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ABSTRACT

Gene regulatory networks play pivotal roles in our
understanding of biological processes/mechanisms
at the molecular level. Many studies have developed
sample-specific or cell-type-specific gene regulatory
networks from single-cell transcriptomic data based
on a large amount of cell samples. Here, we review
the state-of-the-art computational algorithms and
describe various applications of gene regulatory
networks in biological studies.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technology has
made it possible to measure and compare gene transcriptomic
profiles at single-cell resolution (Eberwine et al., 2014; Stegle
et al., 2015). Based on scRNA-seq data, new cell types with
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distinct functions can be identified and cellular lineages during
differentiation can be traced (Rozenblatt-Rosen et al., 2017;
Villani et al., 2017). Many studies have focused on developing
accurate and robust computational methods for scRNA-seq
data analysis (Zeng & Dai, 2019), where a key problem is how
to construct gene regulatory networks (GRNs) to pinpoint
crucial factors, e.g., those that control cellular differentiation
and determine phenotypes in disease progression (lacono et
al.,, 2019). In fact, scRNA-seq technology provides a large
number of cell samples, making it possible to study gene-gene
associations and transcriptional networks accurately (Dai et
al., 2019). At present, many studies and algorithms have been
developed to construct GRNs from scRNA-seq data based on
various principles and perspectives.

INFERENCE METHODS FOR GRNs

Correlation networks

Correlation network analysis is one of the most widely used
methods for scRNA-seq data. These networks measure gene-
gene associations based on correlation coefficients and are
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suitable for large and high-dimensional datasets. In 2008,
Langfelder & Horvath (2008) presented the popular weighted
gene co-expression network (WGCNA) for weighted
correlation network analysis. This method detects modules of
highly correlated genes, identifies hub genes within these
modules, and measures the relationships among the modules.
Since then, many improved algorithms have been presented.
For example, the partial and semi-partial correlation (PPCOR)
method (Kim, 2015) substitutes the correlation coefficient in
WGCNA by semi-partial correlation, which can measure the
association between two variables after eliminating the effects
of all other variables, i.e., the relationship between two genes
is direct rather than influenced by other genes. The part
mutual information (PMI) method (Zhang et al., 2015; Zhao et
al., 2016) identifies direct associations based on the partial
independence concept, and the partial information
decomposition and context (PIDC) approach (Chan et al.,
2017) uses partial information decomposition to determines
the relationships between genes. These methods apply the
concept of information theory and can measure nonlinear
relationships. Usually, correlation networks are undirected,
which means that the regulatory direction between two genes
is unknown. However, the lag-based expression association
for pseudotime-series (LEAP) approach (Specht & Li, 2017)
can construct directed gene co-expression networks from
pseudotime-ordered scRNA-seq data. This method computes
the Pearson correlation coefficient over all possible time lags
along the estimated pseudotime (no branch), and then uses
the maximum correlation to construct the network. LEAP can
capture the associations hidden by time lags and provides
more accurate GRNs. Single-cell regularized inference using
time-stamped expression profiles (SINCERITIES) (Gao et al.,
2018) is another approach applied to construct directed GRNs
from time-stamped single-cell transcriptional expression
profiles. This method divides the single-cell data into several
time points, uses Granger causality to infer regulatory
networks centered by transcription factors (TFs), and uses
ridge regression and partial correlation analyses to recover the
directed regulatory relationships among genes. More accurate
GRNs can be provided by this method. Several methods use
statistical likelihood or Bayesian networks to infer GRNs, e.g.,
context likelihood of relatedness (CLR) (Faith et al., 2007) and
first-order autoregressive moving-average and variational
Bayesian expectation-maximization (AR1MA1-VBEM)
(Sanchez-Castillo et al., 2018). These methods are similar to
correlation networks but are considered more accurate for
measuring gene-gene relationships based on their nonlinear
principles.

Dynamic networks

In comparison to static (correlation) networks, dynamic
networks are more suitable for describing changes in network
dynamics, such as cellular lineages during differentiation. The
Boolean model is one of the simplest methods, which takes
the value of 0 or 1 to represent the absence or presence of
gene expression and uses the Boolean operators AND, OR,
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and NOT to describe the interaction between two genes. The
Boolean model is more robust to the effects of dropout, which
makes it quite useful for scRNA-seq data. Many methods have
reconstructed GRNs based on synchronous or asynchronous
Boolean models, such as reduced ordered binary decision
diagrams (ROBDD) (Garg et al.,, 2008), cellular network
optimizer (CelINOptR) (Terfve et al., 2012), bool trainer (BTR)
(Lim et al., 2016), single-cell network synthesis toolkit (SCNS)
(Woodhouse et al., 2018), and gene modular network (GMN)
(Zhang et al., 2020), which have been applied to find key
regulators of cell fate and reveal network rewiring during cell
differentiation (Moignard et al., 2015; Xu et al., 2014).
However, the Boolean model must convert expression data
into binary data, which may obscure gene-gene interactions.
In contrast, differential equation-based models are more
complex and offer high-precision predictions (Chen et al.,
2009, 2010; Wang et al.,, 2006), but these methods must
balance time complexity and prediction accuracy. Matsumoto
et al. (2017) presented a highly efficient optimization algorithm
(single-cell ordinary differentiation equations, SCODE) to
reconstruct expression dynamics and infer GRNs from
differentiating cells. This method integrates the transformation
of linear ordinary differential equations (ODEs) and linear
regression and can reconstruct the observed expression
dynamics and GRNs accurately with remarkable efficiency.

Tree-based networks

Huynh-Thu et al. (2010) developed a tree-based algorithm
(gene network inference with ensemble of trees, GENIE3),
which adopted a distinctive way to infer regulatory networks.
This method decomposes the prediction of GRNs into p
regression models constructed by tree-based ensemble
methods, e.g., Random Forests or Extra-Trees, where p is the
number of genes. In each regression model, the expression
pattern of gene x (target gene) is predicted from all other
genes (input genes), and the weight of interaction between the
target and input genes is determined by the importance of
each input gene in the regression model. Several
improvements to GENIE3 have been developed. For example,
the GRN inference based on gradient boosting machine
(GRNBoost2) method (Moerman et al., 2019) uses gradient
boosting with GENIE3 architecture to improve algorithm
efficiency. Jump3 (Huynh-Thu & Sanguinetti, 2015) combines
the tree-based algorithm and dynamic systems to infer GRNs
by exploiting the time series of expression data. The single-
cell regulatory network inference and clustering (SCENIC)
method (Aibar et al., 2017) removes the indirect targets from
the GENIE3 modules based on TF motif enrichment analysis,
and only retains those modules with enriched TF-binding
motifs, called regulons. Generally, these methods are
competitive with correlation models, and are able to construct
directed networks (Chen & Mar, 2018; Pratapa et al., 2020).

Deep-learning-based networks

Deep-learning frameworks have also been used to infer gene
relationships. The convolutional neural network for
coexpression (CNNC) approach (Yuan & Bar-Joseph, 2019) is



a supervised and task-specific method, in which the network is
trained by positive and negative samples, e.g. known targets
of TFs, known pathways for specific biological processes, and
known disease genes. Based on the data types used for
training, CNNC can predict TF targets and identify disease-
related genes.

Cell-specific networks

Recently, Dai et al. (2019) presented a new cell-specific
network (CSN) method that can construct a network for each
single cell from scRNA-seq data by considering statistical
independence. Different from all other approaches, this
method can identify gene-gene interactions and describe
network heterogeneity at the single-cell level. CSN may help
to find new cell types from a network perspective and reveal
“dark” genes that play important roles in the network but are
generally ignored by ftraditional differential analyses.
Moreover, by considering partial independence, the
conditional cell-specific network (CCSN) approach (Li et al.,
2020) was developed to further reduce false positives in CSN
method.

APPLICATION OF GENE REGULATORY NETWORKS

Method selection

The methods listed in this paper have their own advantages
and disadvantages. How to choose the best method primarily
depends on the scientific problem to be addressed. If the
study focuses on time-series-related problems, such as
development, cell differentiation, or disease procedures, the
first choice would be an algorithm that constructs GRNs based
on time-ordered data. If we only compare differences between
two samples, e.g. the difference between a disease and

Table 1 Summary of inference methods for gene regulatory networks

normal state, and the difference before and after medication,
the algorithm based on static data should be selected.

Directed networks provide information on the direction of a
regulatory relationship, whereas undirected networks only
measure the existence and strength of a regulatory
relationship. Nonlinear algorithms can predict the strength of a
regulatory relationship more accurately, but computational
time will be longer; linear algorithms reduce the computational
time, but accuracy also declines; binary algorithms can only
show whether or not a regulatory relationship exists, but they
are the fastest. Thus, if the purpose of a study is to explore the
key regulatory factors controlling a biological process,
research should focus on the changes or differences in
network structure, instead of the strength of the regulatory
relationship, and thus binary algorithms may be preferred. If
we know certain regulatory factors are important and hope to
identify their upstream and downstream genes, we can
choose a directed network with linear or nonlinear algorithm. If
we hope to simulate a biological process through a network,
for example, by deleting network nodes to simulate gene
knockout processes, then nonlinear algorithms are necessary.
In addition, although the latest algorithms are often better than
earlier ones, it is still important to build and compare networks
constructed by different principles. Table 1 lists the type and
principle of each method, and Table 2 lists the code and
source of each method for reference.

In this paper, we selected several widely used algorithms to
test whether they can identify proven gene regulatory
relationships (Liu et al., 2020; Van Dijk et al., 2018). As shown
in Table 3, most methods identified all six regulatory
relationships, although two linear methods WGCNA and
SINCERITIES did not perform well. This result is not

Method Type of edge Input data Principle References

WGCNA Linear Undirected Static Pearson correlation Langfelder & Horvath, 2008
PPCOR Linear Undirected Static Semi-partial correlation Kim, 2015

PMI Nonlinear Undirected Static Part mutual information Zhang et al., 2015; Zhao et al., 2016
PIDC Nonlinear Undirected Static Partial information decomposition Chan et al., 2017

LEAP Linear Directed  Time-ordered Pearson correlation Specht & Li, 2017
SINCERITIES Linear Directed Time-ordered Ridge regression and partial correlation Gao et al., 2018

AR1MA1 -VBEM Nonlinear Directed  Time-ordered Bayesian framework Sanchez-Castillo et al., 2018
ROBDD Binary Directed Time-ordered Boolean model Garg et al., 2008

CellNOptR Binary Directed Time-ordered Boolean model Terfve et al., 2012

BTR Binary Directed  Time-ordered Boolean model Lim et al., 2016

SCNS Binary Directed  Time-ordered Boolean model Woodhouse et al., 2018
SCODE Nonlinear Directed  Time-ordered Ordinary differentiation equations Matsumoto et al., 2017
GENIE3 Nonlinear Directed  Static Random Forests or Extra-Trees Huynh-Thu et al., 2010

Jump3 Nonlinear Directed  Time-ordered Decision trees Huynh-Thu & Sanguinetti, 2015
SCENIC Nonlinear Directed  Static GENIE3 and TF motif enrichment analysis  Aibar et al., 2017

GRNBoost2 Nonlinear Directed  Static GENIE3 and gradient boosting Moerman et al., 2019

CNNC Nonlinear Undirected Static Deep learning Yuan & Bar-Joseph, 2019

CSN Nonlinear Undirected Static / Time-ordered Statistic independency Dai et al., 2019

CCSN Nonlinear Undirected Static / Time-ordered Statistically partial independency Lietal., 2020
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unexpected as nonlinear algorithms usually predict gene
regulatory relationships more accurately.

GRN analysis in biological studies

All methods listed in this paper use scRNA-seq data as input.
Most GRN analyses need some prior information; algorithms
based on time-ordered data need time-series information and
algorithms based on static data need cell-type information.
Both CSN and CCSN construct one network for each single
cell, so they are suitable for either time-ordered data or static
data. Some widely used data analysis software, e.g., Seurat
(Butler et al., 2018) and Monocle (Qiu et al., 2017; Trapnell et
al., 2014), can help obtain cell-type or time-series information
based on clustering or pseudo-time analyses.

No matter which algorithm is used, network analysis is
generally similar. For each network, the first step is to identify
the modules it contains. Generally, a module represents a
functional unit, as the genes performing the same function are

Table 2 Sources of GRN inference methods

often closely related to each other. In each module, the
number of edges connected to a node, i.e., network degree, is
an important indicator. If the network degree of a certain gene
shows considerable differences between a disease and
normal state, or shows significant changes during cell
differentiation, this gene may be an important regulatory
factor. If regulatory factors are known, the genes related to
these factors should be considered. In addition, it should be
noted that the genes linking different modules are often very
important.

Gene regulatory networks have been widely used in
biological studies. For example, based on correlation network
analysis, Pina et al. (2015) identified a key regulatory gene
(Ddit3) in erythroid lineage programming and found the Ddit3-
Gata2 regulatory axis could antagonize myeloid programs and
enabled erythroid programs, which was validated
experimentally. Xu et al. (2014) constructed Boolean networks
composed of 30 genes related to the self-renewal and

Method Code Source

WGCNA R R package: WGCNA

PPCOR R R package: ppcor

PMI MATLAB http://www.sysbio.ac.cn/cb/chenlab/software/PCA-PMI

PIDC Julia https://github.com/Tchanders

LEAP R R package: LEAP

SINCERITIES R / MATLAB http://www.cabsel.ethz.ch/tools/sincerities.html, https://github.com/CABSEL/SINCERITIES
AR1MA1- VBEM MATLAB https://github.com/mscastillo/ GRNVBEM

ROBDD Java http://si2.epfl.ch/~garg/genysis.html

CellNOptR R http://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html
BTR R R package: BTR

SCNS R https://github.com/swoodhouse/SCNS-GUI

SCODE R https://github.com/hmatsu1226/SCODE

GENIE3 R http://www.montefiore.ulg.ac.be/~huynh-thu/software.html

Jump3 MATLAB http://homepages.inf.ed.ac.uk/vhuynht/software.html

SCENIC R http://scenic.aertslab.org

GRNBoost2 Python http://arboreto.readthedocs.io

CNNC Python https://github.com/xiaoyeye/CNNC

CSN MATLAB https://github.com/wys8c764/CSN

CCSN MATLAB http://sysbio.sibcb.ac.cn/cb/chenlab/soft/ CCSN.zip

Table 3 Comparison of GRN inference methods

Method Proven gene regulatory relationship

GSE114397

GSE139343

VIM- ZEB1 VIM- SNAI2 VIM- MYC

ARID1A-ZIC1 ARID1A-SOX1 ARID1A-MAP2

WGCNA
PPCOR

PMI

LEAP
SINCERITIES
SCODE
SCENIC

CSN

22 2 2 2 2 2 X
2 2 2 X 2 =2 2 X
2 2 2 X 2 2 2 X

2 2 2 X 2 2 2 X
2 X 2 2 2 2 2 2
2 2 2 2 2 2 2 X
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pluripotency of mouse embryonic stem cells (MESCs) cultured
in serum/LIF or serum-free 2i/LIF conditions. They removed
nodes from the Boolean network to simulate single and
combinatorial RNA interference (RNAi) knockdown, with the
predicted post-RNAi expression levels based on network
analysis showing good agreement with experimental testing.
In addition, Moignard et al. (2015) used diffusion maps to
identify the developmental trajectory of the mesoderm toward
blood in mouse based on scRNA-seq data, and then
constructed Boolean networks to recapitulate blood
development. The model predicted that the Erg gene is
activated by Sox17 or Hoxb4, which were validated by the
observations that Sox and Hox factors control early
expression of Erg. Harly et al. (2019) used LEAP to identify
target genes of TCF-1 during innate lymphoid cell (ILC)
development, and identified the role of TCF-1 in
developmental progress of ILC precursors. Sagar et al. (2020)
established a yd T-cell differentiation map based on fetal and
adult thymus scRNA-seq data using GENIE3 to construct
GRNSs and illustrate fetal and adult differences. Differentially
expressed gene networks have also been successfully applied
to recover and characterized distinct stages of yd T-cell
differentiation. Elyanow et al. (2020) presented a new
computational method (netNMF-sc) using gene-gene co-
expression networks as prior knowledge to perform
dimensionality reduction and imputation of scRNA-seq data
with high dropout rates, which was competitive with many
other methods for dimension reduction and imputation.

FUTURE PERSPECTIVES

Although many GRN methods have been developed, GRN
inference remains a challenging problem in bioinformatics and
computational biology. A critical issue is the low quality of
single-cell sequencing data. As RNA is obtained from only one
cell, noise from amplification and dropout events in
sequencing is a common problem. Recently, the integration of
various single-cell-omics data, such as ATAC-seq and ChIP-
seq, has attracted increasing attention (Li et al., 2017; Mimitou
et al., 2019; Stuart et al.,, 2019), which may help in the
development of next-generation GRN inference algorithms for
various fields, including developmental and evolutionary
biology.
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