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Pitfalls of barcodes in the study of worldwide SARS-
CoV-2 variation and phylodynamics

DEAR EDITOR,

Analysis of SARS-CoV-2 genome variation using a minimal
number of selected informative sites conforming a genetic
barcode presents several drawbacks. We show that purely
mathematical procedures for site selection should be
supervised by known phylogeny (i) to ensure that solid tree
branches are represented instead of mutational hotspots with
poor phylogeographic proprieties, and (i) to avoid
phylogenetic redundancy. We propose a procedure that
prevents information redundancy in site selection by
considering the cumulative informativeness of previously
selected sites (as a proxy for phylogenetic-based criteria).
This procedure demonstrates that, for short barcodes (e.g., 11
sites), there are thousands of informative site combinations
that improve previous proposals. We also show that barcodes
based on worldwide databases inevitably prioritize variants
located at the basal nodes of the phylogeny, such that most
representative genomes in these ancestral nodes are no
longer in circulation. Consequently, coronavirus
phylodynamics cannot be properly captured by universal
genomic barcodes because most SARS-CoV-2 variation is
generated in geographically restricted areas by the continuous
introduction of domestic variants.

Analysis of SARS-CoV-2 genetic variation has been widely
stimulated by the availability of thousands of coronavirus
genomes uploaded to public databases. In particular, the
Global Initiative on Sharing all Individual Data (GISAID;
https://www.gisaid.org/) offers full open access to SARS-CoV-
2 genomic data provided by hundreds of laboratories
worldwide. The scientific community can analyze the whole-
genome sequences available in these resources to make
inferences about SARS-CoV-2 genetic variation and its
phylogenetic roots, natural selection, and phylodynamics (Boni
et al., 2020; Forster et al., 2020; Gémez-Carballa et al.,
2020a, 2020b; Gudbjartsson et al., 2020; Rambaut et al.,
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2020; Rockett et al., 2020; Van Dorp et al., 2020; Yu et al.,
2020). Furthermore, the fact that the coronavirus genome is
only ~30 kb allows for relatively easy computational treatment.

In an attempt to simplify the interpretation of SARS-CoV-2
variation, several recent studies have explored tiny fractions of
the genomes by selecting highly informative/variable sites to
reconstruct patterns of variation and dispersion of SARS-CoV-
2 worldwide using different approaches. These sites together
conform a genetic signature or barcode. Zhao et al. (2020)
explored informative subtype markers (ISMs) for subtyping
SARS-CoV-2 variation to model the geographic distribution
and temporal dynamics of COVID-19 spread. Their proposed
algorithm identified a compact genetic signature of 11 bp
nucleotides (initially 20 bp) in the coronavirus genome, which,
according to the authors, defined the most variable (and
hence informative) set of sites in these genomes. Similarly,
Guan et al. (2020) analyzed a different (but overlapping with
Zhao et al. (2020)) signature of 11 nucleotide sites to explore
worldwide variation and monitor viral genetic diversity in
response to future vaccines or treatments. Instead of using a
mathematical algorithm for site selection (as in Zhao et al.
(2020)), these authors established their selection on purely
phylogenetic criteria.

Based on analysis of >90 K SARS-CoV-2 genomes (herein
referred to as the 90 K database) downloaded from GISAID
(see Supplementary Data for details), we discuss several
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issues with these studies that need further consideration,
including technical aspects of the methods employed for site
selection, and the convenience of monitoring ISMs signatures
based on current SARS-CoV-2 phylogeny. In addition, our
proposed haplotype entropy (HE) algorithm (see
Supplementary Data) corrects the issues of phylogenetic
redundancy (Zhao et al., 2020). Most notably, we argue that
barcodes provide very limited understanding of the current
dispersion patterns of SARS-CoV-2.

Zhao et al. (2020) used entropy to identify “a compact set of
nucleotide sites that characterize the most variable (and thus
more informative) positions in the viral genomes sequenced
from different individuals”. However, there are several issues
in the procedure employed by these authors that were not
addressed in the publication, which require further
consideration. First, their entropy-based algorithm is unable to
discriminate variants that are diagnostic of the same
phylogenetic branch, basically because these variants have
similar frequency in the database (excluding possible
phylogenetic homoplasies occurring along the evolutionary
history of SARS-CoV-2 genomes) (Figure 1A). To eliminate
redundant variants from the initial 20 best ISMs candidates
and reduce the list to only 11, the authors examined a
posteriori the evolution of the entropy values over time
(entropy covarying over time). We propose that this
redundancy could have been eliminated by simply inspecting
the SARS-CoV-2 phylogeny. For instance, the phylogenetic
tree skeleton in Figure 1A (inspired by Figure 3 in Gémez-
Carballa et al. (2020a)), which includes the initial 20 ISMs
signature, shows that: variants C8782T-T28144C together
define clade B (11 nt compressed ISMs CCTGCCAAGGG in
Zhao et al. (2020)); the sequence motif C241T-C3037T—
A23403G characterizes clade A2 (CCCGCCAGGGG,
immediate ancestral node of the most successful SARS-CoV-
2 variant outside Asia, which most likely originated in Italy
(Gémez-Carballa et al., 2020a)); and G28881A—-G28882A—
G28883C defines haplogroup A2a4 (CCCGCCAGGGA, one of
the most important sub-branches of A2 (CCCGCCAGGGQG);
here we favored the single multi-nucleotide polymorphism
(MNP) event GGG28881AAC for nomenclature, as justified in
Gomez-Carballa et al. (2020a)). In addition, their entropy-
based algorithm sub-optimally prioritized positions that are
diagnostic of nodes located along the same evolutionary
pathway, but which add very little to the overall discrimination
power of the ISMs set: A1 (CCCGCCAAGTG) makes up 4.7%
of the total database, while its sub-lineage A1a
(CCCITCAAGTG) represents 4.3% and A1a3 represents
1.8% (Figure 1A). As an alternative, we propose that an
algorithm that selects a given ISMs and maximizes the
information provided by previously selected ISMs would be
more efficient; for example, such a procedure would not
include G28882A if it was previously prioritized. Inspired by
previous procedures that consider cumulative information
provided by sets of genetic variants (Galanter et al., 2012;
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Pardo-Seco et al., 2014; Salas & Amigo, 2010), we propose
that an algorithm that explores HE would be much more
efficient than simply considering individual-site entropy values
(see below).

Instead of using a mathematical algorithm, Guan et al.
(2020) employed a strict phylogenetic procedure, but their
rationale for site selection is also questionable. The authors
used genomes from the initial period of the pandemic to
reconstruct a phylogenetic tree that derived five major clades
(with 15 subclades). Their barcode proposed included a
hyper-redundant set of 11 sites where: (i) C8782T-T28144C
defined haplogroup B, (i) set C241T-C3037T-A23403G
defined haplogroup A2, while C14408T on top of the A2
sequence motif led to the sublineage A2a, (iii)
G1397A-T28688C were both diagnostic of A3a1, and
G1440A-G2891A defined haplogroup A4. As in Zhao et al.
(2020), these variants defined basal nodes of the SARS-CoV-
2 phylogeny, resulting in an unsurprising overlap between
their 11 ISMs signatures (Figure 1A).

Another issue in the study of Zhao et al. (2020) relates to
the fact that their selection of ISMs was based on entropy
values >0.23, and a proportion of “N” and “—* below 25%; this
threshold led the authors to an initial selection of 20 ISMs, but
the rationale behind this decision is unsatisfactory. Given the
arbitrariness of these thresholds, we are compelled to wonder
how much of the total variation has been captured (or,
conversely, remains to be explained) by their ISMs barcodes
(see below).

In addition, Zhao et al. (2020) selected their ISMs using the
global GISAID database. This decision conditioned their ability
to capture more regional patterns and temporal variations. It
is, therefore, not unexpected that their signatures only
captured variation located at the basal nodes of the
phylogeny. This explains why their algorithm selected
diagnostic sites for haplogroups B (CCTGCCAAGGG), B1
(CCTGCTAAGGG), A1 (CCCGCCAAGTG), A2 (CCcGCC
AGGGG), and A3 (CCCTCCAAGGG) (Figure 1). These basal
nodes all occurred at the very initial steps of the pandemic and
have spread worldwide (Gomez-Carballa et al.,, 2020a);
therefore, none of the genomes representative of these basal
nodes are circulating today, but are only members of
derivative phylogenetic branches (note that, according to the
evolutionary rate, a mutation accumulates in the SARS-CoV-2
genome approximatelly every two weeks on average (Gémez-
Carballa et al., 2020a, 2020b)). Moreover, reducing whole
SARS-CoV-2 variation to a compact signature of 11 ISMs has
an important cost in terms of phylogeographic information. For
example, the signature CCCGCCAGGGA (haplogroup A2a4)
is widely distributed (>88 countries have representatives of
this clade) (Figure 1B). Within A2a4, however, there are sub-
lineages that predominate in different countries; for example,
A2a4cla is almost exclusively present in the UK with
frequencies ranging from ~1.5% (Wales and Scotland) to
6.4% (England), while the sub-lineage A2a4a3a is exclusively
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Figure 1 Skeleton of the SARS-CoV-2 phylogeny based on ISMs signatures, interpolated frequency maps of haplogroup sub-lineages
having differential geographic distributions, and comparative entropy values for ISMs signatures using different strategies

A: Skeleton of most parsimonious phylogenetic tree of SARS-CoV-2 variation based on ISMs signatures. Above: Zhao et al. (2020) proposed an
initial signature conformed by 20 ISMs; those retained in their reduced 11 ISMs signature are highlighted in blue. Signatures defined by Zhao et al.
(2020) are indicated below labels for each clade (according to Gémez-Carballa et al., (2020a)); clades with purple background are those captured
by the 11 ISMs set. Bottom: Tree built on 11 ISMs set prioritized by HE algorithm; gray indicates mutations that occurred in same branches
(according to Gomez-Carballa et al. (2020a)). Green stars indicate parallel mutations. Percentages below nodes indicate frequencies in 90 K
database. B: Interpolated maps of haplogroup frequencies for haplogroup A2a4 (represented by signature CCCGCCAGGGA in Zhao et al. (2020))
and its two sub-lineages A2a4a3a and A2a4c1a, as well as haplogroup A2a5 (CCCGCCGGGGG) and its sub-lineage A2a5c. C: Above: Entropy
using HE algorithm for 11 and 20 ISMs selected by Zhao et al. (2020) (red and purple, respectively (note: curves do not match because the HE
algorithm prioritizes the 20 ISMs differently; see also Table 1)) and 11 ISMs barcodes proposed by Guan et al. (2020) (blue); dotted vertical lines
indicate HE values for 11 and 20 ISMs sets. Inset figure shows HE entropy values for signatures conformed by 1 to 400 ISMs (green) calculated in
present study using 90 K database. Bottom: Boxplot records HE values for 2x10° combinations of 11 ISMs among the 50 with the highest individual
entropy values; light green dots (n=12 751) in the dot cloud indicate different combinations with HE values above signature proposed by Zhao et al.
(2020) (red dot); note, all random combinations are below the signature obtained by the HE algorithm implemented in the present study (top green
dot). Blue dot shows HE values of 11 site barcode of Guan et al. (2020) (95% of random site combinations fall above the HE value provided by this
site combination).

found in Iceland (Reykjavik) at a frequency of 7.8% originated in Spain (most likely in its capital city, Madrid) and

(Figure 1B). Additionally, the signature CCCGCCGGGGG
(haplogroup AZ2a5) is highly prevalent in ltaly, Spain, and
Russia based on Figure 5 in Zhao et al. (2020); whereas,
according to Gémez-Carballa et al. (2020b), A2a5 most likely
originated in Italy and gave rise to one of the most important
outbreaks in Spain; furthermore, its sub-lineage A2a5c

its geographic distribution clearly differs from its ancestral
node A2a5 (Figure 1B). The information on A2a4a4, A2a4a3a,
A2a5c, and many other regionally important clades are all
masked by Zhao et al. (2020) under a single signature that
corresponds to A2a4 (CCCGCCAGGGA) and A2ab5
(CCCGCCGGGGEG). Moreover, the reductionist view provided
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by the 11 ISMs barcodes prevents more in-depth
interpretation of the principal component analysis (PCA)
carried out by Zhao et al. (2020). For example, although this
plot does not indicate variation accounted for by PC1 and
PC2, it is possible to envisage that the position of the Spanish
dataset close to other Asian countries on PC1 is due to the
presence of haplogroup B3a (derivative of Asian B3 captured
by Zhao et al. (2020) in the signature CCTGCTAAGGG). This
haplogroup is much more frequent in Spain than in any other
European country (see detailed reconstruction of its origin in
Goémez-Carballa et al. (2020b)), a characteristic shared by the
USA (and located on the same side of PC1) due to the high
frequency presence of B1a1 (captured by Zhao et al. (2020)
with the same signature). In addition, the procedure used by
Zhao et al. (2020) captured the known D614G spike protein
mutation (through their signature CCCGCCAGGGG and
derivates; see Figure 1), which is of anecdotal significance
only. This amino-acid change corresponds to the RNA change
A23403G, which is the most common variant worldwide
because it is diagnostic of the basal haplogroup A2 (Figure 1,
and Gomez-Carballa et al. (2020a)). The frequency of this
variant in Spain is significantly lower (67.2%) than that
observed in other European countries (Europe without Spain:
85.1%) where haplogroup A derivative clades are much more
common. Finally, mutational hotspots constitute an additional
problem, because these variants are likely to be included by
an algorithm for ISMs selection. This is the case of position 11083
(one of the most important hotspots in the SARS-CoV-2
genome; see Supplementary Material and Supplementary
Table S1 in Gomez-Carballa et al. (2020a)). Hotspots are
phylogenetically unstable and have poor phylogeographic
properties and tracking phylodynamics using hotspots can
lead to obscured patterns.

To reduce redundancy in the initial ISMs selection carried
out by Zhao et al. (2020), we used the HE algorithm (see
Supplementary Data), which computes the entropy accounted
for by haplotypes with an increased number of sites (note that,
the 20 and 11 ISMs signatures defined by Zhao et al. (2020)
are technically haplotypes). As expected, the computation of
HE prevents the selection of phylogenetically redundant ISMs
(because they together define the same phylogenetic branch
and/or because of the existence of more complex
phylogenetic relationships among variants, e.g., homoplasies)
(Figure 1A). There is an expected overlap between the ISMs
selected by the HE algorithm and those selected by Zhao et
al. (2020) because both algorithms tend to select ISMs with
the highest individual entropy values and located at the basis
of the phylogeny; however, the HE algorithm significantly
improves the overall entropy value compared to that captured
by the 11 ISMs signature in Zhao et al. (2020). Thus, when
applied to the 90 K database (see Supplementary Data), the
entropy of the 11 ISMs signature from Zhao et al. (2020) is
3.1, whereas the 11 ISMs generated by our HE algorithm
reach 3.6 (i.e., increase of ~16%). When considering profiles
uploaded to GISAID until 17 June 2020 (>30 K; high quality
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genomes), as in Zhao et al. (2020), the total entropy of the 11
ISMs from Zhao et al. (2020) is 3.3, while the 11 ISMs
signature based on the HE algorithm using this dataset leads
to a total entropy of 3.5 (increase of ~6%). Table 1 shows the
entropy values computed for the top ISMs obtained under
different scenarios and algorithms; note that the HE algorithm
ranks the 20 ISMs selected by Zhao et al. (2020) in a different
way, resulting in a different 11 ISMs signature. Finally, the 11
ISMs barcode proposed by Guan et al. (2020), with a total
entropy of 1.3 on the 90 K database, misses the target by far,
due to the existing phylogenetic redundancy mentioned
above.

The HE algorithm leads to a more efficient signature than
that captured by the entropy procedure in Zhao et al. (2020);
however, none of the algorithms provide information on how
far these 11 ISMs signatures are from a hypothetical
maximum entropy. To investigate this issue in more detail, we
first computed the total entropy of the GISAID 90 K database
by considering each genome as a haplotype, obtaining a value
of 13.3. This indicates that the 11 ISMs signatures of both
Zhao et al. (2020) and the HE algorithm only capture ~27% of
the total entropy. We next computed the HE of signatures
ranging in size from 1 to 400 ISMs, to see how much
information a given ISMs adds to previously incorporated
ISMs. Figure 1C indicates that a signature of 400 ISMs
captures 9.2 of total entropy; therefore, the remaining 4.1 of
entropy in the database (13.3 minus 9.2) is still retained by
many other thousands of sites dispersed along the SARS-
CoV-2 genome. It is worth noting that the incorporation of
additional ISMs to a signature adds progressively less and
less entropy to the total system (Figure 1C). To further explore
the efficiency of the 11 ISMs signature obtained by the HE
algorithm, we computed the HE of the 11 ISMs combined at
random from the 50 sites with the highest individual entropy;
this “brute force” method eliminated complex phylogenetic
relationships that exist between sites (which might not be
eliminated by the HE algorithm). Because combinatorial
algorithms are computationally highly demanding (i.e., >10"®
possible combinations), we sampled only a reasonable
number of combinations (2x10°). None of these combinations
improved the entropy captured by the 11 ISMs set obtained by
the HE algorithm; however, we observed a total of 12 751
combinations that yielded higher entropy than the signature
proposed by Zhao et al. (2020); moreover, >95% of the
combinations had higher entropy values than the barcode
proposed by Guan et al. (2020) (Figure 1C). By visually
exploring the cloud of HE values in these random
combinations, it can be inferred that the combination obtained
using the HE algorithm (Figure 1C) is most likely among the
best-performing combinations, that is, nearly the top HE
possible with a signature of 11 ISMs.

A final observation of our simulation experiments is that
optimal ISMs signatures varied with time. The ISMs set
obtained from the global database (from 24 December 2019 to
26 August 2020) differs slightly to the set obtained using



Table 1 ISMs selected using HE procedure described in the present study and 20 ISMs signature captured by Zhao et al. (2020)

90 K database—HE algorithm

90 K database — Zhao et al. (2020) ISMs signature

All database Before 18 June 2020 After 17 June 2020 All database Before 18 June 2020 After 17 June 2020
Site HE Site HE Site HE Site HE Site HE Site HE
#1 28881 0.93 241 0.86 28881 0.99 28881* 0.93 241 0.86 28881* 0.99
#2 25563 1.58 25563 1.58 25563 1.58 25563* 1.58 25563* 1.58 25563* 1.58
#3 241 2.06 283881 2.07 241 1.97 241 2.06 28881* 2.07 241 1.97
#4 11083 2.37 11083 2.41 1163 2.35 11083* 2.37 11083* 2.41 11083 224
#5 1163 2.61 1059 2.64 11083 2.61 1059* 2.59 1059* 2.64 1059* 2.45
#6 1059 2.83 8782 2.84 28854 2.83 20268 2.78 8782 2.84 20268 2.64
#7 20268 3.02 20268 3.03 1059 3.03 14805* 293 20268 3.03 14805* 2.75
#3 14805 3.17 14805 3.21 19839 3.21 8782* 3.06 14805* 3.21 8782 2.82
#9 23731 3.31 15324 3.33 23731 3.37 18060* 3.12 17747 3.30 14408 2.87
#10 28854 3.45 27964 3.44 20268 3.52 14408 3.18 2558* 3.36 18060* 2.92
#11 19839 3.58 10097 3.54 27964 3.65 2558* 3.22 3037 3.42 23403* 295
#12 8782 3.70 28854 3.64 313 3.77 23403* 3.25 26144* 345 2558* 2.99
#13 27964 3.83 27046 3.73 14805 3.88 3037 3.28 14408 3.48 3037 3.01
#14 15324 3.93 17747 3.81 11916 3.98 26144*  3.31 28144 3.50 17747 3.03
#15 313 4.03 25429 3.89 15324 4.07 17747 3.32 18060* 3.52 26144* 3.04
#16 11916 412 11916 3.97 22480 4.15 28144 3.33 23403* 3.54 28882 3.05
#17 18877 4.19 313 4.04 8782 4.22 28882 3.34 2480 3.54 2480 3.05
#18 25429 4.26 29553 4.11 21575 4.29 2480 3.35 28882 3.55 28144 3.05
#19 18060 4.32 19839 4.18 18877 4.35 17858 3.35 17858 3.55 17858 3.06
#20 21575 4.38 18877 4.24 13862 4.41 28883 3.35 28883 3.56 28883 3.06

Sites common in all columns are in bold. Database used by Zhao et al. (2020) was downloaded on 17 June 2020; table shows values obtained
according to this timepoint. Asterisks indicate ISMs retained in 11 ISMs set by Zhao et al. (2020) out of the 20 initially selected by their algorithm;
HE algorithm prioritizes other ISMs not included by Zhao et al. among the 20 top candidates, which instead includes several that are not considered

among the top 20 prioritized by the HE algorithm.

genomes from the initial phase of the pandemic (from 24
December 2019 to 17 June 2020) and the latest phase in the
database (from 17 June to 26 August 2020) (Table 1).

As expected, the optimal ISMs set is highly dependent on
the variation located at the basal nodes, but optimal
signatures can experience small changes depending on the
evolution and dispersion of the different SARS-CoV-2 strains
worldwide (Table 1).

We have shown that a simple (conceptual) modification to
the entropy algorithm employed by Zhao et al. (2020) can lead
to a more efficient procedure preventing the selection of sites
that have redundant phylogenetic information. Our analysis
highlights the need to properly supervise ISMs signatures
using known SARS-CoV-2 phylogeny as a more robust
approach to shed light on what is really being captured by
these signatures. By ignoring phylogeny, the method becomes
a kind of ‘black box’ that is difficult to interpret, especially
when requiring regional level resolution. The authors attempt
to find a parallel between the Nextstrain phylogeny (Hadfield
et al., 2018) and their signatures, which does not clarify the
sections of the evolutionary tree being captured. Here, we
showed (Figure 1A) that a single evolutionarily stable
mutational change in the SARS-CoV-2 genome is enough to
pinpoint a phylogenetic node in the evolutionary tree.

Relatedly, the use of nucleotide strings in the nomenclature of
the ISMs signatures represents a major drawback to
interpretation and knowledge exchange, rather than an
advantage (confra Zhao et al. (2020)). Instead, the
hierarchical nomenclature used by most scholars (inspired by
cladistic theory) appears much more convenient. Guan et al.
(2020) proposed a signature based exclusively on
phylogenetic criteria. For some unexplained reason, these
authors selected highly redundant informative sites and did
not realize that their proposal retains only a tiny fraction of
global entropy. From here, one can also learn that the use of
phylogeny alone does not help to reach the optimal signature,
while a strategy that combines mathematical predictions with
phylogeny can lead to more appropriate site selection. Most
importantly, small ISMs signatures provide a very reductionist
view of the pandemic dynamics, which can only superficially
inform the story of a few basal phylogenetic nodes
(Figure 1A), without accounting for sub-nodes that explain
regional patterns and/or arise at different points in time.
Regional variation is based on ‘domestic’ mutations that add
very little to the global entropy (i.e., have very limited
variation); this variation is, however, very relevant to the
region affected in terms of disease spread because it may be
responsible for a local/regional outbreak (e.g., intervention of
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super-spreader events (Gomez-Carballa et al, 2020a,
2020b)). In this regard, the geographic interpretation of
signatures in Zhao et al. (2020) seems incomplete and does
not really reveal region-specific variation. Briefly, their
signature TCCGCCAGTGG (haplogroup A2a2a) is “prevalent
in New York and some European countries” but (i) it is even
more prevalent in other states of the USA (see their Figure 6)
and (i) it is present in at least 71 countries worldwide (e.g.,
USA 48.8%, Israel 54.9%, Denmark 69.7%, Finland 72.9%,
Canada 22.3%, Vietnam 21.2%) because it is derived from
clade A2a, which earlier originated in Italy (Gémez-Carballa et
al., 2020a). Their description around this signature is also
confusing, e.g., position G26144T belongs to a different
phylogenetic branch (A1; 50 countries representing all
continents); and both A2a2a and A1 emerged from a common
ancestor, namely, haplogroup A (Figure 1A). Moreover, their
signature CCTGCTAAGGG points to the basal haplogroup B1
(Figure 1A; one of the potential phylogenetic roots of the
SARS-CoV-2 genome (Goémez-Carballa et al., 2020a)), which
is also present in 20 countries at low frequency, except for
Canada (19.3%), USA (10.2%), and Mexico (8.5%). As noted
by Zhao et al. (2020), it is also highly prevalent in Washington,
which is because an ancestral B1 lineage most likely entered
the country via early dispersion through the Pacific from Asia,
while A2 sub-lineages (e.g., A2a2a and other A2a derivatives)
most likely entered the USA from Europe via the Atlantic side.

The concept of a genetic barcode might be attractive for
many researchers interested in tracking SARS-CoV-2
variation as a shortcut alternative to whole-genome
sequencing. However, as discussed above, future attempts
should evaluate the potential limitations of site selection. As
demonstrated in the present study, barcodes that capture
ancestral SARS-CoV-2 variation may have very limited ability
to track recent SARS-CoV-2 dynamics and/or genetic
diversity. We envisage that the barcode strategy may be
useful to track functional SARS-CoV-2 issues (e.g., related to
virulence, dispersion, vaccine efficiency) that could emerge at
any time during the pandemic.
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