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ABSTRACT

Palaeognathae includes ratite and tinamou species
that are important for understanding early avian
evolution. Here, we analyzed the whole-genome
sequences of 15 paleognathous species to infer their
demographic histories, which are presently unknown.
We found that most species showed a reduction of
population size since the beginning of the last glacial
period, except for those species distributed in
Australasia and in the far south of South America.
Different degrees of contraction and expansion of
transposable elements (TE) have shaped the
paleognathous genome architecture, with a higher
transposon removal rate in tinamous than in ratites.
One repeat family, AViRTE, likely underwent
horizontal transfer from tropical parasites to the
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ancestor of little and undulated tinamous about 30
million years ago. Our analysis of gene families
identified rapid turnover of immune and reproduction-
related genes but found no evidence of gene family
changes underlying the convergent evolution of
flightlessness among ratites. We also found that
mitochondrial genes have experienced a faster
evolutionary rate in tinamous than in ratites, with the
former also showing more degenerated W
chromosomes. This result can be explained by the
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Hill-Robertson interference affecting genetically
linked W chromosomes and mitochondria. Overall,
we reconstructed the evolutionary history of the
Palaeognathae populations, genes, and TEs. Our
findings of co-evolution between mitochondria and W
chromosomes highlight the key difference in genome
evolution  between species with ZW sex
chromosomes and those with XY sex chromosomes.
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INTRODUCTION

Modern birds include Palaeognathae and Neognathae, which
diverged from each other over 110 million years ago (Jarvis et
al., 2014), with the former currently comprising only 5.7% of
extant bird species. Palaeognathae includes the flightless
ratites and volant tinamous. Ratites are broadly distributed
across the major continents, and include Apterygidae (kiwis)
and four families of species with much larger body size than
any other bird species: i.e., Struthionidae (ostriches), Rheidae
(rheas), Casuariidae (cassowaries), and Dromaiidae (emus)
(Angst & Buffetaut, 2017). As well as in Africa, ostriches also
used to be present in a large part of Eurasia (Europe and
Asia) (Houde, 1986). Emus, cassowaries, and kiwis are native
to Australasia and rheas are distributed in South America.
Tinamous consist of 46 extant species in nine genera, which
are exclusively located in Central and South America
(Figure 1). Despite the evolutionary success of these birds in
terms of species diversity and geographic range, their
demographic histories remain largely unknown.
Paleognathous species are important for understanding the
early evolution of birds due to their unusual features of
gigantism and flightlessness, resulting in a lower genome-wide
evolutionary rate than that of other birds (Wang et al., 2019).
For example, cytogenetic studies and recent genome
analyses of ostriches found fewer intragenomic
rearrangements compared to that in other birds (O’Connor et
al., 2018; Takagi et al., 1972). The loss of flight capability and
the increase in body size (gigantism) seem to have occurred
independently multiple times among ratites (Sackton et al.,
2019). However, the genomic bases for these changes remain
poorly understood, except for several recent studies on emus
and rheas (Sackton et al.,, 2019; Young et al., 2019).
Tinamous do not exhibit powered flight, but are capable of
short, burst flapping flight, which may be due to their smallest
heart-to-body size ratio among birds (Altimiras et al., 2017;
Bishop, 1997). It has been proposed that the metabolic
requirement for powered flight is linked to a reduced genome
size (Altimiras et al., 2017; Kapusta et al., 2017; Wright et al.,
2014), as evidenced by the smaller genomes of bats and birds
relative to those of other mammals and birds. In addition to the
different rates of genomic deletions between the two groups of
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species, the contribution of transposable element (TE)
turnover to the variable genome sizes of paleognaths remains
to be elucidated, as previous analysis included only ostrich
and white-throated tinamou (Kapusta et al., 2017). Whether
gene content diversity among species has contributed to the
convergent evolution of flightlessness among ratites also
remains to be clarified.

Paleognaths provide a unique model for studying the
evolutionary history of bird sex chromosomes. Of note, most
paleognathous species have homomorphic sex chromosomes
with cytologically indistinguishable Z and W chromosomes
(Ogawa et al., 1998; Pigozzi, 1999; Pigozzi & Solari, 1999;
Shetty et al.,, 1999; Tsuda et al., 2007), in contrast to the
highly heteromorphic sex chromosomes of Neognathae and
mammals. The reason for this unusually slow sex
chromosome differentiation is unclear. An important distinction
between the ZW and XY sex system is that mitochondria,
which are non-recombining and are specifically transmitted
through females, are genetically linked to the W chromosome
(Berlin et al., 2007). The Hill-Robertson interference, i.e.,
interference between linked loci reducing the efficacy of
selection, is therefore expected to act on both mitochondrial
DNA (mtDNA) and W chromosomes (Charlesworth &
Charlesworth, 2000). However, few genomic studies have
examined whether the extent of sex chromosome
differentiation is correlated with the mitochondrial gene
evolutionary rate, except for an earlier study on collared
flycatchers (Smeds et al., 2015).

In this study, we analyzed the whole-genome sequences of
15 paleognathous female birds to reconstruct the evolutionary
history of their populations, TEs, and genes. We characterized
dynamic expansions and contractions of TE and gene families
in these birds. We further demonstrated that the evolutionary
rates of mitochondria and W chromosomes were highly
correlated.

MATERIALS AND METHODS

Data description

Assembled sequences (both nuclear and mitochondrial
genomes) and gene annotations of 15 species of tinamous
and ratites (sample information: Supplementary Table S1)
were retrieved from our previous study (Wang et al., 2019). All
analyses performed were based on our recently produced
phylogenomic tree using whole-genome non-coding sequence
alignments (Wang et al., 2019).

Here, we presented the genomic annotations of 12
Palaeognathae species (Supplementary Table S1), together
with previously reported genomes (Le Duc et al., 2015; Wang
et al.,, 2019; Zhang et al., 2014), representing all extant
Palaeognathae orders (Handford & Mares, 1985). Samples
were selected to cover the Tinamiformes order, with nine
species within four genera represented for the first time
(Figure 1). We produced the single nucleotide polymorphism
(SNP) sites for each studied species, which were used to



Figure 1 Continental distributions of paleognathous species investigated in this study

Species range information of studied paleognaths (ratites and tinamous) was retrieved from MAP OF LIFE (https://mol.org/). All bird icons were
ordered from https://www.hbw.com/. Points indicate their rough distribution range.

reconstruct their demographic history (see below for detailed
methods).

Demographic history analysis

We investigated the demographic histories of the different
paleognathous species with whole-genome datasets using the
pairwise sequentially Markovian coalescent (PSMC) approach
(Li & Durbin, 2011), which can infer changes in effective
population size (N,) within 10 000 to 1 000 000 years. We
performed PSMC (Li & Durbin, 2011) with the heterozygous
SNP loci produced by the GATK pipeline (DePristo et al.,
2011). Parameters were set to “N30-t5 —r5 —p
4+30*2+4+6+10” and bootstrapping (100 times) was
performed for each species to determine variance in N,
estimates. We used the estimated values of generation time
and mutation rate to scale the results. We applied branch-
specific estimates of the synonymous substitution rate per
synonymous site (dS) from our dated phylogeny as proxies for
the rate of mutation. The age of sexual maturity (collected
from published results) was multiplied by a factor of two as a
proxy for generation time (Handford & Mares, 1985)
(Supplementary Table S2).

Evolutionary analyses of transposable elements

We used RepeatMasker (v.4.0.7) with RepBase (20160829)
and the de novo prediction program RepeatModeler (v.open-
463 1.0.8) to predict and categorize repetitive elements. We
used the Kimura 2-parameter distance to estimate the
divergence level between individual TE copies and their

consensus sequences. Kimura distances between genome
copies and TE consensus were calculated using the
RepeatMasker (v.4.0.7) built-in scripts
(calcdivergencefromalign.pl). We dated the expansion of
certain repeat subfamilies based on their sequence
divergence patterns in the phylogeny by parsimony. We
inferred more recent or ancestral subfamilies if they showed a
sequence divergence pattern concentrated at a lower or
higher divergence level and shared among species or specific
to certain lineages. To test the influence of assembly quality
on the estimation of TE abundances, we performed TE
annotation with the same pipeline on a newly produced emu
genome using PacBio and Hi-C technologies. We first
annotated the genomic copies of AViRTE (a novel family of
long interspersed elements) for each Palaeognathae genome
assembly using RepeatMasker (v.open-4.0.6) based on its
published consensus sequences (Suh et al., 2016). We then
used all of the predicted AviRTE sequences from all studied
paleognathous genomes to reconstruct the putative ancestral
consensus sequence by RepeatModeler (v.open-1.0.8) to
calculate the divergence of AViRTE from each species. To
date the time of horizontal transfer, we compared the flanking
sequences (a block of Ns with the same length) of each
AVIRTE copy between species by blat (version 36) (Kent,
2002) using those of AviRTEs from Crypturellus soui with the
highest number of copies as queries. We defined a pair of
orthologous AviRTEs if their flanking sequences were aligned
to each other.
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Evolutionary analyses of gene families

To examine the evolution of gene families in paleognathous
birds, genes from ratites, tinamous (15 species in total), and
chicken (Ensembl release-87) were clustered into gene
families by Treefam (Li et al, 2006) (min_weight=10,
min_density=0.34, and max_size=500). Family expansion or
contraction analysis was performed by CAFE (De Bie et al.,
2006). Gene Ontology (GO) enrichment analysis was carried
out based on the algorithm implemented in GOstat (BeiRbarth
& Speed, 2004). The computed P-value was then adjusted for
multiple tests by specifying a false discovery rate (<0.05)
using the Benjamini-Hochberg method (Benjamini et al.,
2001).

Evolutionary and association analyses of mitochondrial
genes

The mitochondrial protein-coding genes were identified using
MITOS (Bernt et al., 2013) and curated by comparison with
known sequences of other published ratites and tinamous
from GenBank. For the PAML analyses, we first assigned
orthologous relationships among all paleognathous birds and
the outgroup (chicken) using the reciprocal best blast hit
algorithm and syntenic information. We used PRANK
(Loytynoja & Goldman, 2005) to align the orthologous gene
sequences, which takes phylogenetic information into account
when placing a gap into the alignment. We filtered the PRANK
alignments by gblocks (Talavera & Castresana, 2007) and
excluded genes with a high proportion of low complexity or
repetitive sequences to avoid alignment errors. We estimated
the evolutionary rates of all individual mitochondrial datasets
for each branch using the Codeml program with the free-ratio
model in the PAML package (Yang, 2007). We tested the
association between the evolutionary rate of mitochondrial
genes and sex chromosome differentiation degree using the
phylogenetic generalized least squares (PGLS) model
implemented in R package APE (Paradis et al., 2004) and
nime (https://CRAN.R-project.org/package=nime).

RESULTS

Temporal changes in paleognathous species populations
We found large variation in N, among species, as indicated by
their different mean values over time (Supplementary Table
S3), which ranged from 20 000—40 000 in emus, Southern
cassowaries, and ornate tinamous to approximately 160 000
—1800 000 in elegant-crested and white-throated tinamous.
Similarly, the minimum N, estimated over the time span
analyzed varied between 5 000-9 000 (emus and Southern
cassowaries) to >50 000 (elegant-crested and white-throated
tinamous), and the maximum N, varied between
30 000-60 000 (e.g., emus and Andean tinamous) to
700 000-750 000 (undulated tinamous). Similar to the results
reported for neognaths (Nadachowska-Brzyska et al., 2015),
most species showed a sharp decline in population size since
the beginning of last glacial period (LGP) about 100 000 years
ago (Figure 2), except for species in the far south of the
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Southern Hemisphere and Australasia.

Two species (brown kiwis and hooded tinamous) in our
study are classified as vulnerable on the IUCN Red List of
Threatened Species (http://www.iucnredlist.org/), and another
two species (white-throated tinamous and greater rheas) are
classified as near threatened (Supplementary Table S3). Their
PSMC patterns exhibited a different trend to their historical
population changes (Figure 2). Brown kiwis showed a stable
N, during the LGP. Hooded tinamous had a relatively high N,
(~140 000) but experienced a continuous reduction in N, 30
000 years ago. The white-throated tinamous, which are
classified as near threatened, experienced long-term decrease
in N, from 270 000 to 50 000. Greater rheas showed a rather
stable N, for a long time until 40 000 years ago, when they
experienced a drastic reduction in N, to 50 000. Our results
suggest that these vulnerable and near threatened species
experienced a population size reduction at the end of the LGP,
predating the recent declines impacted by human activities.

Temporal evolution of TEs in paleognaths

With similar sequencing coverage, the assembled genome
sizes of the ratites were, on average, 27.72% larger
(1.276£0.177 vs. 1.005£0.035 Gb, P=0.0012, Wilcoxon test)
than those of the flighted tinamous (Supplementary Table S1).
Comparison of emu genomes produced by lllumina and
PacBio sequences indicated that the annotated repeat
sequences, except for the long terminal repeat (LTR)
elements, were similar in size, suggesting that most TEs in the
studied Palaeognathae genomes were properly annotated
(Supplementary Table S4). Repeat library-based annotations
of genome samples showed low variance in genomic repeat
content and a relatively constant diversity of repeat types. We
found that paleognaths generally had a similar level of
genome-wide repeats, ranging from 4.89% in thicket tinamous
to 5.54% in ostriches, which was largely attributed to their
similar long interspersed nuclear element (LINE) content
(Supplementary Table S5). Ratites had significantly (P<
0.0007, Wilcoxon test) more DNA transposons
(0.730+0.059% vs. 0.472+0.028%, on average 0.55 fold
higher) and short interspersed nuclear elements (SINE,
0.178+0.008% vs. 0.077+0.007%, on average 1.25 fold
higher) compared with tinamous. They together contributed an
additional 13.98 (66.62+7.987 vs. 52.64+3.308) Mb, on
average, to the ratite genomes compared to those of tinamous
(Supplementary Table S5). When inspecting the sequence
divergence patterns of DNA transposons compared to their
consensus sequences, we did not find any recent expansions
in ratites, whose divergence level was expected to be low
(Figure 3A; Supplementary Figure S1). Thus, the higher DNA
transposon content of ratites is more likely to be caused by the
higher rate of DNA transposon removal in tinamous.

In contrast, the predominant repeat type (about 3% of the
genome), i.e., chicken repeat 1 (CR1) LINE elements, showed
a similar genomic percentage among paleognaths
(Supplementary Table S5). Different CR1 repeat subfamilies
exhibited different patterns of genomic composition and



Figure 2 Dynamic changes in effective population size
Red curve of each species is the population size dynamics inferred from PSMC analyses, with pink curves indicating variation in population size
derived from 100 bootstraps. Gray shaded areas indicate last glacial period (LGP). We also aligned species range information (https://mol.org/) to

each panel.
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Figure 3 Temporal evolution of transposable elements of paleognaths

Patterns of eight out of 15 studied Palaeognathae species are shown here. The remaining species, whose patterns were very similar to the eight
species, are included in Supplementary Figures S1, S3. A, B: Inferred bursts of certain subfamilies of DNA transposons (in black-framed color
squares) and CR1 LINEs (in squares without black frames) are labelled at corresponding phylogenetic nodes. Histograms show distributions of
sequence divergence between each subfamily vs. their consensus sequences. We dated the expansion of certain repeat subfamilies based on their

sequence divergence patterns in phylogeny by parsimony. We also dated two horizontal transfers of AvViRTE retroposon, one of which has been

reported previously (Suh et al., 2016), indicated here in red.

temporal activity between the ratites and tinamous. Certain
subfamilies, for example, CR1-Y1_Aves and - Y2_Aves, are
thought to have been active throughout the evolutionary
history of paleognathous species, and probably throughout
that of all birds, with previous studies showing activity in both
chickens and zebra finches (Suh et al., 2011). This accords
with our chronological analyses of nested TEs, with the
expectation that younger and active TEs are more likely to be
nested within older and inactive TEs ( ‘transposition in
transposition’, TinT (Churakov et al., 2010)) than the opposite
scenario. Based on TinT analyses, subfamilies CR1-Y_Pass, -
Y4, and- YB2_Pass showed lineage-specific activity
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throughout the tinamou lineage as well as in some ratites
(e.g., CR1-YB2_Pass in ostriches) (Supplementary Figure
S2). This result was corroborated by their sequence
divergence patterns compared to their consensus sequences
(Figure 3B, Supplementary Figure S3):i.e., recently active
CR1 subfamilies (e.g., CR1-Y4) were specifically enriched in
tinamou species and showed a lower sequence divergence
pattern than those (e.g., CR1-Y2_Aves) active at an earlier
time point. Overall, the lower contraction rate of ancient CR1
elements in ratites and more recent expansion of certain CR1
subfamilies in tinamous resulted in the similar level of LINE
elements between the two groups of species.



It is worth noting that we also dated two independent
horizontal transfers of retroposon AViRTE from filarial
nematodes to tinamou species, which is absent in any other
paleognaths. One was previously reported in white-throated
tinamous (Suh et al., 2016). Based on comparison of the
orthologous flanking sequences of AviRTE among species, we
inferred another horizontal transfer in the ancestor of little and
undulated tinamous within 30 million years (Supplementary
Figure S4 and Table S6).

Evolution of gene families

Based on the comparison of orthologous gene families among
the 15 paleognathous species, with chickens as the outgroup,
we characterized the expanded and contracted gene families
across all phylogenetic branches (Figure 4A). We found that
genes enriched in the GO terms ‘olfactory receptor activity’,
‘G-protein  coupled receptor signaling pathway’, or
‘spermatogenesis’ frequently exhibited expansion and
contraction for both internal and external branches in the
Palaeognathae species tree (Dataset 1, 2). These immune- or
reproduction-related pathways also show rapid turnover in
gene families in other species (Demuth et al., 2006; Hahn et
al., 2007; Sackton et al., 2007) (Figure 4B, Dataset 1).
Interestingly, the ancestor of tinamous showed significant
expansions of gene families enriched in GO terms
‘oxidoreductase activity’ and ‘developmental maturation’
(Figure 4C), which may be related to their small body size,
and thus different metabolic rate and developmental speed
compared with ratites. Some gene families also showed
expansions and were related to sexual development within
Tinamiformes: i.e., ‘male genitalia development’, ‘testosterone
biosynthetic process’, and ‘steroid biosynthetic process’
(Dataset 2). Taken together, these results suggest that
different species’ adaptation processes to different
environments and different degrees of sexual selection may
have driven changes in gene family size. Interestingly, gene
families showing significant contractions in ratites were not
enriched in GO terms involved in limb development. This
suggests that gene loss is probably not a major force
underlying the loss of flight in ratites.

Rapid evolution of mtDNA sequences in birds with highly
degenerated W chromosomes

The sex chromosomes of Palaeognathae species were
generally less differentiated than those of Neognathae
species, with ratite sex chromosomes being even less
differentiated than those of tinamous. This may be related to
the unique male-only parental care exhibited in paleognathous
species, and the low degree of sexual selection targeting
males (Wang et al., 2019). To test whether mtDNA genes
showed an associated sequence evolutionary pattern with the
differentiation degree of sex chromosomes, we calculated the
branch-specific cumulative evolutionary rates based on the
nonsynonymous to synonymous substitution rate ratio (dN/dS)
of 13 mitochondrial genes across the 15 paleognathous birds.
We also measured the differentiation degree of sex
chromosomes for each species by the length ratio of the Z-

linked region that suppressed recombination with the
homologous W-linked region (sexually differentiated region,
SDR) to the entire Z chromosome. Results demonstrated a
significant correlation between the evolutionary rate of
mitochondrial genes and sex chromosome differentiation
degree (PGLS test, P=0.0079, Figure 5A). That is, tinamous
with a more differentiated sex chromosome pair (a higher
SDR/chrZ ratio) tended to fix an excess of slightly deleterious
mutations (Supplementary Figure S5) in their mitochondrial
genes due to Hill-Robertson interference between the W
chromosome and mitochondrial genome. We also found that
tinamou mitochondrial genes had a significantly higher
(P<2.2e—16, Wilcoxon rank sum test) (Figure 5B) synonymous
substitution rate, which evolved largely under neutrality, than
that of the ratites. This is consistent with the generally smaller
body size and higher basal metabolic rate of tinamous
(Figure 5C) compared to ratites. The higher metabolic rate
associated with a smaller body size probably has a higher
mutagenic effect on mtDNA and nuclear genomes, thus
producing a higher mutation rate, as reflected by the
synonymous substitution rate.

DISCUSSION

Tinamous are widely distributed throughout the South
American continent and occupy different ecological niches,
which probably diversified their demographic histories
(Figure 2). Here, the trajectories of temporal N, changes were
generally different between the ratites and tinamous (Figure 2;
Supplementary Table S3). Most species did not show a strong
phylogenetic signal regarding N, changes, which may reflect
recent population size changes impacted by their separate
ecological niches. The closely related Australasian species,
i.e., emus, cassowaries, and kiwis, were the exceptions,
demonstrating very similar PSMC patterns despite having
different extant geographic distributions (Australia, New
Guinea, and New Zealand, respectively). This suggests that
their living area used to be largely overlapping. In contrast, the
Chilean and elegant-crested tinamous are distantly related but
showed very similar population expansions compared to other
paleognaths. This may be due to their shared distribution in
high-altitude shrubland in southern South America, which may
have avoided serious impact from by the LGP. Similarly,
white-throated and undulated tinamous shared very similar
PSMC patterns and geographic ranges.

Our comparative analyses of the 15 paleognathous nuclear
and mitochondrial genomes highlighted that the different
sequence evolutionary patterns between ratites and tinamous
are likely associated with their different body mass and flight
capabilities.

Differences in TE content in paleognathous species can be
impacted by their different effective population sizes (Lynch,
2007). Previous studies have demonstrated that recent
bottlenecks in endangered mammals can fix excessive TEs in
the genome by genetic drift (Abascal et al., 2016; Li & Durbin,
2011). Here, population size had a significant association
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Figure 4 Gene family evolution across Palaeognathae tree

A: Numbers designate number of gene families that have expanded (green) or contracted (red) since split from common ancestor. Most recent
common ancestor (MCRA) has 14 999 gene families. Phylogenetic tree based on genome-wide alignments of non-coding sequences, adapted from
Wang et al. (2019). B, C: GO-term enrichment analysis of contracted gene families in ostriches (B) and expanded gene families in ancestor of
tinamous (C). Bubble color indicates log10 (P-value) (legend in upper left-hand corner). Size of bubble indicates frequency of the GO term in the
underlying GOA database (larger ones denote more general terms). Scatterplots were drawn by REVIGO (http://revigo.irb.hr/).

(P<0.05, PGLS test) with overall and certain types of TE Table S7), with some exceptions. For example, the dramatic
content in the studied paleognathous species (Supplementary recent expansion of population size in elegant-crested
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Figure 5 Correlated evolution of mitochondrial genes and W chromosomes among paleognathous species

A: Correlation between evolutionary rates of mitochondrial genes and length ratios of sexually differentiated regions (SDR) over entire chrZ. Each

data point represents one paleognathous species. Pearson correlation coefficients (r) are shown for comparison. B: Synonymous substitution rates
(dS) of mitochondrial genes (13 genes). Colors refer to ratites (blue), tinamous with moderately degenerated chrW (yellow), and tinamous with
highly degenerated chrW (red). C: Branch-specific basal metabolic rates (BMR). Branches are colored according to BMR values obtained through
ancestral character estimation using phytools (http://github.com/liamrevell/phytools) package as well as dependent package ape. Red indicates low

BMR value and blue indicates high BMR values.

tinamous and contraction of population size in emus have not
resulted in dramatically different genome-wide TE content
between the two species (5.02% vs. 4.98%). However, the
recent population size change may impact the frequencies of
TE families within the population, as reported in Drosophila
(Barrén et al., 2014). All the studied ratites had slightly larger
TE content and genome size (Supplementary Tables S1, S5)
than that of the studied tinamous. Although species with a
smaller estimated N, (e.g., emus and cassowaries) may be
expected to fix an excess of TEs relative to those with a larger
N, (e.g. , ostriches) due to less effective natural selection
purging TE insertions (Lynch, 2007), all ratites had very similar
TE content. Their higher TE content compared with tinamous
is consistent with recent comparison between ostriches and
white-throated tinamous (Kapusta et al., 2017), which
suggested that ostriches, similar to other flightless bird
species like penguins, have undergone fewer sequence
deletions than flighted birds since their divergence from the
common ancestor of birds. Consistent with this pattern, we
found that the differences in TE content and genome size
between ratites and tinamous were partially attributed to the
more severe loss of DNA transposons in tinamous (Figure 3A,
Supplementary Figure S1).

Associated with independent loss of flight, gigantism has
also evolved multiple times among ratites. We previously
showed that ratites have a lower nuclear genome-wide
substitution rate than tinamous, which is associated with their
body size (Wang et al., 2019). Here, we found a similar
pattern for synonymous substitution rates of mitochondrial
genes (Figure 5B). This may explain the less differentiated
pattern of sex chromosomes in ratites compared with that in
tinamous, i.e., lower rate of genomic rearrangements would
suppress homologous recombination between the sex

chromosomes. Indeed, a recent comparative analysis of
ostrich, falcon, and budgerigar genomes found that ostriches
show the lowest genomic rearrangements when all three
species are compared to chickens (O’Connor et al., 2018).
Among tinamou species with a similar body size, their different
estimated N, values do not seem to predict the degree of sex
chromosome differentiation. For example, in our previous work
(Wang et al., 2019), we showed that thicket and little tinamous
have very similar patterns and degrees of sex chromosome
differentiation, but a nearly 2-fold difference in N, estimated
from this work. Interestingly, we found a significant correlation
between the extent of sex chromosome differentiation and the
mitochondrial gene evolutionary rate. This reflects the effect of
Hill-Robertson interference, which would fix slightly deleterious
mutations on mtDNA that are genetically linked to the
degenerating W chromosome. Tinamous with more
degenerated W chromosomes therefore had a higher rate of
mitochondria gene evolution than ratites. This could also
explain the lower sequence diversity of mitochondria in birds
(Berlin et al., 2007) compared to that in mammals, whose
mitochondria are not influenced by the paternally inherited Y
chromosome. One might expect that strong natural selection
on mitochondrial genes due to high metabolic rates could, in
turn, retard the degeneration of W chromosomes. However,
this does not seem to be the case in hummingbirds: we
previously found hummingbirds to have a highly degenerated
W chromosome (Zhou et al., 2014), probably because their
high metabolic rates evolved after the loss of functional genes
on the W chromosome.

CONCLUSIONS

In summary, we delineated the temporal evolution of historical
population size, transposable elements, and gene families of
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paleognathous species in the context of their phylogeny. Their
varying degrees of sex chromosome differentiation also
allowed us to demonstrate the correlated evolution of
maternally-inherited mitochondria and W chromosomes
across species, which is expected to only exist in species with
female heterogametic sex chromosomes, such as birds and
butterflies.
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