improved cognitive function (Dinkins et al.,
2016). In contrast, enhanced exosome secretion from
neuronal cells is reported to facilitate AB uptake into microglia
and therefore reduce extracellular AB levels (Yuyama et al.,
2012). Continuous intracerebral infusion of exogenous
neuroblastoma-generated exosomes can lead to reduced AB
levels and amyloid deposition via a microglial phagocytosis
mechanism in APP transgenic mice (Yuyama et al., 2014).
These findings thus support the notion that the balance that
determines whether exosomes drive pathological spread or
pathological molecule degradation is likely dependent on how
efficiently exosomes are removed from the brain parenchyma
(Yuyama et al., 2014). In addition to amyloid peptide levels,
tau levels in exosomes derived from tau transgenic mouse
brains are significantly increased (Polanco et al., 2016).
Exosomal tau is phosphorylated to a different extent, even
lower than the cells from which they are derived. Despite this,
exosomal tau is considered a seeding tau, and its
transmission is essential for AD progression (Polanco et al.,
2016).

Endocytic  pathway abnormality  characterized by
enlargement of early endosomes and enhanced early
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Figure 1 Schematic of exosome-mediated cell-cell communication and function in the brain

endosome marker Rab5 has been observed in neurons of AD
brains (Nixon, 2005). More importantly, this impairment
promotes the release of ganglioside (GM1)-associated
exosomes, which induce the production of AB fibrillogenesis
(Yuyama et al., 2008). Neuron-derived exosomes contain full-
length APP, APP metabolites, and key enzymes for APP
processing, suggesting that exosomes are one of the sites
where APP cleavage takes place, and onsite AB production is
also responsible for lesion spread (Rajendran et al., 2006;
Vingtdeux et al.,, 2007). In support of this conclusion,
exosomes isolated from the mouse brain also contain full-
length APP, along with other metabolites (Perez-Gonzalez et
al., 2012). In addition to neuron-derived exosomes, secretion
of astroglia-derived exosomes is also promoted by
surrounding amyloid plaque in AD. These exosomes contain
more prostate apoptosis response 4 (PAR4) and ceramide,
which, in turn, induce apoptosis in neighboring astrocytes via
direct uptake (Wang et al., 2012). Levels of plasma exosomal
AB and tau are higher in AD patients than in controls,
concordant with their levels in cerebrospinal fluid (CSF), thus
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suggesting that plasma and CSF exosomes could serve as
biomarkers for AD diagnosis (Jia et al., 2019).

Apolipoprotein E (ApoE) is the predominant carrier for
cholesterol transport from astrocytes to neurons in the brain
(Zhang & Liu, 2015). There are three major alleles of the ApoE
gene in humans, coding for ApoE2, ApoE3, and ApoE4,
respectively. ApoE4 is a major risk factor for AD (Zhang et al.,
2019). The ApoE4 genotype leads to reduced exosome
production, not only in post-mortem brains, but also in ApoE-
humanized mice, in an age-dependent manner (Peng et al.,
2019). Consequently, an impaired endosomal-exosomal-
lysosomal system results in deficits in the degradation of toxic
material, contributing to AD pathology (Peng et al., 2019).

Parkinson’s disease (PD)

PD is the most common motor disorder of the CNS. The main
clinical manifestations are static tremor and muscle stiffness.
One of the neuropathological hallmarks of PD is abnormal
aggregation of the synaptic protein alpha-synuclein (a-syn),
termed Lewy bodies (LBs) in inherited and sporadic forms of
PD (Kalia & Lang, 2015). The transmission of aggregated a-



syn across cells has been reported in earlier research (Lee et
al., 2012). Previous study has also identified a-syn in
exosomes released from neuronal cells with a-syn
overexpression, which can be transferred across cells, with
negative impact on the viability of recipient neuronal cells
(Emmanouilidou et al., 2010). Importantly, when brain
homogenates containing a-syn aggregates are injected into
mice, the mice show both aggregation of a-syn in their brains
and the onset of clinical symptoms (Henderson et al., 2019).
The spread mechanism of o-syn aggregates could be
attributed to exosome-mediated transport.

To degrade a-syn deposits, neuronal exosomes can be
taken up by astrocytes or microglia (Russo et al., 2012).
However, excessive uptake of a-syn can produce glial
inclusions and trigger inflammatory responses, which are both
hallmarks of PD pathogenesis (Russo et al., 2012). Therefore,
exosomes may be involved in neuroinflammation via
modulating neuron-glia communication, or during the
propagation of the inflammatory response through glia-glia
communication.

Thus, exosomes have complicated roles in
neurodegenerative diseases, as they can be beneficial by
discarding accumulated and toxic substances, such as a-
synuclein and AB. However, they can also contribute to the
transport and extracellular build-up of toxic material, leading to
disease progression.

Other neurodegenerative diseases

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease.
The symptoms of ALS include progressive motor system
dysfunction, muscle paralysis, atrophy, and eventually
respiratory failure. Aggregation of TDP-43 is a typical hallmark
of ALS pathology (Neumann et al., 2006). The TDP-43 nuclear
protein plays a role in regulating transcription, pre-mRNA
splicing, and translation (Mackenzie et al., 2010). Mutated
TDP-43 is translocated to the cytosol, where it forms
aggregates (Scotter et al., 2015). TDP-43 oligomers are
loaded in exosomes and taken up by the neuronal soma and
synaptic cleft, and therefore contribute to disease pathology
(Feiler et al., 2015). Importantly, secretion of exosomal TDP-
43 is enhanced in ALS brains. This secretion is cell-type
dependent, with TDP-43 primarily secreted in exosomes
derived from neurons, but not from astrocytes or microglia
(Iguchi et al., 2016). Exosomal TDP-43 not only contributes to
the transmission and propagation of TDP-43, but also serves
as a key means for the clearance of TDP-43 aggregates
(lguchi et al., 2016). Fused in sarcoma (FUS) is another RNA-
binding protein that resides in the nucleus and is implicated in
the pathology of ALS (Mackenzie et al.,, 2010). FUS is
structurally and functionally similar to TDP-43, and mutated
FUS is preferentially localized to the cytoplasm, where it
induces stress granule-like structures (Mackenzie et al.,
2010). FUS is also detected in secreted exosomes,
particularly enriched in FUS-expressing cells (Kamelgarn et
al., 2016). Dipeptide repeat proteins (DPRs), derived from
aberrant hexanucleotide repeat expansions in the C9orf72

gene, are also detected in exosomes (Westergard et al.,
2016). Similar to TDP-43, intercellular transmission of DRPs
occurs through anterograde and retrograde transport in
neurons, and also between neurons and astrocytes (Feiler et
al., 2015). These findings underline the importance of
exosomes in the propagation of ALS through spreading toxic
proteins.

Huntington’s disease (HD) is an autosomal dominant
hereditary disease caused by expanded repeats of the CAG
sequence in the first exon of the HTT gene, resulting in the
production of polyglutamine sequence (PolyQ) protein, which
exhibits neuronal toxicity and is essential for aggregate
formation (Zhang et al., 2016). Of note, both PolyQ and CAG-
repeat RNA have been found in exosomes secreted by 293T
cells, suggesting that exosome-loaded toxic protein and RNA
can be transferred between cells (Zhang et al., 2016). In
addition, exosomes also carry mutant huntingtin (mHtt), which
triggers the manifestation of HD-related pathology (Jeon et al.,
2016). Notably, mHtt is undetectable in astrocyte-derived
exosomes, but suppresses the secretion of exosomes from
astrocytes (Hong et al, 2017). Accumulation of mHtt
significantly represses exosome secretion from astrocytes in
HD model mice, whereas injection of astrocytic exosomes
reduces the burden of mHtt aggregates (Hong et al., 2017).
These findings suggest that exosomes play an essential role
in HD pathology.

EXOSOMES AS POTENTIAL
THERAPEUTIC TOOLS

DIAGNOSTIC AND

The identification of exosomes in blood plasma opens new
opportunities for biomarker discovery. Proteomic analysis of
serum exosomes has identified 23 exosome-associated
proteins that are differentially expressed in PD patients, which
could potentially serve as biomarkers for PD diagnosis
(Tomlinson et al., 2015). Furthermore, neuron- and astrocytic-
origin exosomes can be separated, with neuron-derived
exosomes serving as better biomarkers as they contain higher
levels of signaling molecules related to cellular metabolism,
survival, and repair (Mustapic et al., 2017). In fact, neuron-
derived exosomes show good diagnostic and predictive
performance for AD (Goetzl et al, 2016).

The characteristics and manageability of exosomes make
them potential candidates for delivering active molecules,
particularly therapeutic drugs to specific target cell types.
Engineered exosomes that carry selected cargo, such as
drugs and/or other therapeutic proteins, can transport cargo
across the blood-brain barrier and deliver it to target
tissues/cells (Alvarez-Erviti et al., 2011). Exosomes containing
neprilysin, which targets and degrades AR, can reduce both
secreted and intracellular AB levels (Katsuda et al., 2013).
Additionally, exosome-mediated short interfering RNA (siRNA)
delivery also has therapeutic potential for AD treatment, as
demonstrated by strong knockdown of BACE1, a protease that
cleaves amyloid precursor and generates AP peptides
(Alvarez-Erviti et al., 2011). Exosomes derived from adipose
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stem cells not only reduce mHit aggregates, but also
ameliorate abnormal apoptotic protein levels in HD models
(Lee et al., 2016). However, with all the advantages that
exosome-based therapy might offer, potential problems need
to be solved before these therapeutic strategies can be
implemented safely. The loading capacity of exosomes and
the half-life of the cargo need to be determined and
administered  accordingly. Assessment of systematic
administration of exosomes and their biodistribution in target
and non-target tissues/cells should be performed before
potential clinical use. Finally, the requirement of bioengineered
ligands in exosomes for efficient delivery of cargo needs to be
assessed. Further development of exosome-mediated
therapeutic strategies will require continuous investigation into
exosome biology.
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