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An online coronavirus analysis platform from the
National Genomics Data Center

DEAR EDITOR,

Since the first reported severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection in December 2019,
coronavirus disease 2019 (COVID-19) has become a global
pandemic, spreading to more than 200 countries and regions
worldwide. With continued research progress and virus
detection, SARS-CoV-2 genomes and sequencing data have
been reported and accumulated at an unprecedented rate. To
meet the need for fast analysis of these genome sequences,
the National Genomics Data Center (NGDC) of the China
National Center for Bioinformation (CNCB) has established an
online coronavirus analysis platform, which includes de novo
assembly, BLAST alignment, genome annotation, variant
identification, and variant annotation modules. The online
analysis platform can be freely accessed at the 2019 Novel
Coronavirus Resource (2019nCoVR) (https://bigd.big.ac.cn/
ncov/online/tools).

As of 1 October 2020, the Global Initiative on Sharing All
Influenza Data (GISAID, https://www.gisaid.org/) (Shu &
McCauley, 2017) contained 131 424 SARS-CoV-2 sequences,
the 2019 Novel Coronavirus Resource (2019nCoVR) (Song et
al., 2020; Zhao et al., 2020) contained 135 979 genome
sequences, and the National Center for Biotechnology
Information (NCBI) (Leinonen et al., 2011) contained 61 551
high-throughput sequencing runs. In addition, the Genome
Sequence Archive (GSA) (Wang et al, 2017) has also
released more than 200 accessions of SARS-CoV-2
sequencing runs. These data provide important information for
SARS-CoV-2-based studies on viral classification, viral
tracing, viral mutations, genome evolution, and antiviral drug
development. Thus, there is an urgent need for a
comprehensive online analysis platform to deal with the
massive amount of data available.

To promote studies and applications based on SARS-CoV-2
sequencing data, specific sequence analysis tools have been
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established in several online platforms worldwide. For
example, NCBI has provided the BLAST alignment tool
(Altschul et al,, 1990) in SARS-CoV-2 Resources
(https://www.ncbi.nlm.nih.gov/sars-cov-2/). The University of
California, Santa Cruz (UCSC) SARS-CoV-2 Genome
Browser has integrated the visualization browser with BLAT
alignment and variant annotation tools (https://genome.
ucsc.edu/covid19.html) (Fernandes et al., 2020). The National
Microbiology Data Center (NMDC) has provided various
analysis tools, such as BLAST alignment and phylogenetic
analysis, in the Global Coronavirus Data Sharing and Analysis
System (http://nmdc.cn/coronavirus/). The Shanghai Institute
of Nutrition and Health, Chinese Academy of Sciences (CAS),
has established the Virus Identification Cloud (VIC,
https://www.biosino.org/vic/), offering online analysis services
for viral sequence identification and genome assembly. The
Genome Detective webserver has also provided a virus
identification workflow for high-throughput sequencing data
(https://www.genomedetective.com/) (Cleemput et al., 2020).
Although the above SARS-CoV-2 analysis tools provide online
services, their functions are relatively limited and do not cover
all aspects of SARS-CoV-2 research (Table 1).

Thus, to provide a unified and convenient approach for
processing SARS-CoV-2 sequencing data, the National
Genomics Data Center (NGDC) of the China National Center
for Bioinformation (CNCB) established an online coronavirus
analysis platform based on viral genomes collected in
2019nCoVR (https://bigd.big.ac.cn/ncov/online/tools), offering
free analysis services for researchers. The platform includes
five functional modules (Figure 1), which cover various SARS-
CoV-2 genomic data analyses.

1. De novo assembly module

This module can be used for de novo assembly of next-
generation sequencing (NGS) data. First, raw reads are
trimmed for quality using Trimmomatic (Bolger et al., 2014)
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Table 1 Analysis function comparison of SARS-CoV-2 online resources
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*: 2019nCoVR: 2019 Novel Coronavirus Resource; NCBI: National Center for Biotechnology Information; UCSC: University of California, Santa
Cruz; NMDC: National Microbiology Data Center; VIC: Virus Identification Cloud.
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Figure 1 Processing workflow and webpage demonstration of analysis results

A: Analysis modules are in the middle of the figure. Main software used in the workflow is shown beside each module. B-D: Analysis demonstration
of de novo assembly, variant identification, and genome annotation modules. N/A: Not available.

with the settings SLIDINGWINDOW: 4:15, LEADING: 3,
TRAILING: 3 and MINLEN: 36. Megahit (Li et al., 2015) is then
used for sequence assembly with default parameters. The
assembled sequences are compared with the SARS-CoV-2
reference genome (NC_045512.2) using BLASTN (Altschul et
al., 1990) to identify target sequence(s), and assembly quality
is evaluated using QUAST (Gurevich et al., 2013). The
assembly results depend on the qualities of samples and
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sequencing data and may consist of a complete genome or
several contigs. In the future, we plan to assemble those
contigs into a single sequence by alignment with the reference
genome, and to support genome assembly for third-generation
sequencing data.

2. BLAST module

To compare sequences among virus strains, the analysis
platform includes a BLAST alignment module, with three



Table 2 Reference running time

Data1 Data2 Data3 Data4 Datab
NCBI accession No. SRR11247077 SRR11092064 SRR11092057 SRR11092058 SRR10971381
Calculation time* 0Om37s 0Om55s 1Tm10s 1m36s 3m42s
Data size (bp) 118 M 1.0G 156G 22G 8.0G

*: Run on 24 CPU cores.

algorithms (BLASTN, Mega BLAST and discontinuous Mega
BLAST) (Altschul et al., 1990). Users can select the SARS-
CoV-2 reference genome, 2019nCoVR genome database, or
coronavirus genome database (including alpha/beta/delta/
gamma genus) for online BLAST.

3. Genome annotation module

To perform sequence comparison and evolutionary analysis
on specific viral genes, gene annotations are required.
However, most viral genomes in the above SARS-CoV-2
databases are not annotated. Therefore, we built a genome
annotation module based on VAPIiD (Shean et al., 2019),
which can identify coding sequences (CDS) or protein
sequences and generate a GenBank annotation file.

4. Variant identification modules

The variant identification function consists of the Genome-
to-Variants and Fastg-to-Variants modules. Both modules use
the genome NC_045512.2 as a default reference, but users
can customize the reference by uploading a genome file.
Genome-to-Variants can detect mutation sites from complete
or partial genomes, using Muscle (Edgar, 2004) for sequence
alignment. Fastg-to-Variants can identify genome variants
from NGS raw data and connect seamlessly to the GSA
system to load massive raw sequencing data to the server
automatically. Sequencing reads are aligned to the SARS-
CoV-2 reference genome (NC_045512.2) using BWA (Li &
Durbin, 2009), after which Picard is used to remove duplicate
reads and calculate aligned read number, error rate,
sequencing depth, and genome coverage (http://broadin
stitute.github.io/picard/). Single nucleotide polymorphisms
(SNPs) and insertions and deletions (indels) are identified
using GATK (McKenna et al., 2010).

5. Variation annotation module

To clarify the mutation influence on gene function, the
variation annotation module integrates the Ensembl Variant
Effect Predictor (VEP) (McLaren et al., 2016) to show codon
and amino acid changes, and then calculates the degree of
function influence.

It is worth mentioning that the parameters for the data
analysis modules have been highly optimized to improve
efficiency and reduce computing time. For example, when
testing the running time with the Fastg-to-Variants module
using one 24-core server, it cost ~1 min to process 1 Gb of
NGS data and less than 4 min for handling 8 Gb of NGS data
(Table 2). For this online platform, we established five servers
to provide public service, which indicates that the platform has
the capacity to analyze 7 200 NGS data in one day if the data
size is less than 1 Gb. In general, a notification email will be
automatically sent to users when computing jobs are finished.

For future applications, we will continue to improve this
specialized online platform by integrating more tools, software,
and pipelines for SARS-CoV-2 data analysis and provide one-
click and public data analysis services for coronavirus
researchers.
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